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ABSTRACT

Compressed representations generalize better (Shamir et al., 2010), which may be crucial when
learning from limited or noisy labeled data. The Information Bottleneck (IB) method (Tishby et al.
(2000)) provides an insightful and principled approach for balancing compression and prediction in
representation learning. The IB objective I(X;Z)− βI(Y ;Z) employs a Lagrange multiplier β to
tune this trade-off. However, there is little theoretical guidance for how to select β. There is also a
lack of theoretical understanding about the relationship between β, the dataset, model capacity, and
learnability. In this work, we show that if β is improperly chosen, learning cannot happen: the trivial
representation P (Z|X) = P (Z) becomes the global minimum of the IB objective. We show how
this can be avoided, by identifying a sharp phase transition between the unlearnable and the learnable
which arises as β varies. This phase transition defines the concept of IB-Learnability. We prove
several sufficient conditions for IB-Learnability, providing theoretical guidance for selecting β. We
further show that IB-learnability is determined by the largest confident, typical, and imbalanced
subset of the training examples. We give a practical algorithm to estimate the minimum β for a
given dataset. We test our theoretical results on synthetic datasets, MNIST, and CIFAR10 with
noisy labels, and make the surprising observation that accuracy may be non-monotonic in β.

1 INTRODUCTION AND RELATED WORK

Compressed representations generalize better (Shamir et al., 2010), which is likely to be particularly important when
learning from limited or noisy labels, as otherwise we should expect our models to overfit to the noise. Tishby et al.
(2000) introduced the Information Bottleneck (IB) objective function which learns a representation Z of observed vari-
ables (X,Y ) that retains as little information about X as possible, but simultaneously captures as much information
about Y as possible:

min IBβ(X,Y ;Z) = min I(X;Z)− βI(Y ;Z) (1)

I(X;Y ) =
∫
dx dy p(x, y)log p(x,y)

p(x)p(y) is the mutual information. The hyperparameter β controls the trade-off be-
tween compression and prediction, in the same spirit as Rate-Distortion Theory (Shannon, 1948), but with a learned
representation function P (Z|X) that automatically captures some part of the “semantically meaningful” information,
where the semantics are determined by the observed relationship between X and Y .

The IB framework has been extended to and extensively studied in a variety of scenarios, including Gaussian variables
(Chechik et al. (2005)), meta-Gaussians (Rey & Roth (2012)), continuous variables via variational methods (Alemi
et al. (2016); Chalk et al. (2016); Fischer (2018)), deterministic scenarios (Strouse & Schwab (2017a); Kolchinsky
et al. (2019)), geometric clustering (Strouse & Schwab (2017b)), and is used for learning invariant and disentangled
representations in deep neural nets (Achille & Soatto (2018a;b)). However, a core issue remains: how should we select
β? In the original work, the authors recommend sweeping β > 1, which can be prohibitively expensive in practice, but
also leaves open interesting theoretical questions around the relationship between β, P (Z|X), and the observed data,
P (X,Y ). For example, under how much label noise will IB at a given β still be able to learn a useful representation?

This work begins to answer some of those questions by characterizing the onset of learning. Specifically:

• We show that improperly chosen β may result in a failure to learn: the trivial solution P (Z|X) = P (Z) becomes
the global minimum of the IB objective, even for β � 1.

• We introduce the concept of IB-Learnability, and show that when we vary β, the IB objective will undergo a
phase transition from the inability to learn to the ability to learn.

• Using the second-order variation, we derive sufficient conditions for IB-Learnability, which provide theoretical
guidance for choosing a good β.
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• We show that IB-learnability is determined by the largest confident, typical, and imbalanced subset of the training
examples, reveal its relationship with the slope of the Pareto frontier at the origin on the information plane
I(Y ;Z) vs. I(X;Z), and discuss its relation with model capacity.

We use our main results to demonstrate on synthetic datasets, MNIST (LeCun et al., 1998), and CIFAR10 (Krizhevsky
& Hinton, 2009) under noisy labels that the theoretical prediction for IB-Learnability closely matches experiment. We
present an algorithm for estimating the onset of IB-Learnability, and demonstrate that it does a good job of estimating
the theoretical predictions and the empirical results. Finally, we observe discontinuities in the Pareto frontier of the
information plane as β increases, and those dicontinuities correspond to accuracy decreasing as β increases.

2 IB-LEARNABILITY AND ITS SUFFICIENT CONDITIONS

We are given instances of (x, y) ∈ X ×Y drawn from a distribution with probability (density) P (X,Y ), where unless
otherwise stated, both X and Y can be discrete or continuous variables. (X,Y ) is our training data, and may be
characterized by different types of noise. We can learn a representation Z of X with conditional probability1 p(z|x),
such that X,Y, Z obey the Markov chain Z ← X ↔ Y . Eq. (1) above gives the IB objective with Lagrange multiplier
β, IBβ(X,Y ;Z), which is a functional of p(z|x): IBβ(X,Y ;Z) = IBβ [p(z|x)]. The IB learning task is to find a
conditional probability p(z|x) that minimizes IBβ(X,Y ;Z). The larger β, the more the objective favors making a
good prediction for Y . Conversely, the smaller β, the more the objective favors learning a concise representation.

How can we select β such that the IB objective learns a useful representation? In practice, the selection of β is done
empirically. Indeed, Tishby et al. (2000) recommends “sweeping β”. In this section, we provide theoretical guidance
for choosing β by introducing the concept of IB-Learnability and providing a series of IB-learnable conditions.
Definition 1 (IBβ-Learnability). (X,Y ) is IBβ-learnable if there exists a Z given by some p1(z|x), such that
IBβ(X,Y ;Z)|p1(z|x) < IBβ(X,Y ;Z)|p(z|x)=p(z), where p(z|x) = p(z) characterizes the trivial representation such
that Z = Ztrivial is independent of X .

If (X;Y ) is IBβ-learnable, then when IBβ(X,Y ;Z) is globally minimized, it will not learn a trivial representation. If
(X;Y ) is not IBβ-learnable, then when IBβ(X,Y ;Z) is globally minimized, it may learn a trivial representation.

Necessary condition for IB-Learnability. From Definition 1, we can see that IBβ-Learnability for any dataset
(X;Y ) requires β > 1. In fact, from the Markov chain Z ← X ↔ Y , we have I(Y ;Z) ≤ I(X;Z) via the data-
processing inequality. If β ≤ 1, then since I(X;Z) ≥ 0 and I(Y ;Z) ≥ 0, we have that min(I(X;Z)−βI(Y ;Z)) =
0 = IBβ(X,Y ;Ztrivial). Hence (X,Y ) is not IBβ-learnable for β ≤ 1.

Theorem 1 characterizes the IBβ-Learnability range for β (see Appendix B for the proof):
Theorem 1. If (X,Y ) is IBβ1

-learnable, then for any β2 > β1, it is IBβ2
-learnable.

Based on Theorem 1, the range of β such that (X,Y ) is IBβ-learnable has the form β ∈ (β0,+∞). Thus, β0 is the
threshold of IB-Learnability. Furthermore, the trivial representation is a stationary solution for the IB objective:
Lemma 1.1. p(z|x) = p(z) is a stationary solution for IBβ(X,Y ;Z).

The proof in Appendix E shows that the first-order variation δIBβ [p(z|x)] = 0 vanishes at the trivial representation.
Lemma 1.1 yields our strategy for finding sufficient conditions for learnability: find conditions such that p(z|x) = p(z)
is not a local minimum for the functional IBβ [p(z|x)]. By requiring that the second order variation δ2IBβ [p(z|x)] < 0
at the trivial representation (Suff. Cond. 1, Appendix C), and constructing a special form of perturbation at the trivial
representation (Suff. Cond. 2, Appendix F), we arrive at the key result of this paper (see Appendix G for the proof)2:
Theorem 2 (Confident Subset Suff. Cond.). A sufficient condition for (X,Y ) to be IBβ-learnable is X and Y are
not independent, and

β > inf
Ωx⊂X

β0(Ωx) = inf
Ωx⊂X

1
p(Ωx) − 1

Ey∼p(y|Ωx)

[
p(y|Ωx)
p(y) − 1

] (2)

where Ωx denotes the event that x ∈ Ωx, with probability p(Ωx). Moreover, (infΩx⊂X β0(Ωx))
−1 gives a lower bound

on the slope of the Pareto frontier at the origin of the information plane I(Y ;Z) vs. I(X;Z).
1We use capital letters X,Y, Z for variables and lowercase x, y, z to denote the instance of variables, with P (·) and p(·)

denoting their probability or probability density, respectively.
2The theorems in this paper deal with learnability w.r.t. the true mutual information (MI). If parameterized models are used to

approximate MI, the limitation of the model capacity will translate into more uncertainty about Y given X , viewed from the model.

2



Published as a workshop paper at ICLR 2019

Characteristics of dataset leading to low β0. From Eq. (2), we see that three characteristics of the subset Ωx ⊂ X
lead to low β0: (1) confidence: p(y|Ωx) is large; (2) typicality and size: the number of elements in Ωx is large, or the
elements in Ωx are typical, leading to a large probability of p(Ωx); (3) imbalance: p(y) is small for the subset Ωx, but
large for its complement. In summary, β0 will be determined by the largest confident, typical and imbalanced subset
of examples, or an equilibrium of those characteristics.

Theorem 2 immediately leads to two important corollaries under special problem structures: classification with class-
conditional noisy labels (Angluin & Laird (1988)) and deterministic mappings.

Corollary 2.1. Suppose that the true class labels are y∗, and the input space belonging to each y∗ has no overlap.
We only observe the corrupted labels y with class-conditional noise p(y|x, y∗) = p(y|y∗) 6= p(y). Then a sufficient
condition for IBβ-Learnability is:

β > inf
y∗

1
p(y∗) − 1∑
y
p(y|y∗)2

p(y) − 1
(3)

Corollary 2.2. For classification problems, if Y is a deterministic function of X and not independent of X , then a
necessary and sufficient condition for IBβ-Learnability is β > β0 = 1.

Therefore, if we find that β0 > 1 for a classification task, we may infer that Y is not a deterministic function of X ,
i.e. either some classes have overlap, or the labels are noisy. However, finite models may add effective class overlap if
they have insufficient capacity for the learning task. This may translate into a higher observed β0, even when learning
deterministic functions. Proofs are provided in Appendix H.

3 ESTIMATING THE IB-LEARNABILITY CONDITION

Based on Theorem 2, for general classification tasks we suggest Algorithm 1 in Appendix J to empirically estimate an
upper-bound β̃0 ≥ β0. Here, we give the intuition behind the algorithm.

First, we train a single maximum likelihood model on the dataset. That model provides estimates for all p(y|x) in the
training set. Since learnability is defined with respect to the training data, it is correct to directly use the empirical
probability of p(x) and p(y) in the training data. Given p(x), p(y), and p(y|x), and the understanding that we are
seaching for a confident subset Ωx, we can then perform an efficient targeted search of the exponential space of
subsets of the training data. The algorithm returns the lowest estimate of β̃0 found during that process.

After estimating β̃0, we can then use it for learning with IB, either directly, or as an anchor for a region where we
can perform a much smaller sweep than we otherwise would have. This may be particularly important for very noisy
datasets, where β0 can be very large.

4 EXPERIMENTS

To test our theoretical results and Alg. 1, we perform experiments on synthetic datasets, MNIST, and CIFAR10.
Additional experiment details are provided in Appendix K.

Synthetic datasets. We generate a set of synthetic datasets with varying class-conditional noise rates. Fig. 1 shows
the results of sweeping β to find the empirical onset of learning, and compares that onset to the predicted onset
using Eq. (3). Clearly the estimate provides a tight upper bound in this simple setting. Also note that β0 grows
exponentially as the label noise increases, underscoring that improperly-chosen β may result in an inability to learn
useful representations, and the importance of theoretically-guided β selection as opposed to sweeping β in general.

MNIST. We perform binary classification with digits 0 and 1, but again add class-conditional noise to the labels
with varying noise rates ρ. To explore how the model capacity influences the onset of learning, for each dataset we
train two sets of Variational Information Bottleneck (Alemi et al., 2016) (VIB) models differing only by the number of
neurons in their hidden layers of the encoder: one with n = 128 neurons, the other with n = 512 neurons. Insufficient
capacity will result in more uncertainty of Y given X from the point of view of the model, so we expect β0,observed for
the n = 128 model to be larger. Fig. 1 confirms this prediction. It also shows the β0,estimated and β0,predicted given by
Algorithm 1 and Eq. (3), respectively. We see that Algorithm 1 does a good job estimating the onset of learning for
the large-capacity model, and that the estimated results line up well with the theoretical predictions.
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Figure 1: Top Left: Synthetic dataset predicted vs. experimentally identified β0, with varying class-conditional noise.
Top Right: MNIST dataset classification accuracy w.r.t. the true labels, for different noise rates ρ and hidden units
per layer n. The dashed vertical lines are β0,predicted by the R.H.S. of Eq. (3). The solid vertical lines are β0,estimated
estimated using Alg. 1. I(Y ;Z) has identical behavior to accuracy, so we omit those results. n = 128 has insufficient
capacity for the problem, so its learnability onset is pushed higher. At ρ = 0.3, n = 512 we can see that Eq. (3) is
an upper bound on the true β0. Bottom: CIFAR10 plots of β vs (a) I(X;Z), (b) I(Y ;Z), and (c) accuracy, as well
as (d), showing the information plane, all on the training set with 20% label noise. Each blue cross corresponds to
a fully-converged model starting with independent initialization. The vertical black lines in (a-c) correspond to the
predicted β0 = 1.0483. The empirical β̂0 = 1.048. The diagonal black line in (d) is one of the hard boundaries of the
information plane, I(Y ;Z) = I(X;Z). The Pareto frontier can never lie above that line. The red arrows indicate the
models with lowest β in the clearly distinct clusters in (d). Accuracy (c) is non-monotonic in each of those clusters,
especially the fourth, but I(X;Z) (a) and I(Y ;Z) (b) are essentially monotonic.

CIFAR10 forgetting. For CIFAR10 (Krizhevsky & Hinton, 2009), we study how forgetting varies with β. In other
words, given a VIB model trained at some high β2, if we anneal it down to some much lower β1, what accuracy does
the model converge to? We estimated β0 = 1.0483 on a version of CIFAR10 with 20% label noise using Alg. 1. The
lowest β with performance above chance was β = 1.048. See Appendix K.1 for experiment details.

As can be seen in Fig. 1 (d), there are large discontinuities in the Pareto frontier, even though we vary β in very
small increments. Those discontinuities start at points on the Pareto frontier where many values of β yield essentially
the same I(X;Z) and I(Y ;Z), and end when β crosses apparent phase transitions that give large increases in both
I(X;Z) and I(Y ;Z) (marked with red arrows). Fig. 1 (c) shows that the lowest value of β in each such region tends
to have the highest accuracy.

A primary empirical result of our work is the following: some datasets have non-monotonic performance in regions
where multiple values of β cluster together. This surprising behavior is important to check for when training IB
models. More thorough study is needed, but based on our initial results, we may expect that reducing β to the minimal
value that achieves a particular point on the information plane yields better representations. The phenomenon of
discontinuities is also observed in prediction error vs. information in the model parameter (Achille & Soatto (2018a);
Achille et al. (2019)), I(c;X) vs. H(c) (c denotes clusters) in geometric clustering (Strouse & Schwab (2017b)).
Although these discontinuities (including ours) are observed via different axes, we conjecture that they may all have a
shared root cause, which is an interesting topic for future research.

5 CONCLUSION

In this paper, we have presented theoretical results for predicting the onset of learning, and have shown that it is
determined by the largest confident, typical and imbalanced subset of the examples. We gave a practical algorithm
for predicting the transition, and showed that those predictions are accurate, even in cases of extreme label noise. We
have also observed a surprising non-monotonic relationship between β and accuracy, and shown its relationship to
discontinuities in the Pareto frontier of the information plane. We believe these results will provide theoretical and
practical guidance for choosing β in the IB framework for balancing prediction and compression. Our work also raises
other questions, such as whether there are other phase transitions in learnability that might be identified. We hope to
address some of those questions in future work.
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Appendix
The structure of the Appendix is as follows. In Appendix A, we provide preliminaries for the first-order and second-
order variations on functionals. Then we prove Theorem 1 in Appendix B. In Appendix C, we state and prove Sufficient
Condition 1 for IBβ-learnability. In Appendix D, we calculate the first and second variations of IBβ [p(z|x)] at the
trivial representation p(z|x) = p(z), which is used in proving the Sufficient Condition 2 IBβ-learnability (Appendix
F). After these preparations, we prove the key result of this paper, Theorem 2, in Appendix G. Then two important
corollaries 2.1, 2.2 are proved in Appendix H. We provide additional discussions and insights for Theorem 2 in
Appendix I, and Algorithm 1 for estimation of an upper bound β̃0 ≥ β0 in Appendix J. Finally in Appendix K, we
provide details for the experiments.

A PRELIMINARIES: FIRST-ORDER AND SECOND-ORDER VARIATION

Let functional F [f(x)] be defined on some normed linear space R. Let us add a perturbative function εh(x) to f(x),
and now the functional F [f(x) + εh(x)] can be expanded as

∆F [f(x)] = F [f(x) + εh(x)]− F [f(x)]

= ϕ1[f(x)] + ϕ2[f(x)] +O(ε3||h||2)

where ||h|| denotes the norm of h, ϕ1[f(x)] = εdF [f(x)]
dε is a linear functional of εh(x), and is called the first-order

variation, denoted as δF [f(x)]. ϕ2[f(x)] = 1
2ε

2 d
2F [f(x)]
dε2 is a quadratic functional of εh(x), and is called the second-

order variation, denoted as δ2F [f(x)].

If δF [f(x)] = 0, we call f(x) a stationary solution for the functional F [·].
If ∆F [f(x)] ≥ 0 for all h(x) such that f(x) + εh(x) is at the neighborhood of f(x), we call f(x) a (local) minimum
of F [·].

B PROOF OF THEOREM 1

Proof. At the trivial representation p(z|x) = p(z), we have I(X;Z) = 0, and I(Y ;Z) = 0 due to the Markov
chain, so IBβ(X,Y ;Z)|p(z|x)=p(z) = 0 for any β. Since (X,Y ) is IBβ1

-learnable, there exists a Z given by a
p1(z|x) such that IBβ1(X,Y ;Z)|p1(z|x) < 0. Since β2 > β1, and I(Y ;Z) ≥ 0, we have IBβ2(X,Y ;Z)|p1(z|x) ≤
IBβ1

(X,Y ;Z)|p1(z|x) < 0 = IBβ2
(X,Y ;Z)|p(z|x)=p(z). Therefore, (X,Y ) is IBβ2

-learnable.

C SUFFICIENT CONDITION 1 AND PROOF

In this section, we prove the Sufficient Condition 1 for IBβ-learnability, which will lay the foundation for the Sufficient
condition 2 (Appendix F) and the Confident Subset Sufficient condition (key result of this paper, Theorem 2) that
follow.

Theorem 3 (Suff. Cond. 1). A sufficient condition for (X,Y ) to be IBβ-learnable is that there exists a perturba-
tion function h(z|x) with3

∫
h(z|x)dz = 0, such that the second-order variation δ2IBβ [p(z|x)] < 0 at the trivial

representation p(z|x) = p(z).

Proof. To prove Theorem 3, we use the Theorem 1 of Chapter 5 of Gelfand et al. (2000) which gives a necessary
condition for F [f(x)] to have a minimum at f0(x). Adapting to our notation, we have:

Theorem 4 (Gelfand et al. (2000)). A necessary condition for the functional F [f(x)] to have a minimum at f(x) =
f0(x) is that for f(x) = f0(x) and all admissible εh(x),

δ2F [f(x)] ≥ 0

.
3Whenever a variable W is discrete, we can simply replace the integral (

∫
·dw) by summation (

∑
w ·).
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Applying to our functional IBβ [p(z|x)], an immediate result of Theorem 4 is that, if at p(z|x) = p(z), there exists an
εh(z|x) such that δ2IBβ [p(z|x)] < 0, then p(z|x) = p(z) is not a minimum for IBβ [p(z|x)]. Using the definition of
IBβ learnability, we have that (X,Y ) is IBβ-learnable.

Intuitively, if δ2IBβ [p(z|x)]
∣∣
p(z|x)=p(z)

< 0, we can always find a p′(z|x) = p(z|x) + h(z|x) in the neighborhood
of the trivial representation p(z|x) = p(z), such that IBβ [p′(z|x)] < IBβ [p(z|x)], thus satisfying the definition for
IBβ-Learnability.

To make Theorem 3 more practical, we perturb p(z|x) around the trivial solution p′(z|x) = p(z|x) + εh(z|x), and
expand IBβ [p(z|x) + h(z|x)]− IBβ [p(z|x)] to the second order of ε. We can then prove Theorem 5:

D FIRST- AND SECOND-ORDER VARIATIONS OF IBβ[p(z|x)]

In this section, we derive the first- and second-order variations of IBβ [p(z|x)], which are needed for proving Lemma
1.1 and Theorem 5.

Lemma 4.1. Using perturbative function h(z|x), we have

δIBβ [p(z|x)] =

∫
dxdzp(x)h(z|x)log

p(z|x)

p(z)
− β

∫
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)

δ2IBβ [p(z|x)] =

1

2

[ ∫
dxdz

p(x)2

p(x, z)
h(z|x)2 − β

∫
dxdx′dydz

p(x, y)p(x′, y)

p(y, z)
h(z|x)h(z|x′) + (β − 1)

∫
dxdx′dz

p(x)p(x′)

p(z)
h(z|x)h(z|x′)

]

Proof. Since IBβ [p(z|x)] = I(X;Z)− βI(Y ;Z), let us calculate the first and second-order variation of I(X;Z) and
I(Y ;Z) w.r.t. p(z|x), respectively. Through this derivation, we use εh(z|x) as a perturbative function, for ease of
deciding different orders of variations. We will finally absorb ε into h(z|x).

Denote I(X;Z) = F1[p(z|x)]. We have

F1[p(z|x)] = I(X;Z) =

∫
dxdzp(z|x)p(x)log

p(z|x)

p(z)

Since

p(z) =

∫
p(z|x)p(x)dx

We have

p(z)|p(z|x)+εh(z|x) = p(z)|p(z|x) + ε

∫
h(z|x)p(x)dx

Expanding F1[p(z|x) + εh(z|x)] to the second order of ε, we have

7
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F1[p(z|x) + εh(z|x)]

=

∫
dxdzp(x)[p(z|x) + εh(z|x)]log

p(z|x) + εh(z|x)

p(z) + ε
∫
h(z|x′)p(x′)dx′

=

∫
dxdzp(x)p(z|x)

(
1 + ε

h(z|x)

p(z|x)

)
log

p(z|x)
(

1 + εh(z|x)
p(z|x)

)
p(z)

(
1 + ε

∫
h(z|x′)p(x′)dx′

p(z)

)
=

∫
dxdzp(x)p(z|x)

(
1 + ε

h(z|x)

p(z|x)

)
log
[
p(z|x)

p(z)

(
1 + ε

h(z|x)

p(z|x)

)(
1− ε

∫
h(z|x′)p(x′)dx′

p(z)

+ ε2
(∫

h(z|x′)p(x′)dx′

p(z)

)2)]
+O(ε3)

=

∫
dxdzp(x)p(z|x)

(
1 + ε

h(z|x)

p(z|x)

)
log
[
p(z|x)

p(z)

(
1 + ε

(
h(z|x)

p(z|x)
−
∫
h(z|x′)p(x′)dx′

p(z)

)
+ ε2

(∫
h(z|x′)p(x′)dx′

p(z)

)2

− ε2h(z|x)

p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)

)]
+O(ε3)

=

∫
dxdzp(x)p(z|x)

(
1 + ε

h(z|x)

p(z|x)

)[
log

p(z|x)

p(z)
+ ε

(
h(z|x)

p(z|x)
−
∫
h(z|x′)p(x′)dx′

p(z)

)
+ ε2

(∫
h(z|x′)p(x′)dx′

p(z)

)2

− ε2h(z|x)

p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)
− 1

2
ε2
(
h(z|x)

p(z|x)
−
∫
h(z|x′)p(x′)dx′

p(z)

)2]
+O(ε3)

Collecting the first order terms of ε, we have

δF1[p(z|x)]

= ε

∫
dxdzp(x)p(z|x)

(
h(z|x)

p(z|x)
−
∫
h(z|x′)p(x′)dx′

p(z)

)
+ ε

∫
dxdzp(x)p(z|x)

h(z|x)

p(z|x)
log

p(z|x)

p(z)

= ε

∫
dxdzp(x)h(z|x)− ε

∫
dx′dzp(x′)h(z|x′) + ε

∫
dxdzp(x)h(z|x)log

p(z|x)

p(z)

= ε

∫
dxdzp(x)h(z|x)log

p(z|x)

p(z)

Collecting the second order terms of ε2, we have

δ2F1[p(z|x)]

= ε2
∫
dxdzp(x)p(z|x)

[(∫
h(z|x′)p(x′)dx′

p(z)

)2

− h(z|x)

p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)
− 1

2

(
h(z|x)

p(z|x)
−
∫
h(z|x′)p(x′)dx′

p(z)

)2]
+ ε2

∫
dxdzp(x)p(z|x)

h(z|x)

p(z|x)

(
h(z|x)

p(z|x)
−
∫
h(z|x′)p(x′)dx′

p(z)

)
=
ε2

2

∫
dxdz

p(x)2

p(x, z)
h(z|x)2 − ε2

2

∫
dxdx′dz

p(x)p(x′)

p(z)
h(z|x)h(z|x′)

Now let us calculate the first and second-order variation of F2[p(z|x)] = I(Z;Y ). We have

F2[p(z|x)] = I(Y ;Z) =

∫
dydzp(z|y)p(y)log

p(y, z)

p(y)p(z)
=

∫
dxdydzp(z|y)p(x, y)log

p(y, z)

p(y)p(z)

Using the Markov chain Z ← X ↔ Y , we have

p(y, z) =

∫
p(z|x)p(x, y)dx

8
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Hence

p(y, z)|p(z|x)+εh(z|x) = p(y, z)|p(z|x) + ε

∫
h(z|x)p(x, y)dx

Then expanding F2[p(z|x) + εh(z|x)] to the second order of ε, we have

F2[p(z|x) + εh(z|x)]

=

∫
dxdydzp(x, y)p(z|x)

(
1 + ε

h(z|x)

p(z|x)

)
log

p(y, z)
(

1 + ε
∫
h(z|x′)p(x′,y)dx′

p(y,z)

)
p(y)p(z)(1 + ε

∫
h(z|x′′)p(x′′)dx′′

p(z) )

=

∫
dxdydzp(x, y)p(z|x)

(
1 + ε

h(z|x)

p(z|x)

)[
log

p(y, z)

p(y)p(z)
+ ε

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫
h(z|x′)p(x′)dx′

p(z)

)
+ ε2

[(∫
h(z|x′)p(x′)dx′

p(z)

)2

−
∫
h(z|x′)p(x′, y)dx′

p(y, z)

∫
h(z|x′′)p(x′′)dx′′

p(z)
− 1

2

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫
h(z|x′)p(x′)dx′

p(z)

)2]
+O(ε3)

Collecting the first order terms of ε, we have

δF2[p(z|x)]

= ε

∫
dxdydzp(x, y)h(z|x)log

p(y, z)

p(y)p(z)
+ ε

∫
dxdydzp(x, y)p(z|x)

∫
h(z|x′)p(x′, y)dx′

p(y, z)

− ε
∫
dxdydzp(x, y)p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)

= ε

∫
dxdydzp(x, y)h(z|x)log

p(y, z)

p(y)p(z)
+ ε

∫
dx′dydzh(z|x′)p(x′, y)− ε

∫
dzh(z|x′)p(x′)dx′

= ε

∫
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)

Collecting the second order terms of ε, we have

δ2F2[p(z|x)]

= ε2
∫
dxdydzp(x, y)p(z|x)

[(∫
h(z|x′)p(x′)dx′

p(z)

)2

−
∫
h(z|x′)p(x′, y)dx′

p(y, z)

∫
h(z|x′′)p(x′′)dx′′

p(z)

]
− ε2

2

∫
dxdydzp(x, y)p(z|x)

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫
h(z|x′)p(x′)dx′

p(z)

)2

+ ε2
∫
dxdydzp(x, y)p(z|x)

h(z|x)

p(z|x)

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫
h(z|x′)p(x′)dx′

p(z)

)
=
ε2

2

∫
dxdx′dydz

p(x, y)p(x′, y)

p(y, z)
h(z|x)h(z|x′)− ε2

2

∫
dxdx′dz

p(x)p(x′)

p(z)
h(z|x)h(z|x′)

Finally, we have

δIBβ [p(z|x)] = δF1[p(z|x)]− β · δF2[p(z|x)]

= ε

(∫
dxdzp(x)h(z|x)log

p(z|x)

p(z)
− β

∫
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)

)
(4)

9
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δ2IBβ [p(z|x)] =δ2F1[p(z|x)]− β · δ2F2[p(z|x)]

=
ε2

2

∫
dxdz

p(x)2

p(x, z)
h(z|x)2 − ε2

2

∫
dxdx′dz

p(x)p(x′)

p(z)
h(z|x)h(z|x′)

− βε2
[

1

2

∫
dxdx′dydz

p(x, y)p(x′, y)

p(y, z)
h(z|x)h(z|x′)− 1

2

∫
dxdx′dz

p(x)p(x′)

p(z)
h(z|x)h(z|x′)

]
=
ε2

2

[ ∫
dxdz

p(x)2

p(x, z)
h(z|x)2

− β
∫
dxdx′dydz

p(x, y)p(x′, y)

p(y, z)
h(z|x)h(z|x′) + (β − 1)

∫
dxdx′dz

p(x)p(x′)

p(z)
h(z|x)h(z|x′)

]
Absorb ε into h(z|x), we get rid of the ε factor and obtain the final expression in Lemma 4.1.

E PROOF OF LEMMA 1.1

Proof. Using Lemma 4.1, we have

δIBβ [p(z|x)] =

∫
dxdzp(x)h(z|x)log

p(z|x)

p(z)
− β

∫
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)

Let p(z|x) = p(z) (the trivial representation), we have that logp(z|x)
p(z) ≡ 0. Therefore, the two integrals are both 0.

Hence,
δIBβ [p(z|x)]

∣∣
p(z|x)=p(z)

≡ 0

Therefore, the p(z|x) = p(z) is a stationary solution for IBβ [p(z|x)].

F SUFFICIENT CONDITION 2 AND PROOF

F.1 STATEMENT OF THE THEOREM

Theorem 5 (Suff. Cond. 2). A sufficient condition for (X,Y ) to be IBβ-learnable is X and Y are not independent,
and

β > inf
h(x)

β0[h(x)] (5)

where the functional β0[h(x)] is given by

β0[h(x)] =

Ex∼p(x)[h(x)2]

(Ex∼p(x)[h(x)])
2 − 1

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

Ex∼p(x)[h(x)]

)2
]
− 1

Moreover, we have that
(
infh(x) β[h(x)]

)−1
is a lower bound of the slope of the Pareto frontier in the information

plane I(Y ;Z) vs. I(X;Z) at the origin.

The proof is given in Appendix F, which also gives a construction for h(z|x) for Theorem 3 for any h(x) satisfying
Theorem 5, and shows that the converse is also true: if there exists h(z|x) suth that the condition in Theorem 3 is true,
then we can find h(x) satisfying the the condition in Theorem 5.

The geometric meaning of (β0[h(x)])
−1 is as follows. It equals ∆I(Y ;Z)

∆I(X;Z)

∣∣
p(z|x)=p(z)

under a perturbation func-

tion of the form h1(z|x) = h(x)h2(z) (satisfying
∫
h2(z)dz = 0 and

∫ h2
2(z)
p(z) dz > 0) at the trivial representa-

tion, where ∆I(X;Z) = I(X;Z)|p(z|x)+h1(z|x) − I(X;Z)|p(z|x) and similarly for I(Y ;Z). Since the first order

10
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variation vanishes for both I(X;Z) and I(Y ;Z), we have ∆I(Y ;Z)
∆I(X;Z) = δ2I(Y ;Z)

δ2I(X;Z) , which turns out to be equal to

(β0[h(x)])
−1. Therefore,

(
infh(x) β[h(x)]

)−1
gives the highest ∆I(Y ;Z)

∆I(X;Z)

∣∣
p(z|x)=p(z)

under the class of perturbation

functions h1(z|x) = h2(z)h(x), and provides a lower bound of suph(z|x)
∆I(Y ;Z)
∆I(X;Z)

∣∣
p(z|x)=p(z)

, which is the slope of
the Pareto frontier in the information plane I(Y ;Z) vs. I(X;Z) at the origin. Theorem 5 in essence states that as long
as β−1 is lower than this lower bound of the slope of the Pareto frontier, (X;Y ) is IBβ-learnable.

From Theorem 5, we see that it still has an infimum over an arbitrary function h(x), which is not easy to estimate. To
get rid of h(x), we can use a specific functional form for h(x) in Eq. (5), and obtain a stronger sufficient condition for
IBβ-Learnability. But we want to choose h(x) as near to the infimum as possible. To do this, we note the following
characteristics for the R.H.S of Eq. (5):

• We can set h(x) to be nonzero if x ∈ Ωx for some region Ωx ⊂ X and 0 otherwise. Then we obtain the
following sufficient condition:

β > inf
h(x),Ωx∈X

Ex∼p(x),x∈Ωx [h(x)2]

(Ex∼p(x),x∈Ωx [h(x)])
2 − 1∫

dy
p(y)

(
Ex∼p(x),x∈Ωx [p(y|x)h(x)]

Ex∼p(x),x∈Ωx [h(x)]

)2

− 1

(6)

• The numerator of the R.H.S. of Eq. (6) attains its minimum when h(x) is a constant within Ωx. This
can be proved using the Cauchy-Schwarz inequality: 〈u, u〉〈v, v〉 ≥ 〈u, v〉2, setting u(x) = h(x)

√
p(x),

v(x) =
√
p(x), and defining the inner product as 〈u, v〉 =

∫
u(x)v(x)dx. Therefore, the numerator of the

R.H.S. of Eq. (6) ≥ 1∫
x∈Ωx

p(x)
− 1, and attains equality when u(x)

v(x) = h(x) is constant.

Based on these observations, we can let h(x) be a nonzero constant inside some region Ωx ⊂ X and 0 otherwise, and
the infimum over an arbitrary function h(x) is simplified to infimum over Ωx ⊂ X , and we obtain the confident subset
sufficient condition (Theorem 2) for IBβ-Learnability, which is a key result of this paper.

F.2 PROOF OF THEOREM 5 (SUFF. COND. 2)

Proof. Firstly, from the necessary condition of β > 1 in Section 2, we have that any sufficient condition for IBβ-
learnability should be able to deduce β > 1.

Now using Theorem 3, a sufficient condition for (X,Y ) to be IBβ-learnable is that there exists h(z|x) with∫
h(z|x)dx = 0 such that δ2IBβ [p(z|x)] < 0 at p(z|x) = p(x).

At the trivial representation, p(z|x) = p(z) and hence p(x, z) = p(x)p(z). Due to the Markov chain Z ← X ↔ Y ,
we have p(y, z) = p(y)p(z). Substituting them into the δ2IBβ [p(z|x)] in Lemma 4.1, the condition becomes: there
exists h(z|x) with

∫
h(z|x)dz = 0, such that

0 > δ2IBβ [p(z|x)] =

1

2

[ ∫
dxdz

p(x)2

p(x)p(z)
h(z|x)2 − β

∫
dxdx′dydz

p(x, y)p(x′, y)

p(y)p(z)
h(z|x)h(z|x′) + (β − 1)

∫
dxdx′dz

p(x)p(x′)

p(z)
h(z|x)h(z|x′)

]
(7)

Rearranging terms and simplifying, we have∫
dz

p(z)
G[h(z|x)] =

∫
dz

p(z)

[ ∫
dxh(z|x)2p(x)− β

∫
dy

p(y)

(∫
dxh(z|x)p(x)p(y|x)

)2

+ (β − 1)

(∫
dxh(z|x)p(x)

)2]
< 0

where

G[h(x)] =

∫
dxh(x)2p(x)− β

∫
dy

p(y)

(∫
dxh(x)p(x)p(y|x)

)2

+ (β − 1)

(∫
dxh(x)p(x)

)2

Now we prove that the condition that ∃h(z|x) s.t.
∫

dz
p(z)G[h(z|x)] < 0 is equivalent to the condition that ∃h(x) s.t.

G[h(x)] < 0.

11
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If ∀h(z|x), G[h(z|x)] ≥ 0, then we have ∀h(z|x),
∫

dz
p(z)G[h(z|x)] ≥ 0. Therefore, if ∃h(z|x) s.t.

∫
dz
p(z)G[h(z|x)] <

0, we have that ∃h(z|x) s.t. G[h(z|x)] < 0. Since the functional G[h(z|x)] does not contain integration over z, we
can treat the z in G[h(z|x)] as a parameter and we have that ∃h(x) s.t. G[h(x)] < 0.

Conversely, if there exists an certain function h(x) such that G[h(x)] < 0, we can find some h2(z) such that∫
h2(z)dz = 0 and

∫ h2
2(z)
p(z) dz > 0, and let h1(z|x) = h(x)h2(z). Now we have

∫
dz

p(z)
G[h(z|x)] =

∫
h2

2(z)dz

p(z)
G[h(x)] = G[h(x)]

∫
h2

2(z)dz

p(z)
< 0

In other words, the condition Eq. (7) is equivalent to requiring that there exists an h(x) such thatG[h(x)] < 0 . Hence,
a sufficient condition for IBβ-learnability is that there exists an h(x) such that

G[h(x)] =

∫
dxh(x)2p(x)− β

∫
dy

p(y)

(∫
dxh(x)p(x)p(y|x)

)2

+ (β − 1)

(∫
dxh(x)p(x)

)2

< 0 (8)

When h(x) = C = const in the entire input space X , Eq. (8) becomes:

C2 − βC2 + (β − 1)C2 < 0

which cannot be true. Therefore, h(x) = const cannot satisfy Eq. (8).

Rearranging terms and simplifying, and note that
[ ∫

dxh(x)p(x)
]2
> 0 due to h(x) 6≡ 0 = const, we have

β

[∫ dy
p(y)

( ∫
dxh(x)p(x)p(y|x)

)2( ∫
dxh(x)p(x)

)2 − 1

]
>

∫
dxh(x)2p(x)( ∫
dxh(x)p(x)

)2 − 1 (9)

For the R.H.S. of Eq. (9), let us show that it is greater than 0. Using Cauchy-Schwarz inequality: 〈u, u〉〈v, v〉 ≥
〈u, v〉2, and setting u(x) = h(x)

√
p(x), v(x) =

√
p(x), and defining the inner product as 〈u, v〉 =

∫
u(x)v(x)dx.

We have ∫
dxh(x)2p(x)( ∫
dxh(x)p(x)

)2 ≥ 1∫
p(x)dx

= 1

It attains equality when u(x)
v(x) = h(x) is constant. Since h(x) cannot be constant, we have that the R.H.S. of Eq. (9) is

greater than 0.

For the L.H.S. of Eq. (9), due to the necessary condition that β > 0, if
[ ∫ dy

p(y)

( ∫
dxh(x)p(x)p(y|x)

)2( ∫
dxh(x)p(x)

)2 − 1

]
≤ 0, Eq. (9)

cannot hold. Then the h(x) such that Eq. (9) holds is for those that satisfies

∫
dy
p(y)

( ∫
dxh(x)p(x)p(y|x)

)2( ∫
dxh(x)p(x)

)2 − 1 > 0

i.e. ∫
dyp(y)

(∫
dxp(x|y)h(x)

)2

>

(∫
dxp(x)h(x)

)2

We see this constraint contains the requirement that h(x) 6≡ const.

Written in the form of expectations, we have

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2]
>
(
Ex∼p(x)[h(x)]

)2 (10)
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Since the square function is convex, using Jensen’s inequality on the outer expectation on the L.H.S. of Eq. (10), we
have

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2]
≥
(
Ey∼p(y)

[
Ex∼p(x|y)[h(x)]

])2

=
(
Ex∼p(x)[h(x)]

)2
The equality holds iff Ex∼p(x|y)[h(x)] is constant w.r.t. y, i.e. Y is independent of X . Therefore, in order for Eq. (10)
to hold, we require that Y is not independent of X .

Using Jensen’s inequality on the innter expectation on the L.H.S. of Eq. (10), we have

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2]
≤ Ey∼p(y)

[
Ex∼p(x|y)[h(x)2]

]
= Ex∼p(x)[h(x)2] (11)

The equality holds when h(x) is a constant. Since we require that h(x) is not a constant, we have that the equality
cannot be reached.

Under the constraint that Y is not independent of X , we can divide both sides of Eq. 8, and obtain the condition: there
exists an h(x) such that

β >

∫
dxh(x)2p(x)( ∫
dxh(x)p(x)

)2 − 1

∫ dy
p(y)

( ∫
dxh(x)p(x)p(y|x)

)2( ∫
dxh(x)p(x)

)2 − 1

i.e.

β > inf
h(x)

∫
dxh(x)2p(x)( ∫
dxh(x)p(x)

)2 − 1

∫ dy
p(y)

( ∫
dxh(x)p(x)p(y|x)

)2( ∫
dxh(x)p(x)

)2 − 1

Written in the form of expectations, we have

β > inf
h(x)

Ex∼p(x)[h(x)2]

(Ex∼p(x)[h(x)])
2 − 1∫

dy
p(y)

(
Ex∼p(x)[p(y|x)h(x)]

Ex∼p(x)[h(x)]

)2

− 1

= inf
h(x)

Ex∼p(x)[h(x)2]

(Ex∼p(x)[h(x)])
2 − 1

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

Ex∼p(x)[h(x)]

)2
]
− 1

We can absorb the constraint Eq. (10) into the above formula, and get

β > inf
h(x)

β0[h(x)]

where

β0[h(x)] =

Ex∼p(x)[h(x)2]

(Ex∼p(x)[h(x)])
2 − 1

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

Ex∼p(x)[h(x)]

)2
]
− 1

which proves the condition of Theorem 5.

13
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Furthermore, from Eq. (11) we have

β0[h(x)] > 1

for h(x) 6≡ const, which satisfies the necessary condition of β > 1 in Section 2.

Proof of lower bound of slope of the Pareto frontier at the origin:

Now we prove the second statement of Theorem 5. Since δI(X;Z) = 0 and δI(Y ;Z) = 0 according to Lemma 1.1,

we have
(

∆I(Y ;Z)
∆I(X;Z)

)−1

=
(
δ2I(Y ;Z)
δ2I(X;Z)

)−1

. Substituting into the expression of δ2I(Y ;Z) and δ2I(X;Z) from Lemma
4.1, we have

(
∆I(Y ;Z)

∆I(X;Z)

)−1

=

(
δ2I(Y ;Z)

δ2I(X;Z)

)−1

=

ε2

2

∫
dxdz p(x)2

p(x)p(z)h(z|x)2 − ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)
ε2

2

∫
dxdx′dydz p(x,y)p(x′,y)

p(y)p(z) h(z|x)h(z|x′)− ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)

=

(∫
dxp(x)h(x)2 −

∫
dxdx′p(x)p(x′)h(x)h(x′)

) ∫ h2(z)2

p(z) dz(∫
dxdx′dy p(x,y)p(x′,y)

p(y) h(x)h(x′)−
∫
dxdx′p(x)p(x′)h(x)h(x′)

) ∫ h2(z)2

p(z) dz

=

∫
dxp(x)h(x)2 −

∫
dxdx′p(x)p(x′)h(x)h(x′)∫

dxdx′dy p(x,y)p(x′,y)
p(y) h(x)h(x′)−

∫
dxdx′p(x)p(x′)h(x)h(x′)

=
Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2
Ey∼p(y)

[ (
Ex∼p(x|y)[h(x)]

)2 ]− (Ex∼p(x)[h(x)]
)2

=

Ex∼p(x)[h(x)2]

(Ex∼p(x)[h(x)])
2 − 1

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

Ex∼p(x)[h(x)]

)2
]
− 1

= β0[h(x)]

Therefore,
(
infh(x) β0[h(x)]

)−1
gives the largest slope of ∆I(Y ;Z) vs. ∆I(X;Z) for perturbation function of the

form h1(z|x) = h(x)h2(z) satisfying
∫
h2(z)dz = 0 and

∫ h2
2(z)
p(z) dz > 0, which is a lower bound of slope of

∆I(Y ;Z) vs. ∆I(X;Z) for all possible perturbation function h1(z|x). The latter is the slope of the Pareto frontier of
the I(Y ;Z) vs. I(X;Z) curve at the origin.

Inflection point for general Z: If we do not assume that Z is at the origin of the information plane, but at some
general stationary solution Z∗ with p(z|x), we define

14
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β(2)[h(x)] =

(
δ2I(Y ;Z)

δ2I(X;Z)

)−1

=

ε2

2

∫
dxdz p(x)2

p(x,z)h(z|x)2 − ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)
ε2

2

∫
dxdx′dydz p(x,y)p(x′,y)

p(y,z) h(z|x)h(z|x′)− ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)

=

∫
dxdz p(x)2

p(x,z)h(x)2 −
∫
dxdx′dz p(x)p(x′)

p(z) h(x)h(x′)∫
dxdx′dydz p(x,y)p(x′,y)

p(y,z) h(x)h(x′)−
∫
dxdx′dz p(x)p(x′)

p(z) h(x)h(x′)

=

∫
dz
p(z)

[∫
dx p(x)2

p(x|z)h(x)2 −
(∫
dxp(x)h(x)

)2]
∫

dz
p(z)

[∫
dy

p(y|z)
(∫
dxp(x, y)h(x)

)2 − (∫ dxp(x)h(x)
)2]

=

∫
dz
p(z)

[ ∫
dx

p(x)2

p(x|z)
h(x)2

(
∫
dxp(x)h(x))2 − 1

]
∫

dz
p(z)

[ ∫ dy
p(y|z)

(
∫
dxp(x,y)h(x))2

(
∫
dxp(x)h(x))2 − 1

]

=

∫
dz

[ ∫
dx

p(x)
p(z|x)

h(x)2

(
∫
dxp(x)h(x))2 − 1

p(z)

]
∫
dz

[ ∫ dy
p(z|y)p(y)

(
∫
dxp(x,y)h(x))2

(
∫
dxp(x)h(x))2 − 1

p(z)

]

=

∫
dz
[∫

dx p(x)
p(z|x)h(x)2 − 1

p(z) (
∫
dxp(x)h(x))2

]
∫
dz
[∫

dy
p(z|y)p(y)

(∫
dxp(x, y)h(x)

)2 − 1
p(z)

(∫
dxp(x)h(x)

)2]
which reduces to β0[h(x)] when p(z|x) = p(z). When

β > inf
h(x)

β(2)[h(x)] (12)

It becomes a non-stable solution (non-minimum), and we will have other Z that achieves a better IBβ(X,Y ;Z) than
the current Z∗.

Multiple phase transitions To discuss multiple phase transitions, let us first obtain the β(1) for stationary solution
for the IB objective. At a stationary solution for IBβ [p(z|x)], for valid perturbation h(z|x) satisfying

∫
dzh(z|x) = 0

for any x, we have δ
[
IBβ [p(z|x)]−

∫
dzdxλ(x)p(z|x)

]
= 0 as a constraint optimization with λ(x) as Lagrangian

multipliers. Using Eq. (4), we have

δIBβ [p(z|x)]− δ
∫
dzdxλ(x)p(z|x)

=

∫
dxdzp(x)h(z|x)log

p(z|x)

p(z)
− β

∫
dxdydzp(x, y)h(z|x)log

p(z|y)

p(z)
−
∫
dzdxλ(x)h(z|x) = 0

Therefore, we have

β(1) ≡

∫
dxdzp(x)h(z|x)logp(z|x)

p(z) −
∫
dzdxλ(x)h(z|x)∫

dxdydzp(x, y)h(z|x)logp(z|y)
p(z)

=
p(x)logp(z|x)

p(z) − λ(x)∫
dyp(x, y)logp(z|y)

p(z)

(13)

The last equality is due to that the first equality is always true for any function h(z|x). So we can take out the∫
dxdzh(z|x) factor. λ(x) is used for normalization of p(z|x). Eq. (13) is equivalent to the result of the self-consistent

equation in Tishby et al. (2000).
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Eq. (13) and Eq. (12) provide us with an ideal tool to study multiple phase transitions. For each β, at the minimization
of the IB objective, Eq. (13) is satisfied by some Z∗ that is at the Pareto frontier on the I(Y ;Z) vs. I(X;Z) plane. As
we increase β, the infh(x) β

(2)[h(x)] may remain stable for a wide range of β, until β is greater than infh(x) β
(2)[h(x)],

at which point we will have a phase transition where suddenly there is a better Z = Z∗∗ that achieves much lower
IBβ(X,Y ;Z) value.

For example, we can rewrite Eq. (13) as

log
p(z|x)

p(z)
= β(1)

∫
dyp(y|x)log

p(z|y)

p(z)
+ λ̃(x) (14)

where λ̃(x) = λ(x)
p(x) . By substituting into Eq. (12), we may proceed and get useful results.

G PROOF OF THEOREM 2 (CONFIDENT SUBSET SUFFICIENT CONDITION)

Proof. According to Theorem 5, a sufficient condition for (X,Y ) to be IBβ-learnable is that X and Y are not inde-
pendent, and

β > inf
h(x)

Ex∼p(x)[h(x)2]

(Ex∼p(x)[h(x)])
2 − 1

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

Ex∼p(x)[h(x)]

)2
]
− 1

(15)

We can assume a specific form of h(x), and obtain a (potentially stronger) sufficient condition. Specifically, we let

h(x) =

{
1, x ∈ Ωx
0, otherwise

(16)

for certain Ωx ⊂ X . Substituting into Eq. (16), we have that a sufficient condition for (X,Y ) to be IBβ-learnable is

β > inf
Ωx⊂X

p(Ωx)
p(Ωx)2 − 1∫

dyp(y)
( ∫

x∈Ωx
dxp(x|y)dx

p(Ωx)

)2

− 1

> 0 (17)

where p(Ωx) =
∫
x∈Ωx

p(x)dx.

The denominator of Eq. (17) is

∫
dyp(y)

(∫
x∈Ωx

dxp(x|y)dx

p(Ωx)

)2

− 1

=

∫
dyp(y)

(
p(Ωx|y)

p(Ωx)

)2

− 1

=

∫
dy
p(y|Ωx)2

p(y)
− 1

= Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y)
− 1

]
Using the inequality x− 1 ≥ logx, we have

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y)
− 1

]
≥ Ey∼p(y|Ωx)

[
log

p(y|Ωx)

p(y)

]
≥ 0
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Both equalities hold iff p(y|Ωx) ≡ p(y), at which the denominator of Eq. (17) is equal to 0 and the expression inside
the infimum diverge, which will not contribute to the infimum. Except this scenario, the denominator is greater than
0. Substituting into Eq. (17), we have that a sufficient condition for (X,Y ) to be IBβ-learnable is

β > inf
Ωx⊂X

p(Ωx)
p(Ωx)2 − 1

Ey∼p(y|Ωx)

[
p(y|Ωx)
p(y) − 1

] (18)

Since Ωx is a subset of X , by the definition of h(x) in Eq. (16), h(x) is not a constant in the entire X . Hence the
numerator of Eq. (18) is positive. Since its denominator is also positive, we can then neglect the “> 0”, and obtain the
condition in Theorem 2.

Since the h(x) used in this theorem is a subset of the h(x) used in Theorem 5, the infimum for Eq. (2) is greater
than or equal to the infimum in Eq. (5). Therefore, according to the second statement of Theorem 5, we have that the
(infΩx

β0(Ωx))
−1 is also a lower bound of the slope for the Pareto frontier of I(Y ;Z) vs. I(X;Z) curve.

Now we prove that the condition Eq. (2) is invariant to invertible mappings of X . In fact, if X ′ = g(X) is a uniquely
invertible map (if X is continuous, g is additionally required to be continuous), let X ′ = {g(x)|x ∈ Ωx}, and denote
g(Ωx) ≡ {g(x)|x ∈ Ωx} for any Ωx ⊂ X , we have p(g(Ωx)) = p(Ωx), and p(y|g(Ωx)) = p(y|Ωx). Then for dataset
(X,Y ), let Ω′x = g(Ωx), we have

1
p(Ω′x) − 1

Ey∼p(y|Ω′x)

[
p(y|Ω′x)
p(y) − 1

] =

1
p(Ωx) − 1

Ey∼p(y|Ωx)

[
p(y|Ωx)
p(y) − 1

] (19)

Additionally we have X ′ = g(X ). Then

inf
Ω′x⊂X ′

1
p(Ω′x) − 1

Ey∼p(y|Ω′x)

[
p(y|Ω′x)
p(y) − 1

] = inf
Ωx⊂X

1
p(Ωx) − 1

Ey∼p(y|Ωx)

[
p(y|Ωx)
p(y) − 1

] (20)

For dataset (X ′, Y ) = (g(X), Y ), applying Theorem 2 we have that a sufficient condition for it to be IBβ-learnable is

β > inf
Ω′x⊂X ′

1
p(Ω′x) − 1

Ey∼p(y|Ω′x)

[
p(y|Ω′x)
p(y) − 1

] = inf
Ωx⊂X

1
p(Ωx) − 1

Ey∼p(y|Ωx)

[
p(y|Ωx)
p(y) − 1

] (21)

where the equality is due to Eq. (20). Comparing with the condition for IBβ-learnability for (X,Y ) (Eq. (2)), we see
that they are the same. Therefore, the condition given by Theorem 2 is invariant to invertible mapping of X .

H PROOF OF COROLLARY 2.1 AND COROLLARY 2.2

H.1 PROOF OF COROLLARY 2.1

Proof. We use Theorem 2. Let Ωx contain all elements x whose true class is y∗ for some certain y∗, and 0 otherwise.
Then we obtain a (potentially stronger) sufficient condition. Since the probability p(y|y∗, x) = p(y|y∗) is class-
conditional, we have

inf
Ωx⊂X

1
p(Ωx) − 1

Ey∼p(y|Ωx)

[
p(y|Ωx)
p(y) − 1

]
= inf

y∗

1
p(y∗) − 1

Ey∼p(y|y∗)
[
p(y|y∗)
p(y) − 1

]
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By requiring β > infy∗
1

p(y∗)−1

Ey∼p(y|y∗)

[
p(y|y∗)

p(y)
−1
] , we obtain a sufficient condition for IBβ learnability.

H.2 PROOF OF COROLLARY 2.2

Proof. We again use Theorem 2. Since Y is a deterministic function of X , let Y = f(X). Since it is classification
problem, Y contains at least one value y such that its probability p(y) > 0, we let Ωx contain only x such that
f(x) = y. Substituting into Eq. (2), we have

1
p(Ωx) − 1

Ey∼p(y|Ωx)

[
p(y|Ωx)
p(y) − 1

]
=

1
p(y) − 1

Ey∼p(y|Ωx)

[
1

p(y) − 1

]
=

1
p(y) − 1

1
p(y) − 1

=1

Therefore, the sufficient condition becomes β > 1.

Furthermore, since a necessary condition for IBβ-learnability is β > 1 (Section 2), we have that β > β0 = 1 is a
necessary and sufficient condition.

I ADDITIONAL DISCUSSIONS FOR THEOREM 2

Similarity to information measures. The denominator of Eq. (2) is closely related to mutual information. Using
the inequality x− 1 ≥ log(x) for x > 0, it becomes:

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y)
− 1

]
≥ Ey∼p(y|Ωx)

[
log

p(y|Ωx)

p(y)

]
= Ĩ(Ωx;Y )

where Ĩ(Ωx;Y ) is the mutual information “density” at Ωx ⊂ X . Of course, this quantity is also DKL[p(y|Ωx)||p(y)],
so we know that the denominator of Eq. (2) is non-negative. Incidentally, Ey∼p(y|Ωx)

[p(y|Ωx)
p(y) − 1

]
is the density of

“rational mutual information” (Lin & Tegmark (2016)) at Ωx.

Similarly, the numerator is related to the self-information of Ωx:

1

p(Ωx)
− 1 ≥ log

1

p(Ωx)
= −log p(Ωx) = h(Ωx)

so we can estimate the phase transition as:

β ' inf
Ωx⊂X

h(Ωx)

Ĩ(Ωx;Y )
(22)

Since Eq. (22) uses upper bounds on both the numerator and the denominator, it does not give us a bound on β0.

Multiple phase transitions. Based on this characterization of Ωx, we can hypothesize datasets with multiple learn-
ability phase transitions. Specifically, consider a region Ωx0 that is small but “typical”, consists of all elements confi-
dently predicted as y0 by p(y|x), and where y0 is the least common class. By construction, this Ωx0 will dominate the
infimum in Eq. (2), resulting in a small value of β0. However, the remaining X − Ωx0 effectively form a new dataset,
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X1. At exactly β0, we may have that the current encoder, p0(z|x), has no mutual information with the remaining
classes in X1; i.e., I(Y1;Z0) = 0. In this case, Definition 1 applies to p0(z|x) with respect to I(X1;Z1). We might
expect to see that, at β0, learning will plateau until we get to some β1 > β0 that defines the phase transition for X1.
Clearly this process could repeat many times, with each new dataset Xi being distinctly more difficult to learn than
Xi−1. The end of Appendix F gives a more detailed analysis on multiple phase transitions.

Estimating model capacity. The observation that a model can’t distinguish between cluster overlap in the data and
its own lack of capacity gives an interesting way to use IB-Learnability to measure the capacity of a set of models
relative to the task they are being used to solve.
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Figure 2: The Pareto frontier of mutual information that Z can have with X and Y is shown for the MNIST example
from Figure 1. H(Y ) = 1 bit since only the two of ten digits are used, and I(Y,Z) ≤ I(Y ;X) ≈ 0.5 bits < H(Y )
because of the 20% label swapping. The true frontier is differentiable; the figure shows a variational approximation
that places an upper bound on both informations, horizontally offset to pass through the origin.

Learnability and the Information Plane. Many of our results can be interpreted in terms of the geometry of the
Pareto frontier illustrated in Fig. 2, which describes the trade-off between increasing I(Y ;Z) and decreasing I(X;Z).
At any point on this frontier that minimizes IBmin

β ≡ min I(X;Z) − βI(Y ;Z), the frontier will have slope β−1 if
it is differentiable. If the frontier is also concave (has negative second derivative), then this slope β−1 will take its
maximum β−1

0 at the origin, which implies IBβ-Learnability for β > β0, so that the threshold for IBβ-Learnability is
simply the inverse slope of the frontier at the origin. More generally, as long as the Pareto frontier is differentiable,
the threshold for IBβ-learnability is the inverse of its maximum slope. Indeed, Theorem 2 gives lower bounds of the
slope of the Pareto frontier at the origin.

The shaded region I(Y ;Z) > I(X;Z) is impossible by the data processing inequality, since Z depends on Y only via
X . Indeed, it is easy to see that if the Pareto Frontier is differentiable, its slope must always lie in the unit interval [0, 1].
Moreover, both the horizontal and vertical axes are bounded, since 0 ≤ I(X;Z) ≤ H(X) and 0 ≤ I(Y ;Z) ≤ H(Y ),
so if the Pareto Frontier is differentiable, then its slope lies in some compact interval [β−1

1 , β−1
0 ], where 1 ≤ β0 ≤ β1.

This means that we lack IBβ-learnability for β < β0, which makes the origin the optimal point. If the frontier is
convex, then we achieve optimality at the upper right endpoint if β > β1, otherwise on the frontier at the location
between the two endpoints where the frontier slope is β−1.

Learnability and contraction coefficient If we regard the true mapping from X to Y as a channel with transi-
tion kernel PY |X , we can define contraction coefficient ηKL(PY |X) = supQ;P :0<DKL(P ||Q)<∞

DKL(PY |X◦P ||PY |X◦Q)

DKL(P ||Q)

(Polyanskiy & Wu (2017)) as a measure of how much it keeps the two distributions P and Q intact (as opposed to
being drawn nearer measured by KL-divergence) after pushing forward through the channel. By Polyanskiy & Wu
(2017) we have ηKL(PY |X) = supZ

I(Y ;Z)
I(X;Z) , which is the slope β−1

0 of the Pareto frontier at the origin. By the
analysis of the information plane above, we have that as long as β−1 < ηKL(PY |X) = β−1

0 , it is IBβ-learnable. Fur-

thermore, with Theorem 5, we have
(
infh(x) β0[h(x)]

)−1 ≤ suph(z|x)
∆I(Y ;Z)
∆I(X;Z)

∣∣
p(z|x)=p(z)

≤ supZ
I(Y ;Z)
I(X;Z) , therefore
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(
infh(x) β0[h(x)]

)−1 ≤ ηKL(PY |X). Theorem 5 hence also provides a lower bound for the contraction coefficient
ηKL(PY |X). Similarly for Theorem 2.

J ALGORITHM FOR ESTIMATING THE IB-LEARNABILITY CONDITION

In Alg. 1 we present a detailed algorithm for estimating β0.

Algorithm 1 Estimating the upper bound for β0 for IBβ-Learnability
Require: Dataset D = {(xi, yi)}, i = 1, 2, ...N . The number of classes is C.
Require ε: tolerance for estimating β0

1: Learn a maximum likelihood model pθ(y|x) using the dataset D.
2: Construct matrix (Py|x) such that (Py|x)ij = pθ(y = j|x = xi).
3: Construct vector py = (py1, .., pyC) such that pyj = 1

N

∑N
i=1(Py|x)ij .

4: i∗ = arg maxi Getβ(Py|x, py, {i}).
5: j∗ = arg maxj(Py|x)ij
6: Sort the rows of Py|x in decreasing values of (Py|x)ij∗ .
7: Search iupper until β̃0 = Getβ(Py|x, py,Ω) is minimal with tolerance ε, where Ω = {1, 2, ...iupper}.
8: return β̃0

Subroutine Getβ(Py|x, py,Ω)
s1: (N,C, n)← (number of rows of Py|x, number of columns of Py|x, number of elements of Ω).
s2: (py|Ω)j ← 1

n

∑
i∈Ω(Py|x)ij , j = 1, 2, ..., C.

s3: β̃0 ←
N
n −1∑

j

[ (py|Ωx
)2
j

pyj
−1
]

s4: return β̃0

K SETTINGS FOR THE EXPERIMENTS

We use the Variational Information Bottleneck (VIB) objective by Alemi et al. (2016). For the synthetic experiment,
the latent Z has dimension of 2. The encoder is a neural net with 2 hidden layers, each of which has 128 neurons
with ReLU activation. The last layer has linear activation and 4 output neurons, with the first two parameterizes the
mean of a Gaussian and the last two parameterizes the log variance of the Gaussian. The decoder is a neural net
with 1 hidden layers with 128 neurons and ReLU activation. Its last layer has linear activation and outputs the logit
for the class labels. It uses a mixture of Gaussian prior with 500 components (for the experiment with class overlap,
256 components), each of which is a 2D Gaussian with learnable mean and log variance, and the weights for the
components are also learnable. For the MNIST experiment, the architecture is mostly the same, except the following:
(1) for Z, we let it have dimension of 256. For the prior, we use standard Gaussian with diagonal covariance matrix.

For all experiments, we use Adam (Kingma & Ba (2014)) optimizer with default parameters. We do not add any
regularization. We use learning rate of 10−4 and have a learning rate decay of 1

1+0.01×epoch . We train in total 2000

epochs with batch size of 500. All experiments has train-test split of 5:1, and we report the accuracy on the test set,
w.r.t. the true labels.

For estimation of β0,exp in Fig. 1, in the accuracy vs. βi curve, we take the mean and standard deviation of the accuracy
for the lowest 5 βi values, denoting as µβ , σβ . When βi is greater than µβ + 3σβ , we regard it as learning a non-trivial
representation, and take the average of βi and βi−1 as the experimentally estimated onset of learning. We also inspect
manually and confirm that it is consistent with human intuition.

For the estimating β0,estimated using Alg. 1, at step 7 we use the following discrete search algorithm. We gradually
narrow down the range [a, b] of iupper, starting from [1, N ]. At each iteration, we set a tentative new range [a′, b′],
where a′ = 0.8a + 0.2b, b′ = 0.2a + 0.8b, and calculate β̃0,a′ = Getβ(Py|x, py,Ωa′), β̃0,b′ = Getβ(Py|x, py,Ωb′)

where Ωa′ = {1, 2, ...a′} and Ωb′ = {1, 2, ...b′}. If β̃0,a′ < β̃0,a, let a ← a′. If β̃0,b′ < β̃0,b, let b ← b′. In other
words, we narrow down the range of iupper if we find that the Ω given by the left or right boundary gives a lower β̃0
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Table 1: Class confusion matrix used in CIFAR10 experiments. The value in row i, column j means for class i, the
probability of mislabeling it as class j. The mean confusion across the classes is 20%.

Plane Auto. Bird Cat Deer Dog Frog Horse Ship Truck

Plane 0.82232 0.00238 0.021 0.00069 0.00108 0 0.00017 0.00019 0.1473 0.00489
Auto. 0.00233 0.83419 0.00009 0.00011 0 0.00001 0.00002 0 0.00946 0.15379
Bird 0.03139 0.00026 0.76082 0.0095 0.07764 0.01389 0.1031 0.00309 0.00031 0
Cat 0.00096 0.0001 0.00273 0.69325 0.00557 0.28067 0.01471 0.00191 0.00002 0.0001

Deer 0.00199 0 0.03866 0.00542 0.83435 0.01273 0.02567 0.08066 0.00052 0.00001
Dog 0 0.00004 0.00391 0.2498 0.00531 0.73191 0.00477 0.00423 0.00001 0
Frog 0.00067 0.00008 0.06303 0.05025 0.0337 0.00842 0.8433 0 0.00054 0

Horse 0.00157 0.00006 0.00649 0.00295 0.13058 0.02287 0 0.83328 0.00023 0.00196
Ship 0.1288 0.01668 0.00029 0.00002 0.00164 0.00006 0.00027 0.00017 0.83385 0.01822

Truck 0.01007 0.15107 0 0.00015 0.00001 0.00001 0 0.00048 0.02549 0.81273

value. The process stops when both β̃0,a′ and β̃0,b′ stops improving (which we find always happens when b′ = a′+1),
and we return the smaller of the final β̃0,a′ and β̃0,b′ as β̃0.

K.1 CIFAR10 DETAILS

We trained a deterministic 28x10 wide resnet (He et al., 2016; Zagoruyko & Komodakis, 2016), using the open source
implementation from Cubuk et al. (2018). However, we extended the final 10 dimensional logits of that model through
another 3 layer MLP classifier, in order to keep the inference network architecture identical between this model and the
VIB models we describe below. During training, we dynamically added label noise according to the class confusion
matrix in Tab. K.1. The mean label noise averaged across the 10 classes is 20%. After that model had converged, we
used it to estimate β0 with Alg. 1. Even with 20% label noise, β0 was estimated to be 1.0483.

We then trained 73 different VIB models using the same 28x10 wide resnet architecture for the encoder, parameterizing
the mean of a 10-dimensional unit variance Gaussian. Samples from the encoder distribution were fed to the same 3
layer MLP classifier architecture used in the deterministic model. The marginal distributions were mixtures of 500
fully covariate 10-dimensional Gaussians, all parameters of which are trained. The VIB models had β ranging from
1.02 to 2.0 by steps of 0.02, plus an extra set ranging from 1.04 to 1.06 by steps of 0.001 to ensure we captured the
empirical β0 with high precision.

However, this particular VIB architecture does not start learning until β > 2.5, so none of these models would train
as described.4 Instead, we started them all at β = 100, and annealed β down to the corresponding target over 10,000
training gradient steps. The models continued to train for another 200,000 gradient steps after that. In all cases,
the models converged to essentially their final accuracy within 20,000 additional gradient steps after annealing was
completed. They were stable over the remaining ∼ 180, 000 gradient steps.

4A given architecture trained using maximum likelihood and with no stochastic layers will tend to have higher effective capacity
than the same architecture with a stochastic layer that has a fixed but non-trivial variance, even though those two architectures have
exactly the same number of learnable parameters.
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