
Published as a conference paper at ICLR 2020

GAT: GENERATIVE ADVERSARIAL TRAINING FOR
ADVERSARIAL EXAMPLE DETECTION AND ROBUST
CLASSIFICATION

Xuwang Yin
Department of Electrical and Computer Engineering
University of Virginia
xy4cm@virginia.edu

Soheil Kolouri
Information and Systems Sciences Laboratory
HRL Laboratories, LLC.
skolouri@hrl.com

Gustavo K. Rohde
Department of Electrical and Computer Engineering
University of Virginia
gustavo@virginia.edu

ABSTRACT

The vulnerabilities of deep neural networks against adversarial examples have
become a significant concern for deploying these models in sensitive domains.
Devising a definitive defense against such attacks is proven to be challenging,
and the methods relying on detecting adversarial samples are only valid when
the attacker is oblivious to the detection mechanism. In this paper we pro-
pose a principled adversarial example detection method that can withstand norm-
constrained white-box attacks. Inspired by one-versus-the-rest classification, in
a K class classification problem, we train K binary classifiers where the i-th bi-
nary classifier is used to distinguish between clean data of class i and adver-
sarially perturbed samples of other classes. At test time, we first use a trained
classifier to get the predicted label (say k) of the input, and then use the k-th
binary classifier to determine whether the input is a clean sample (of class k)
or an adversarially perturbed example (of other classes). We further devise a
generative approach to detecting/classifying adversarial examples by interpreting
each binary classifier as an unnormalized density model of the class-conditional
data. We provide comprehensive evaluation of the above adversarial example de-
tection/classification methods, and demonstrate their competitive performances
and compelling properties. Code is available at https://github.com/
xuwangyin/GAT-Generative-Adversarial-Training 1.

1 INTRODUCTION

Deep neural networks have become the staple of modern machine learning pipelines, achieving state-
of-the-art performance on extremely difficult tasks in various applications such as computer vision
(He et al., 2016), speech recognition (Amodei et al., 2016), machine translation (Vaswani et al.,
2017), robotics (Levine et al., 2016), and biomedical image analysis (Shen et al., 2017). Despite
their outstanding performance, these networks are shown to be vulnerable against various types of
adversarial attacks, including evasion attacks (aka, inference or perturbation attacks) (Szegedy et al.,
2013; Goodfellow et al., 2014; Carlini & Wagner, 2017b; Su et al., 2019) and poisoning attacks
(Liu et al., 2017; Shafahi et al., 2018). These vulnerabilities in deep neural networks hinder their
deployment in sensitive domains including, but not limited to, health care, finances, autonomous
driving, and defense-related applications and have become a major security concern.

Due to the mentioned vulnerabilities, there has been a recent surge toward designing defense mech-
anisms against adversarial attacks (Gu & Rigazio, 2014; Jin et al., 2015; Papernot et al., 2016b;

1A thorough evaluation of the proposed method is available at Tramer et al. (2020).

1

https://github.com/xuwangyin/GAT-Generative-Adversarial-Training
https://github.com/xuwangyin/GAT-Generative-Adversarial-Training

Published as a conference paper at ICLR 2020

Bastani et al., 2016; Madry et al., 2017; Sinha et al., 2018), which has in turn motivated the de-
sign of stronger attacks that defeat the proposed defenses (Goodfellow et al., 2014; Kurakin et al.,
2016b;a; Carlini & Wagner, 2017b; Xiao et al., 2018; Athalye et al., 2018; Chen et al., 2018; He
et al., 2018). Besides, the proposed defenses have been shown to be limited and often not effective
and easy to overcome (Athalye et al., 2018). Alternatively, a large body of work has focused on
detection of adversarial examples (Bhagoji et al., 2017; Feinman et al., 2017; Gong et al., 2017;
Grosse et al., 2017; Metzen et al., 2017; Hendrycks & Gimpel, 2017; Li & Li, 2017; Xu et al., 2017;
Pang et al., 2018; Roth et al., 2019; Bahat et al., 2019; Ma et al., 2018; Zheng & Hong, 2018; Tian
et al., 2018). While training robust classifiers focuses on maintaining performance in presence of
adversarial examples, adversarial detection only cares for detecting such examples.

The majority of the current detection mechanisms focus on non-adaptive threats, for which the
attacks are not specifically tuned/tailored to bypass the detection mechanism, and the attacker is
oblivious to the detection mechanism. In fact, Carlini & Wagner (2017a) and Athalye et al. (2018)
showed that the detection methods presented in (Bhagoji et al., 2017; Feinman et al., 2017; Gong
et al., 2017; Grosse et al., 2017; Metzen et al., 2017; Hendrycks & Gimpel, 2017; Li & Li, 2017;
Ma et al., 2018), are significantly less effective than their claims under adaptive attacks. Overall,
current solutions are mostly heuristic approaches that cannot provide performance guarantees.

Decision

boundary

of the classifier

Decision

boundaries

of detectors

Natural data

Perturbed data

Subspaces

Figure 1: A conceptual vi-
sualization of the proposed
adversarial example detection
mechanism.

In this paper we propose a detection mechanism that can with-
stand adaptive attacks. The idea is to partition the input space
into subspaces based on the original classifier’s decision bound-
ary, and then perform clean/adversarial example classification the
subspaces. The binary classifier in each subspace is trained to dis-
tinguish in-class samples from adversarially perturbed samples of
other classes. At inference time, we first use the original classi-
fier to get an input sample’s predicted label k̂, and then use the
k̂-th binary classifier to identify whether the input is a clean sample
(of class k̂) or an adversarially perturbed sample (of other classes).
Fig. 1 provides a schematic illustration of the proposed approach.

Our specific contributions are: (1) We develop a principled adversarial example detection method
that can withstand adaptive attacks. Empirically, our best models improve previous state-of-the-art
mean L2 distortion from 3.68 to 5.65 on MNIST dataset, and from 1.1 to 1.5 on CIFAR10 dataset.
(2) We study powerful and versatile generative classification models derived from our detection
framework and demonstrate their competitive performances over discriminative robust classifiers.
While discriminative robust classifiers are vulnerable to rubbish examples, inputs that have confident
predictions under our models have interpretable features.

2 RELATED WORKS

Adversarial attacks Since the pioneering work of Szegedy et al. (2013), a large body of work has
focused on designing algorithms that achieve successful attacks on neural networks (Goodfellow
et al., 2014; Moosavi-Dezfooli et al., 2016; Kurakin et al., 2016b; Chen et al., 2018; Papernot et al.,
2016a; Carlini & Wagner, 2017b). More recently, iterative projected gradient descent (PGD), has
been empirically identified as the most effective approach for performing norm constrained attacks,
and the attack reasonably approximates the optimal attack (Madry et al., 2017).

Adversarial example detection The majority of the methods developed for detecting adversarial
attacks are based on the following core idea: given a trained K-class classifier, f : Rd → {1...K},
and its corresponding clean training samples, D = {xi ∈ Rd}Ni=1, generate a set of adversarially
attacked samples D′ = {x′

j ∈ Rd}Mj=1, and devise a mechanism to discriminate D from D′. For
instance, Gong et al. (2017) use this exact idea and learn a binary classifier to distinguish the clean
and adversarially perturbed sets. Similarly, Grosse et al. (2017) append a new “attacked” class to the
classifier, f , and re-train a secured network that classifies clean images, x ∈ D, into the K classes
and all attacked images, x′ ∈ D′, to the (K + 1)-th class. In contrast to Gong et al. (2017); Grosse
et al. (2017), which aim at detecting adversarial examples directly from the image content, Metzen
et al. (2017) trained a binary classifier that receives as input the intermediate layer features extracted
from the classifier network f , and distinguished D from D′ based on such input features. More

2

Published as a conference paper at ICLR 2020

importantly, Metzen et al. (2017) considered the so-called case of adaptive/dynamic adversary and
proposed to harden the detector against such attacks using a similar adversarial training approach
as in Goodfellow et al. (2014). Unfortunately, the mentioned detection methods are significantly
less effective under an adaptive adversary equipped with a strong attack (Carlini & Wagner, 2017a;
Athalye et al., 2018).

3 PROPOSED APPROACH TO DETECTING ADVERSARIAL EXAMPLES

Figure 2: A schematic illustration of the proposed method for determining whether an input sample
x (represented by the gray star) is an adversarial example. The first figure shows the case where x
is predicted by f as class 1 and then x is identified as an adversarial example by D1. The following
two figures shows the other two cases where x is respectively predicted as class 2 and class 3 and
then D2 and D3 is respectively used to predict whether x is an adversarial example.

The proposed approach to detecting adversarial examples is based on the following simple idea.
Assume there is an input sample x, and it is predicted as k̂ by the classifier f , then x is either a
true sample of class k̂ (assuming no misclassification) or an adversarially perturbed sample of other
classes. To determine which is the case we can use a binary classifier that is specifically trained to
distinguish between clean samples of class k̂ and adversarially perturbed samples of other classes.
Because k̂ can be any one of the K class, we need to train a total of K binary classifier in order to
have a complete solution. Fig. 2 provides a schematic illustration of the above detection idea. We
next provide a mathematical justification and more details about how to train the detection model.

In a K(K ≥ 2) class classification problem, given a dataset of clean samples D = {xi}Ni=1, xi ∈ Rd,
along with labels {yi}Ni=1, yi ∈ {1, ...,K}, let f : Rd → {1, ...,K} be a classifier on D, and D′

be a set of p-norm bounded adversarial examples computed from D: D′ = {x + δ : f(x + δ) ̸=
y, f(x) = y, x ∈ D, δ ∈ S}, S = {δ ∈ Rd | ∥δ∥p ≤ ϵ}. We use Df

k = {x : f(x) = k, x ∈ D}
and D′f

k = {x : f(x) = k, x ∈ D′} to respectively denote the clean samples and adversarial
examples which are predicted by f as class k. Let H = {dk}Kk=1, where dk : Rd → [0, 1] is a
binary classifier trained to distinguish between samples from Df

k (assigned as class 1) and samples
from D′f

k (assigned as class 0). We use dk(x) to model p(x ∈ Df
k |x) and predict x ∈ Df

k when
dk(x) >

1
2 and x ∈ D′f

k when dk(x) ≤ 1
2 . Consider the following procedure to determine whether

a sample x is an adversarial example (i.e., whether it comes from D or D′):

First obtain the estimated class label k̂ = f(x), then use the k̂-th binary clas-
sifier to predict: if dk̂(x) >= 1

2 then categorize x as a clean sample, otherwise
categorize it as an adversarial example.

This algorithm can be viewed as a binary classifier, and its accuracy is given by∑K
k=1 |{x : dk(x) >

1
2 , x ∈ Df

k}|+ |{x : dk(x) ≤ 1
2 , x ∈ D′f

k}|
|D|+ |D′|

. (1)

Crucially, because the errors of individual binary classifiers are independent, maximizing Eq. (1) is
equivalent to optimizing the performances of individual binary classifiers. dk solves the binary clas-
sification problem of distinguishing between samples from Df

k and samples from D′f
k , and therefore

3

Published as a conference paper at ICLR 2020

can be trained with a binary classification objective:

θ∗k = argmin
θk

Ex∼D′f
k

[
L(dk(x; θk), 0)

]
+ Ex∼Df

k

[
L(dk(x; θk), 1)

]
, (2)

where L is a loss function that measures the discrepancy between dk’s output and the supplied
label (e.g., the negative log likelihood loss). In order to harden dk against adaptive attacks, we
follow Madry et al. (2017) and incorporate the adversary into the training objective:

min
θk

ρ(θk), where ρ(θk) = Ex∼Df
\k

[
max

δ∈S,f(x+δ)=k
L(dk(x+δ; θk), 0)

]
+Ex∼Df

k

[
L(dk(x; θk), 1)

]
,

(3)
where Df

\k = {x : f(x) ̸= k, y ̸= k, x ∈ D}, and we assume that ϵ is large enough such that

∀x ∈ Df
\k , ∃δ ∈ S , s.t. f(x+ δ) = k.

The equality constraint f(x + δ) = k in Eq. (3) complicates the inner maximization. We observe
that by dropping this constrain we have the following upper bound of the first loss term:

max
δ∈S,f(x+δ)=k

L(dk(x+ δ; θk), 0) ≤ max
δ∈S

L(dk(x+ δ; θk), 0).

Because we are minimizing L(dk(x+δ; θk), 0), we can instead minimizing this upper bound, which
gives us the unconstrained objective

ρ(θk) = Ex∼Df
\k

[
max
δ∈S

L(dk(x+ δ; θk), 0)
]
+ Ex∼Df

k

[
L(dk(x; θk), 1)

]
. (4)

We can further simply this objective by using the fact that when D is used as the training set, f can
overfit on D such that D\k = {xi : yi ̸= k} and Dk are respectively good approximations of Df

\k

and Df
k :

min
θk

ρ(θk), where ρ(θk) = Ex∼D\k

[
max
δ∈S

L(dk(x+δ; θk), 0)
]
+Ex∼Dk

[
L(dk(x; θk), 1)

]
. (5)

In words, each binary classifier is trained using clean samples of a particular class and adversarial
examples (with respect to dk) created from samples of other class. The inner maximization is solved
using the PGD attack (Madry et al., 2017). We use the negative log likelihood loss as L and minimize
it using gradient-based optimization methods.

From a classification point of view, we can reformulate the above detection algorithm as a classifier
that has a rejection option: given input x and its prediction label k̂ = f(x), if dk̂(x) < T , then x

is rejected, otherwise it’s classified as k̂. We will refer to this classification model as an integrated
classifier.

3.1 A GENERATIVE APPROACH TO ADVERSARIAL EXAMPLE DETECTION/CLASSIFICATION

The proposed approach makes use of a trained classifier f to get the predicted label, but f is not
strictly necessary: we can use H = {dk}Kk=1 in place of f to do classification.

We can interpret H as an one-versus-the-rest (OVR) classifier. In a K class classification problem, a
OVR classifier consists of K binary classifiers, with each one trained to solve a two-class problem of
separating samples in a particular class from samples not in that class. H differs from a traditional
OVR classifier in that dk is trained to distinguish between samples in class k and adversarially
perturbed samples of other classes, but because the loss on adversarial inputs is an upper bound of
the loss on clean samples, the binary classifier should also be able to separate samples of class k
from clean samples of other classes. When H is viewed as an OVR classifier, the classification rule
is

H(x) = argmax
k

dk(x). (6)

We can also interpret H as a generative classifier. Our experiments show that dk has a strong
generative property: performing adversarial attacks on dk causes visual features of class k to appear
in the attacked data (in some cases, the attacked data become a valid instance of class k). Although

4

Published as a conference paper at ICLR 2020

a similar phenomenon is observed in standard adversarial training (Tsipras et al., 2018; Engstrom
et al., 2019; Santurkar et al., 2019), the generative property of our model seems to be much stronger
than that of a softmax adversarially robust classier (Fig. 4, Fig. 6, and Fig. 7). These results motivate
us to reinterpret dk as an unnormalized density model (i.e., an energy-based model (LeCun et al.,
2006)) of the class-k data. This interpretation allows us to obtain the class-conditional probability
of an input by:

p(x|k) = exp(−E
k
(x))

Zk
, (7)

where E
k
(x) = −zdk

(x), with zdk
being the logit output of dk, and

Zk =

∫
exp(−E

k
(x))dx (8)

is an intractable normalizing constant known as the partition function. We can then apply the Bayes
classification rule to obtain a generative classifier:

H(x) = argmax
k

p(k|x) = argmax
k

p(x|k)p(k)
p(x)

= argmax
k

zdk
(x), (9)

where we have assumed all partition functions Zk, k = 1, ...,K and class priors p(k), k = 1, ...,K
to be equal. Because we explicitly model p(x, k), we can use this quantity to reject low probability
inputs which can be any samples that do not belong to class k. In this work we focus on the scenario
where low probability inputs are adversarially perturbed samples of other classes and the rejected
samples are considered as adversarial examples. Because dk(x) is computed by applying the logistic
sigmoid function to zdk

(x), and the logistic sigmoid function is a monotonically increasing function
of its argument, the generative classifier (Eq. (9)) is equivalent to the OVR classifier (Eq. (6)).

In the following sections, we will use integrated detection to refer to the original detection approach
where we make use an extra classifier f , and generative detection to refer to this alternative approach
where we first use the generative classifier Eq. (9) to get the predicted label k̂ of an input x, and then
use dk̂ to determine whether x is adversarial input.

4 EVALUATION METHODOLOGY

4.1 ROBUSTNESS TEST

We first validate the robustness of individual binary classifiers by following the standard methodol-
ogy for robustness testing: we train the binary classifier with PGD attack configured with a particular
combination of step-size and number of steps, and then test the binary classifier’s performance under
PGD attacks configured with different combinations of step-sizes and number of steps. We use AUC
(area under the ROC Curve) as the detection performance metric. AUC is an aggregated measure-
ment of detection performance across a range of thresholds, and can be interpreted as the probability
that the binary classifier assigns a higher score to a random positive sample than to a random negative
example. For a given dk, the AUC is computed on the set {(x, 0) : x ∈ D′f

\k} ∪ {(x, 1) : x ∈ Df
k},

where D′f
\k = {x+ argmaxδ L(dk(x+ δ; θk), 0) : x ∈ Df

\k)}.

4.2 ADVERSARIAL EXAMPLE DETECTION PERFORMANCE

Having validated the robustness of individual binary classifier, we evaluate the overall performance
of the proposed approach to detecting adversarial examples. According to the detection algorithm,
we first obtain the predicted label k̂ = f(x), and then use the k̂-th binary classifier’s logit output to
predict: if zdk̂

(x) ≥ T , then x is a clean sample, otherwise it is an adversarially perturbed sample.

We use D = {(xi, yi)}Ni=1 to denote the test set that contains clean samples, and D′ = {(xi +
δi, yi)}Ni=1 to denote the corresponding perturbed test set. For a given T , we compute the true
positive rate (TPR) on D and false positive rate (FPR) on D′ (here, clean samples are in the positive
class). These two metrics are respectively defined as

TPR =
1

|D|
|{x : zdk̂

(x) ≥ T, k = f(x), (x, y) ∈ D}|, (10)

5

Published as a conference paper at ICLR 2020

and

FPR =
1

|D′|
|{x : zdk̂

(x) ≥ T, k = f(x), f(x) ̸= y, (x, y) ∈ D′}|. (11)

We observe that for the norm ball constraint we considered in the experiments, not all perturbed
samples can cause misclassification on f , so we use f(x) ̸= y in the FPR definition to constrain that
only adversarial inputs that actually cause misclassification can be counted as false positives.

Given a clean sample x and its groundtruth label y, we consider three approaches to creating the
corresponding adversarial example x′. Here we will focus on untargeted attacks.

Classifier attack This attack corresponds to the scenario where the adversary is oblivious to the de-
tection mechanism. Inspired by the CW attack (Carlini & Wagner, 2017b), the adversarial example
x′ is computed by minimizing,

L(x′) = zf (x
′)y −max

i ̸=y
zf (x

′)i, (12)

where zf (x
′) is the classifier’s logit outputs.

Detector attack In this scenario adversarial examples are produced by attacking only the detec-
tor. We first construct a detection function H by aggregating the logit outputs of individual binary
classifiers:

zH(x)i = zdi
(x). (13)

The adversarial example x′ is then computed by minimizing

L(x′) = −max
i̸=y

zH(x′)i. (14)

According to our detection rule, a low value of a binary classifier’s logit output indicates the de-
tection of an adversarial example, and therefore by minimizing the negative of the logit output we
make the adversarial input harder to detect. H can also be used with the CW loss Eq. (12) or the
cross-entropy loss, but we find the attack based on Eq. (14) to be most effective.

Combined attack The combined attack is an adaptive method that considers both the classifier
and the detector. We consider two loss functions for the combined attack. The first is based on the
adaptive attack of Carlini & Wagner (2017a) which has been shown to be effective against existing
detection methods. We first construct a new detection function H with Eq. (13) and then use H’s
largest logit output maxk ̸=y zH(x)k (low value of this quantity indicates detection of an adversarial
example) and the classifier logit outputs zf (x) to construct a new classifier g:

zg(x)i =

{
zf (x)i if i ≤ K,

(−maxj ̸=y zH(x)j + 1) ·maxj zf (x)j if i = K + 1.
(15)

The adversarial example x′ is then computed by minimizing the loss function

L(x′) = max
i

zg(x
′)i −max

i̸=y
zf (x

′)i. (16)

In practice we observe that the optimization of Eq. (16) tends to stuck at the point where
maxi̸=y zf (x

′)i keeps changing signs while maxj ̸=y zH(x)j staying as a large negative number
(which indicates detection). In light of the above issues we derive a more effective attack by com-
bining Eq. (12) and Eq. (14):

L(x′) =

{
zf (x

′)y −maxi ̸=y zf (x
′)i if zf (x′)y ≥ maxi ̸=y zf (x

′)i,

−maxi̸=y zH(x′)i else.
(17)

In words, if x′ is not yet an adversarial example on f (case 1), optimize it for that goal, otherwise
optimize it for evading the detection (case 2).

We note that the above three attacks are for the original detection approach (i.e., integrated detec-
tion). The generative detection approach (Section 3.1) does not make use of f and we use Eq. (14)
to create adversarial examples for generative detection.

6

Published as a conference paper at ICLR 2020

4.3 ROBUST CLASSIFICATION PERFORMANCE

In robust classification, the accuracy of a softmax robust classifier is evaluated on the original test
test (the standard accuracy) and the adversarially perturbed test set (the robust accuracy). Because
the generative classifier comes with the reject option, we use slightly different metrics. On the clean
test dataset D = {(xi, yi)}Ni=1, we define the standard accuracy as the fraction of samples that are
correctly classified (f(x) = y) and at the same time not rejected (zdk̂

(x) ≥ T):

Accuracy =
1

N
|{x : zdk

(x) ≥ T, k = f(x), f(x) = y, (x, y) ∈ D}|. (18)

In the adversarially perturbed test dataset D′ = {(xi+δ∗i , yi)}Ni=1, we will consider a data sample as
properly handled when it is rejected (zdk̂

(x) < T), regardless of whether it causes misclassification.
In this way, only misclassified (f(x) ̸= y) and unrejected (zdk̂

(x) ≥ T) samples are counted as
errors:

Error =
1

N
|{x : zdk

(x) ≥ T, k = f(x), f(x) ̸= y, (x, y) ∈ D′}|. (19)

To compare different classifiers under the same metrics, we compute the error of a softmax robust
classifier g on D′ as

Error =
1

N
|{x : g(x) ̸= y, (x, y) ∈ D′}|. (20)

We respectively use Eq. (17) and Eq. (14) to compute the D′ for the integrated classifier and the
generative classifier.

5 EXPERIMENTS

5.1 MNIST

We train four detection models (each consists of ten binary classifiers) by using different combi-
nations of p-norm and perturbation limit ϵ (Table 5). The adversarial examples used for training
and validation are computed using PGD attacks of different steps and step sizes (Table 5). At each
step of PGD attack we use the Adam optimizer to perform gradient descent, both for L2-based and
L∞-based attacks. Appendix A.1 provides more training details.

Robustness results Table 1 and Table 7 show that d0 and d1 are able to withstand PGD attacks
configured with different steps and step-size, for both L2-based and L∞-based attacks. The binary
classifiers also exhibit robustness when the attack uses p-norm or perturbation limit that are different
from those used for training the model (Table 8). The models are also robust when the attacks use
multiple random restarts (Table 9).

Table 1: AUC scores of the first two binary classifiers (d1, d2) tested with different configurations
of PGD attacks. In each step of the PGD attack we use the Adam optimizer to perform gradient
descent.

PGD attack
steps, step size

L∞ ϵ = 0.3 model L∞ ϵ = 0.5 model
d1 d2 d1 d2

200, 0.01 0.99959 0.99971 0.99830 0.99869
2000, 0.005 0.99958 0.99971 0.99796 0.99861

PGD attack
steps, step size

L2 ϵ = 2.5 model L2 ϵ = 5.0 model
d1 d2 d1 d2

200, 0.1 0.99962 0.99968 0.99578 0.99987
2000, 0.05 0.99927 0.99900 0.99529 0.99918

Table 2: Mean L2 distortion (higher is better) of perturbed samples when the detection method has
1.0 FPR on the perturbed MNIST test set and 0.95 TPR on the clean MNIST test set.

Detection method Mean L2 distortion

State-of-the-art (Carlini & Wagner, 2017a) 3.68
Ours (generative detection with L∞ ϵ = 0.3 binary classifiers) 4.40
Ours (generative detection with L∞ ϵ = 0.5 binary classifiers) 5.65

Detection results Fig. 3a shows the performances of integrated detection and generative detection
under different attacks. Combined attack with Eq. (17) is the most effective attack against integrated

7

Published as a conference paper at ICLR 2020

detection, and is much more effective than the combined attack with Eq. (16). Overall, genera-
tive detection outperforms integrated detection when they are evaluated under their respective most
effective attack. It is also interesting to note that when the adversarial examples are created by at-
tacking only the classifier (Eq. (12)), integrated detection is able to perfectly detect these adversarial
examples (see the red curve that overlaps the y-axis).

Given that generative detection is the most effective approach among the proposed approaches, we
compare it with state-of-the-art detection methods (Carlini & Wagner, 2017a). Table 2 shows that
generative detection outperforms the state-of-the-art method by large margins. Appendix B provides
details about how the mean L2 distortions are computed.

Classification results Figure 3b shows the standard and robust classification performances of the
proposed classifiers and a state-of-the-art softmax robust classifier (Madry et al., 2017). Our models
provide the reject option that allows the user to find a balance between standard accuracy and robust
error by adjusting the rejection threshold. We observe that a stronger attack (ϵ = 0.4) breaks the
softmax robust classifier (as indicated by the right red cross), while the generative classifier still
exhibits robustness, even though both models are trained with the L∞ ϵ = 0.3 constraint.

0.0 0.1 0.2 0.3 0.4 0.5
False Positive Rate

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

Integrated detection (combined attack)
Integrated detection (combined attack cw loss)
Integrated detection (detectors attack)
Integrated detection (classifier attack)
Generative detection

(a)

0.0 0.2 0.4 0.6 0.8
Error on perturbed MNIST test set

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Ac
cu

ra
cy

 o
n

M
NS

IT
 te

st
 se

t

robust classifier

robust classifier (eps=0.4)

Integrated classifier
Generative classifier
Generative classifier (eps=0.4)

(b)

Figure 3: (a) Performances of integrated detection and generative detection under L∞ ϵ = 0.3
constrained attacks. (b) Performances of the integrated classifier and generative classifier under
L∞ ϵ = 0.3 constrained and L∞ ϵ = 0.4 constrained attacks. The performances of the softmax
robust classifier (Madry et al., 2017) (accuracy 0.984, error 0.08 at ϵ = 0.3, and accuracy 0.984,
error 0.941 at ϵ = 0.4) are marked with red crosses. PGD attack steps 100, step size 0.01.

Figure 4 shows perturbed samples produced by performing targeted attacks against the generative
classifier and softmax robust classifier. The generative classifier’s perturbation samples have distin-
guishable visible features of the target class, indicating that individual binary classifiers have learned
the class conditional distributions, and the perturbations have to change the semantics for a success-
ful attack. In contrast, perturbations introduced by attacking the softmax robust classifier are not
interpretable, even though they can cause high logit output of the target classes (see Figure 9 for the
logit outputs distribution).

5.2 CIFAR10

On CIFAR10 we train a single detection model that consists of ten binary classifiers using L∞ ϵ = 8
constrain PGD attack of steps 40 and step size 0.5 (note that the scale of ϵ and step size here is 0-255,
as opposed to 0-1 as in the case of MNIST). The softmax robust classifier (Madry et al., 2017) that we
compare with is also trained with L∞ ϵ = 8 constraint but with a different step size (Appendix C.2.2
provides a discussion on the effects of step size). Appendix A.2 provides the training details.

Robustness results Table 3 shows that d1 and d2 can withstand PGD attacks configured with
different steps and step-size. In Appendix C.2.1 we report random restart test results, cross-norm
and cross-perturbation test results, and robustness test result for L2 based models.

Detection results Consistent with the MNIST result, Fig. 5 shows that combined attack with
Eq. (17) is the most effective attack against integrated detection, and generative detection simi-
larly outperforms integrated detection. Table 4 shows that generative detection outperforms the
state-of-the-art adversarial detection method.

8

Published as a conference paper at ICLR 2020

Natural samples Perturbed samples (generative classifier) Perturbed samples (robust classifier)

Figure 4: Clean samples and corresponding perturbed samples produced by performing a targeted
attack against the generative classifier and robust classifier (Madry et al., 2017). Targets from top
row to bottom row are digit class from 0 to 9. We perform the targeted attack by maximizing the
logit output of the targeted class, using L∞ ϵ = 0.4 constrained PGD attack of steps 100 and step
size 0.01. Both classifiers are trained with L∞ ϵ = 0.3 constraint.

Table 3: AUC scores of the first two CIFAR10 L∞ ϵ = 8 binary classifiers (d1, d2) under L∞ ϵ = 8
constrained PGD attacks of different steps and step-size.

PGD attack steps, step-size d1 d2

20, 2.0 0.9224 0.9533
40, 0.5 0.9234 0.9553
200, 0.1 0.9231 0.9550
200, 0.5 0.9205 0.9504
500, 0.5 0.9203 0.9500

Table 4: CIFAR10 mean L2 distortion (higher is better) of perturbed samples when the detection
method has 1.0 FPR on perturbed set and 0.95 TPR on the clean set. Appendix B provides details
about how the mean L2 distances are computed.

Detection method Mean L2 distortion (0-1 scale)

State-of-the-art (Carlini & Wagner, 2017a) 1.1
Ours (generative detection) 1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Integrated detection (combined attack)
Integrated detection (combined attack cw loss)
Integrated detection (detector attack)
Integrated detection (classifier attack)
Generative detection

(a)

0.0 0.2 0.4 0.6 0.8
Error on perturbed CIFAR10 test set

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n

CI
FA

R1
0

te
st

 se
t

robust classifier

robust classifier (eps=12)

Integrated classifier
Generative classifier
Generative classifier (eps=12)

(b)

Figure 5: (a) Performances of generative detection and integrated detection under L∞ ϵ = 8 attack.
(b) Performances of integrated classifier (discussed in Section 4.3) and generative classifier under
L∞ ϵ = 8 constrained and L∞ ϵ = 12 constrained attacks. The performances of the robust classi-
fier (Madry et al., 2017) (accuracy 0.8735, error 0.5311 at ϵ = 8, and accuracy 0.8735, error 0.7087
at ϵ = 12) are annotated. PGD attack step size 2.0, steps 20 for ϵ = 8, and 30 for ϵ = 12.

Classification results Contrary to MNIST’s result, we did not observe a dramatic decrease in the
softmax robust classifier’s performance when we increase the perturbation limit to ϵ = 12 (Fig. 5b).
Integrated classification can reach the standard accuracy of a regular classifier, but at the cost of
significantly increased error on the perturbed set. Fig. 6 shows some perturbed samples produced

9

Published as a conference paper at ICLR 2020

by attacking the generative classifier and robust classifier. While these two classifiers have similar
errors on the perturbed set, samples produced by attacking the generative classifier have more visible
features of the attacked classes, suggesting that the adversary needs to change more semantic to
cause the same error.

Fig. 7 and Fig. 11 demonstrate that unrecognizable images are able to cause high logit outputs of
the softmax robust classifier. This phenomenon highlights a major defect of the softmax robust
classifier: they can be easily fooled by unrecognizable inputs (Nguyen et al., 2015; Goodfellow
et al., 2014; Schott et al., 2018). In contrast, samples that cause high logit outputs of the generative
classifier all have clear semantic meaning. In Figure 14 we present image synthesis results using
L∞ ϵ = 16 constrained detectors. In Appendix D we provide Gaussian noise attack results and a
discussion about the interpretability of the generative classification approach.

Natural samples Perturbed samples (generative classifier) Perturbed samples (robust classifier)

Figure 6: Clean samples and corresponding perturbed samples by performing targeted attack against
the generative classifier and robust classifier (Madry et al., 2017). The targeted attack is performed
by maximizing the logit output of the targeted class. We use L∞ ϵ = 12 constrained PGD attack of
steps 30 and step size 2.0 to produce these samples.

Generated by attacking generative classifier Generated by attacking robust classifier

Figure 7: Images generated from class conditional Gaussian noise by performing targeted attack
against the generative classifier and robust classifier. We use PGD attack of steps 60 and step size
0.5 × 255 to perform L2 ϵ = 30 × 255 constrained attack (same as Santurkar et al. (2019). The
Gaussian noise inputs from which these two plots are generated are the same. Samples not selected.

6 CONCLUSION

We studied the problem of adversarial example detection under the robust optimization frame-
work and proposed a novel detection method that can withstand adaptive attacks. Our formula-
tion leads to a new generative modeling technique which we called generative adversarial training
(GAT). GAT’s capability to learn class conditional distributions further gives rise to generative de-
tection/classification approaches that show competitive performance and improved interpretability.

10

Published as a conference paper at ICLR 2020

REFERENCES

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. In International conference on machine learning,
pp. 173–182, 2016.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018. URL https://arxiv.org/abs/1802.00420.

Yuval Bahat, Michal Irani, and Gregory Shakhnarovich. Natural and adversarial error detection
using invariance to image transformations. arXiv preprint arXiv:1902.00236, 2019.

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and An-
tonio Criminisi. Measuring neural net robustness with constraints. In Advances in neural infor-
mation processing systems, pp. 2613–2621, 2016.

Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal. Dimensionality reduction as a defense
against evasion attacks on machine learning classifiers. arXiv preprint arXiv:1704.02654, 2017.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pp. 3–14. ACM, 2017a. URL https://arxiv.org/abs/1705.07263.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017b.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net attacks
to deep neural networks via adversarial examples. In Thirty-second AAAI conference on artificial
intelligence, 2018.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Alek-
sander Madry. Adversarial robustness as a prior for learned representations. arXiv preprint
arXiv:1906.00945, 2019.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410, 2017. URL https://arxiv.org/
abs/1703.00410.

Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Adversarial and clean data are not twins. arXiv
preprint arXiv:1704.04960, 2017. URL https://arxiv.org/abs/1704.04960.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014. URL https://arxiv.org/abs/1412.
6572.

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. On
the (statistical) detection of adversarial examples. CoRR, 2017.

Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adversarial
examples. arXiv preprint arXiv:1412.5068, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Warren He, Bo Li, and Dawn Song. Decision boundary analysis of adversarial examples. In Interna-
tional Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=BkpiPMbA-.

Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images. In ICLR, 2017.
URL https://arxiv.org/abs/1608.00530.

11

https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1705.07263
https://arxiv.org/abs/1703.00410
https://arxiv.org/abs/1703.00410
https://arxiv.org/abs/1704.04960
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=BkpiPMbA-
https://openreview.net/forum?id=BkpiPMbA-
https://arxiv.org/abs/1608.00530

Published as a conference paper at ICLR 2020

Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Robust convolutional neural networks
under adversarial noise. arXiv preprint arXiv:1511.06306, 2015.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016a. URL https://arxiv.org/abs/1607.02533.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016b.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

S Levine, C Finn, T Darrell, and P Abbeel. End-to-end training of deep visuomotor policies. Journal
of Machine Learning Research, 17:1334–1373, 2016.

Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolutional filter
statistics. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5775–5783,
2017. URL https://arxiv.org/abs/1612.07767.

Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017 IEEE International Conference
on Computer Design (ICCD), pp. 45–48. IEEE, 2017.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using
local intrinsic dimensionality. arXiv preprint arXiv:1801.02613, 2018. URL https://arxiv.
org/abs/1801.02613.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017. URL https://arxiv.org/abs/1706.06083.

MadryLab. CIFAR10 Adversarial Examples Challenge. https://github.com/MadryLab/
cifar10_challenge, a.

MadryLab. MNIST Adversarial Examples Challenge. https://github.com/MadryLab/
mnist_challenge, b.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversar-
ial perturbations. CoRR, abs/1702.04267, 2017. URL https://arxiv.org/abs/1702.
04267.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2574–2582, 2016.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 427–436, 2015.

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of adversarial ex-
amples. In Advances in Neural Information Processing Systems, pp. 4579–4589, 2018. URL
https://arxiv.org/abs/1706.00633.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pp. 372–387. IEEE, 2016a.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), pp. 582–597. IEEE, 2016b.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting
adversarial examples. arXiv preprint arXiv:1902.04818, 2019.

12

https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1612.07767
https://arxiv.org/abs/1801.02613
https://arxiv.org/abs/1801.02613
https://arxiv.org/abs/1706.06083
https://github.com/MadryLab/cifar10_challenge
https://github.com/MadryLab/cifar10_challenge
https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge
https://arxiv.org/abs/1702.04267
https://arxiv.org/abs/1702.04267
https://arxiv.org/abs/1706.00633

Published as a conference paper at ICLR 2020

Shibani Santurkar, Dimitris Tsipras, Brandon Tran, Andrew Ilyas, Logan Engstrom, and Aleksander
Madry. Image synthesis with a single (robust) classifier, 2019.

Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first adversarially
robust neural network model on mnist. arXiv preprint arXiv:1805.09190, 2018.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. In
Advances in Neural Information Processing Systems, pp. 6103–6113, 2018.

Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image analysis. Annual
review of biomedical engineering, 19:221–248, 2017.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with
principled adversarial training. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=Hk6kPgZA-.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary Computation, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
URL https://arxiv.org/abs/1312.6199.

Shixin Tian, Guolei Yang, and Ying Cai. Detecting adversarial examples through image transfor-
mation. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. arXiv preprint arXiv:2002.08347, 2020.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. stat, 1050:11, 2018. URL https://arxiv.org/
abs/1805.12152.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating ad-
versarial examples with adversarial networks. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pp. 3905–3911. AAAI Press, 2018.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep
neural networks. arXiv preprint arXiv:1704.01155, 2017.

Zhihao Zheng and Pengyu Hong. Robust detection of adversarial attacks by modeling the intrinsic
properties of deep neural networks. In Advances in Neural Information Processing Systems, pp.
7913–7922, 2018.

A TRAINING DETAILS

A.1 MNIST TRAINING

We use 50K samples from the original training set for training and the remaining 10K samples for
validation, and report the test performance based on the checkpoint which has the best validation
performance. All binary classifiers are trained for 100 epochs, where in each iteration we sample
32 in-class samples as the positive samples, and 32 out-class samples to create adversarial examples
which will be used as negative samples.

All binary classifier models use a neural network consisting of two convolutional layers each with
32 and 64 filters, and a fully connected layer of size 1024; more details of the network architecture
can be found in Madry et al. (2017).

13

https://openreview.net/forum?id=Hk6kPgZA-
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1805.12152
https://arxiv.org/abs/1805.12152

Published as a conference paper at ICLR 2020

Table 5: Training setups for MNIST detection models

L2 models L∞ models

ϵ = 2.5 ϵ = 5.0 ϵ = 0.3 ϵ = 0.5

PGD attack steps, step-size (training) 100, 0.1 200, 0.1 100, 0.01 100, 0.01
PGD attack steps, step-size (validation) 200, 0.1 200, 0.1 200, 0.01 200, 0.01

A.2 CIFAR10 TRAINING

We train CIFAR10 binary classifiers using a ResNet model (same as the one used by Madry et al.
(2017); MadryLab (a)). To speedup training, we take advantage of a clean trained classifier: the
subnetwork of f that defines the output logit zf (·)k is essentially a “binary classifier” that would
output high values for samples of class k, and low values for others. The binary classifier is then
trained by finetuning the subnetwork using objective 5. The pretrained classifier has a test accuracy
of 95.01% (fetched from MadryLab (a)).

At each iteration of training we sample a batch of 300 samples, from which in-class samples are
used as positive samples, while an equal number of out-of-class samples are used for crafting ad-
versarial examples. Adversarial examples for training L2 and L∞ models are both optimized using
normalized steepest descent based PGD attacks (MadryLab, b). We report results based on the best
performances on the CIFAR10 test set (thus don’t claim generalization performance of the proposed
method).

B COMPUTING MEAN L2 DISTANCE

We first find the detection threshold T with which the detection system has 0.95 TPR. We construct
a new loss function by adding a weighted loss term that measures perturbation size to objective 14

L(x′) = −max
i ̸=y

zH(x′)i + c · ∥x′ − x∥22. (21)

We then use unconstrained PGD attack to optimize L(x′). We use binary search to find the optimal c,
where in each bsearch attempt if x′ is a false positive (maxi zH(x′)i ̸= y and maxi ̸=y zH(x′)i > T)
we consider the current c as effective and continue with a larger c. The configurations for performing
binary search and PGD attack are detailed in Table 6. The c upper bound is established such that
with this upper bound, no samples except those that are inherently misclassified by the generative
classifier, could be perturbed as a false positive. With these settings, our MNIST L∞ ϵ = 0.3 and
L∞ ϵ = 0.5 generative detection models respective reached 1.0 FPR and 0.9455 FPR, and CIFAR10
generative model reached 0.9995 FPR.

Table 6: Binary search and PGD attack configurations on MNIST and CIFAR10 dataset

Dataset Initial c c lower bound c upper bound bsearch depth PGD steps PGD step size Threshold PGD optimizer

MNIST 0.0 0.0 8.0 20 1000 1.0 (0-1 scale) 3.6 Adam
CIFAR10 0.0 0.0 1.0 20 100 2.56 (0-255 scale) -5.0 L2 normalized steepest descent

C MORE EXPERIMENTAL RESULTS

C.1 MORE MNIST RESULTS

14

Published as a conference paper at ICLR 2020

Table 7: AUC scores of the first two binary classifiers (d1, d2, MNIST) tested with different
configurations of PGD attacks. In each step of the PGD attack we use normalized gradient as
in Madry et al. (2017) (the update rules for L2-based and L∞-based attacks are respectively
xn+1 = xn − γ ∇f(xn)

∥∇f(xn)∥2
and xn+1 = xn − γ · sign(∇f(xn))).

PGD attack
steps, step size

L∞ ϵ = 0.3 model L∞ ϵ = 0.5 model

d1 d2 d1 d2

200, 0.01 0.99962 0.99973 0.99820 0.99901
2000, 0.005 0.99959 0.99971 0.99795 0.99872

PGD attack
steps, step size

L2 ϵ = 2.5 model L2 ϵ = 5.0 model

d1 d2 d1 d2

200, 0.1 0.99906 0.99916 0.99960 0.99997
2000, 0.05 0.99855 0.99883 0.99237 0.99994

Table 8: AUC scores of the first two binary classifiers (d1, d2, MNIST) under cross-norm and cross-
perturbation attacks. L∞-based attacks use steps 200 and step-size 0.01, and L2-based attacks uses
steps 200 and step-size 0.1.

d1 d2

Attack L∞ ϵ = 0.3 L∞ ϵ = 0.5 L2 ϵ = 2.5 L2 ϵ = 5.0 L∞ ϵ = 0.3 L∞ ϵ = 0.5 L2 ϵ = 2.5 L2 ϵ = 5.0

L∞ ϵ = 0.3 0.99959 0.99966 0.99927 0.99925 0.99971 0.99967 0.99949 0.99984
L∞ ϵ = 0.5 0.99436 0.9983 0.99339 0.99767 0.99778 0.99869 0.99397 0.99961

L2 ϵ = 2.5 0.99974 0.99969 0.99962 0.99944 0.99965 0.99955 0.99968 0.99987
L2 ϵ = 5.0 0.96421 0.98816 0.97747 0.99577 0.98268 0.98687 0.98117 0.99986

Table 9: AUC scores of d1 (MNIST) under fixed start and multiple random restarts attacks. The
L∞ ϵ = 0.5 model is attacked using L∞ ϵ = 0.5 constrained PGD attack of steps 200 and step size
0.01, and the L2 ϵ = 5.0 model is attacked using L2 ϵ = 5.0 constrained PGD attack of steps 200
and step size 0.1.

L∞ ϵ = 0.5 model L2 ϵ = 5.0 model

fixed start 0.99830 0.99578
50 random restarts 0.99776 0.99501

Table 10: AUC scores of all L∞ ϵ = 0.3 binary classifiers. Results obtained with L∞ ϵ = 0.3
constrained PGD attacks of steps 200 and step size 0.01.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

AUC 0.99959 0.99971 0.99876 0.99861 0.99859 0.99861 0.99795 0.99863 0.99687 0.99418

Table 11: AUC scores of all L∞ ϵ = 0.5 binary classifiers. Results obtained with L∞ ϵ = 0.5
constrained PGD attacks of steps 200 and step size 0.01.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

AUC 0.99830 0.99869 0.99327 0.99355 0.99314 0.99228 0.99424 0.99439 0.97875 0.9769

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate on perturbed MNIST test set

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ue

 p
os

iti
ve

 ra
te

 o
n

M
NI

ST
 te

st
 se

t

Generative detection
Generative detection (xent loss)
Generative detection (cw loss)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Error on perturbed MNIST test set

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

 o
n

M
NS

IT
 te

st
 se

t

Generative classifier
Generative classifier (xent loss)
Generative classifier (cw loss)

(b)

Figure 8: Performance of generative detection (a) and generative classification (b) on MNIST dataset
under attacks with different loss functions. Please refer to MadryLab (b) for the implementations of
cross-entropy loss and CW loss based attacks.

15

Published as a conference paper at ICLR 2020

20 10 0 10 20 30
0

20

40

60

80

100

generative classifier
logit outputs of natural samples of class 1
logit outputs of generated samples

20 10 0 10 20 30

robust classifier
logit outputs of natural samples of class 1
logit outputs of generated samples

Figure 9: Distributions of class 1’s logit outputs of clean samples from class 1 and perturbed samples
from the first row of Figure 4 (MNIST dataset).

16

Published as a conference paper at ICLR 2020

C.2 MORE CIFAR10 RESULTS

C.2.1 MORE ROBUSTNESS TEST RESULTS

Table 12: AUC scores of CIFAR10 d1 under fixed start and multiple random restarts attacks. The
L∞ ϵ = 2.0 model is attacked using PGD attack of steps 10 and step size 0.5, and the L∞ ϵ = 8.0
model is attacked using PGD attack of steps 40 and step size 0.5.

L∞ ϵ = 2.0 model L∞ ϵ = 8.0 model

fixed start 0.9866 0.9234
10 random starts 0.9866 0.9233

Table 13: AUC scores of CIFAR10 d1 (trained with L∞ ϵ = 8) under PGD attacks with different
norms and perturbation limits.

PGD attack AUC

L2 ϵ = 80-constrained (steps 20, step-size 10) 0.9814
L∞ ϵ = 2-constrained (steps 10, step-size 0.5) 0.9841

Table 14: AUC scores of CIFAR10 d1, d2 (trained with L2 ϵ = 80-constrained PGD attack of steps
20 and step size 10) under L2-based PGD attacks of different steps and step-size.

L2 ϵ = 80-constrained PGD attack steps, step size d1 d2

20, 10 0.9839 0.9924
50, 5.0 0.9837 0.9922

Table 15: AUC scores of all CIFAR10 L∞ ϵ = 2.0 binary classifiers under L∞ ϵ = 2.0-constrained
PGD attack of steps 10 and step size 0.5.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

AUC 0.9866 0.9926 0.9721 0.9501 0.9773 0.9636 0.9859 0.9908 0.9930 0.9916

Table 16: AUC scores of all CIFAR10 L∞ ϵ = 8.0 binary classifiers under L∞ ϵ = 8.0-constrained
PGD attack of steps 40 and step size 0.5.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

AUC 0.9234 0.9553 0.8393 0.7893 0.8494 0.8557 0.9071 0.9276 0.9548 0.9370

17

Published as a conference paper at ICLR 2020

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Generative detection
Generative detection (xent loss)
Generative detection (cw loss)

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Error on perturbed CIFAR10 test set

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 o
n

CI
FA

R1
0

te
st

 se
t

Generative classifier
Generative classifier (xent loss)
Generative classifier (cw loss)

(b)

Figure 10: Performance of generative detection (a) and generative classification (b) on CIFAR10
dataset under attacks with different loss functions. Cross-entropy and CW loss is only able to out-
performs loss 14 when detection threshold is low (over 0.9 TPR). Please refer to MadryLab (a) for
the implementations of cross-entropy loss and CW loss based attacks.

30 20 10 0 10 20 30
0

20

40

60

80

100

120

140

160
generative classifier

logit outputs of natural samples of class 1
logit outputs of generated samples

30 20 10 0 10 20 30

robust classifier
logit outputs of natural samples of class 1
logit outputs of generated samples

Figure 11: Distributions of class 1’s logit outputs of clean samples of class 1 and generated samples
from the first row of Figure 7 (CIFAR10 dataset).

18

Published as a conference paper at ICLR 2020

C.2.2 TRAINING STEP SIZE AND ROBUSTNESS

We found training with adversarial examples optimized with a sufficiently small step size to be
critical for model robustness. In table 17 we tested two L∞ ϵ = 2.0 binary classifiers respectively
trained with 0.5 and 1.0 step size. The step size 1.0 model is not robust when tested with a much
smaller step size. We observe that when training the step size 1.0 model, training set adv AUC
reached 1.0 in less than one hundred iterations, but test set clean AUC plummeted to around 0.95
and couldn’t recover thereafter. (Please refer to Figure 12 for the definitions of adv AUC and nat
AUC.)

Table 17: AUC scores of two L∞ ϵ = 2.0 d1 models trained with different steps and step-sizes.

Attack steps, step-size Training steps, step-size

10, 0.5 10, 1.0

10, 0.5 0.9866 0.9965
40, 0.1 0.9892 0.8848

C.2.3 EFFECTS OF PERTURBATION LIMIT

To study the effects of perturbation limit, we analyze the training dynamics of one L∞ ϵ = 2.0
constrained and one L∞ ϵ = 8.0 constrained binary classifiers. In Figure 12 we show the training
and testing history of these two models. The ϵ = 2.0 model history shows that by adversarial
finetuning the model reaches robustness in just a few thousands of iterations, and the performance
on clean samples is preserved (test clean AUC begins at 0.9971, and ends at 0.9981). Adversarial
finetuning on the ϵ = 8.0 model didn’t converge after an extended 20K iterations of training. The
gap between train adv AUC and test adv AUC of the ϵ = 8.0 model is more pronounced, and we
observed a decrease of test clean AUC from 0.9971 to 0.9909.

These results suggest that training with larger perturbation limit is more time and resource consum-
ing, and could lead to performance decrease on clean samples. The benefit is that the detector is
pushed to a better approximation of the target data distribution. As an illustration, in Figure 13,
perturbations generated by attacking the naturally trained classifier (corresponds to 0 perturbation
limit) don’t have clear semantics, while perturbed samples of the L∞ ϵ = 8.0 model are completely
recognizable.

0 5000 10000 15000 20000
iteration

0.80

0.85

0.90

0.95

1.00

AU
C

k = 0, , = 2.0 model

train nat AUC
train adv AUC
test nat AUC
test adv AUC

0 10000 20000 30000 40000
iteration

0.80

0.85

0.90

0.95

1.00
k = 0, , = 8.0 model

train nat AUC
train adv AUC
test nat AUC
test adv AUC

Figure 12: Training and testing AUC histories of two binary classifiers. Adv AUC is the AUC score
computed on {(x, 0) : x ∈ D′f

\k} ∪ {(x, 1) : x ∈ Df
k}, and nat AUC is the score computed on

{(x, 0) : x ∈ Df
\k} ∪ {(x, 1) : x ∈ Df

k}.

19

Published as a conference paper at ICLR 2020

O
rig

in
al

N
at

ur
al

tra

in
ed

cl
as

si
fie

r

de
te

ct
or

de
te

ct
or

de
te

ct
or

Figure 13: Perturbed samples produced by attacking the k = 0 (airplane) detectors and the natural
trained classifier’s 1st logit output. All samples reached the same L2 perturbation of 1200 (produced
using PGD attacks of step size 10.0).

Figure 14: Images generated from class conditional Gaussian noise by attacking L∞ ϵ = 16 con-
strained CIFAR10 detectors. we use L2 ϵ = 100 × 255 constrained PGD attack of steps 200 and
step size 0.5× 255. Samples not selected.

20

Published as a conference paper at ICLR 2020

C.3 IMAGENET RESULTS

On ImageNet we show GAT induces detection robustness and supports the learning of class condi-
tional distributions. Our experiment is based on Restricted ImageNet (Tsipras et al., 2018), a subset
of ImageNet that has its samples reorganized into customized categories. The dog category consists
of images of different breeds collected from ImageNet class from 151 to 268. We trained a dog class
detector by finetuning a pre-trained ResNet50 (He et al., 2016) model. The dog category covers a
range of ImageNet classes, with each one having its logit output. We use the subnetwork defined by
the logit output of class 151 as the detector (in principle logit output of other classes in the range
should also work). Due to computational resource constraints, we only validated the robustness of
a L∞ ϵ = 0.02 trained detector (trained with PGD attack of steps 40 and step size 0.001), and
we present the result in Table 18. (On Restricted ImageNet in the case of L∞ scenario Tsipras
et al. (2018) only demonstrates the robustness of a ϵ = 0.005 constrained model). Please refer to
Appendix C.3 for more results on adversarial example generation and image synthesis.

Table 18: AUC scores of the dog detector under different strengths of L∞ ϵ = 0.02 constrained
PGD attacks

Attack steps, step size 40, 0.001 100, 0.001 200, 0.001 40, 0.002 200, 0.002 200, 0.0005

AUC 0.9720 0.9698 0.9692 0.9703 0.9690 0.9698

21

Published as a conference paper at ICLR 2020

(a) L2 ϵ = 3.5 trained softmax robust classifier with L2 ϵ = 40 constrained PGD attack of steps 60 and step
size 1.0 (Santurkar et al., 2019).

(b) L∞ ϵ = 0.02 trained detector with L2 ϵ = 40 constrained PGD attack of steps 60 and step size 1.0.

(c) L∞ ϵ = 0.05 trained detector with L2 ϵ = 40 constrained PGD attack of steps 60 and step size 1.0.

(d) L∞ ϵ = 0.1 trained detector with L2 ϵ = 40 constrained PGD attack of steps 60 and step size 1.0.

(e) L∞ ϵ = 0.1 trained detector with L2 ϵ = 100 constrained PGD attack of steps 10 and step size 10.0.

(f) L∞ ϵ = 0.3 trained detector with L2 ϵ = 100 constrained PGD attack of steps 100 and step size 10.0.

Figure 15: ImageNet 224 × 224 × 3 random samples generated from class conditional Gaussian
noise by attacking softmax robust classifier and detector models trained with different constrains.
Note than large perturbation models didn’t reach robustness. Please refer to Santurkar et al. (2019)
for the detail about how the class conditional Gaussian is estimated.

22

Published as a conference paper at ICLR 2020

(a)

(b)

Figure 16: Perturbed samples produced by attacking the L∞ ϵ = 0.3 trained dog detector using
L2 ϵ = 30 constrained PGD attack of steps 100 and step size 5. Top rows are original images, and
second rows are attacked images.

23

Published as a conference paper at ICLR 2020

Figure 17

Figure 18: More 224 × 224 × 3 random samples generated by attacking the L∞ ϵ = 0.3 trained
detector with L2 ϵ = 100 constrained PGD attack of steps 100 and step size 10.0.

24

Published as a conference paper at ICLR 2020

D GAUSSIAN NOISE ATTACK AND MODEL INTERPRETABILITY

In this section we use Gaussian noise attack experiment to motivate a comparative analysis of the
interpretabilities of our generative classification approach and discriminative robust classification
approach (Madry et al., 2017).

We first discuss how these two approaches determine the posterior class probabilities.

For the discriminative classifier, the posterior probabilities are computed from the logit outputs of
the classifier using the softmax function p(k|x) = exp(zf (x)k)∑K

j=1 exp(zf (x)j)
. For the generative classifier, the

posterior probabilities are computed in two steps: in the first, we train the base detectors, which is
the process of solving the inference problem of determining the joint probability p(x, k), and in the
second, we use Bayes rule to compute the posterior probability p(k|x) = p(x,k)

p(x) =
exp(zdk (x))∑K
j=1 exp(zdj (x))

.

Coincidentally, the formulas for computing the posterior probabilities take the same form. But
in our approach, the exponential of the logit output of a detector (i.e., exp(zdk

(x))) has a clear
probabilistic interpretation: it’s the unnormalized joint probability of the input and the corresponding
class category. We use Gaussian noise attack to demonstrate that this probabilistic interpretation is
consistent with visual perception.

We start from a Gaussian noise image, and gradually perturb it to cause higher and higher logit out-
puts. This is implemented by targeted PGD attack against logit outputs of these two classification
models. The resulting images in Figure 19 show that, in our model, the logit output increase di-
rection, i.e. the join probability increase direction, indicates the class semantic changing direction;
while for the discriminative robust model, the perturbed image computed by increasing logit outputs
are not as clearly interpretable. In particular, the perturbed images that cause high logit outputs of
the softmax robust classifiers are not recognizable.

In summary, as a generative classification approach that explicitly models class conditional distri-
butions, our system offers a probabilistic view of the decision making process of the classification
problem; adversarial attacks that rely on imperceptible or uninterpretable noises are not effective
against such a system.

E COMPUTATIONAL COST ISSUE

In this section we provide an analysis of the computational cost of our generative classification
approach. In terms of memory requirements, if we assume the softmax classifier (i.e., the discrim-
inative softmax robust classifier) and the detectors use the same architecture (i.e., only defer in the
final layer) then the detector based generative classifier is approximately K times more expensive
than the K-class softmax classifier. This also means that the computational graph of the generative
classifier is K times larger than the softmax classifier. Indeed, in the CIFAR10 task, on our Quadro
M6000 24GB GPU (TensorFlow 1.13.1), the inference speed of the generative classifier is roughly
ten times slower than the softmax classifier.

We next benchmark the training speed of these two types of classifiers.

The generative classifier has K logit outputs, with each one defined by the logit output of a detector.
Same with the softmax classifier, except that the K outputs share the parameters in the convolutional
base. Now consider ordinary adversarial training on the softmax classifier and generative adversarial
training on the generative classifier. To train the softmax classifier, we use batches of N samples.
For the generative classifier, we train each detector with batches of 2 × M samples (M positive
samples and M negative samples). At each iteration, we need to respectively compute N and M×K
adversarial examples for these two classifiers. Now we test the speed of the following two scenarios:
1) compute the gradient w.r.t. to N samples on a single computational graph, and 2) compute the
gradient w.r.t to M × K samples on K computational graphs, with each graph working on M
samples. We assume that in scenario 2 all the computational graphs are loaded to GPUs, and thus
their computations are in parallel.

In our CIFAR10 experiment, we used batches consisting of 30 positive samples and 30 negative
samples to train each ResNet50 binary classifiers. In Madry et al. (2017), the softmax classifier was
trained with batches of 128 samples. In this case, K = 10, M = 30, and N = 128. On our GPU,

25

Published as a conference paper at ICLR 2020

Gaussian noise attack on generative classifier Gaussian noise attack on robust classifier

Figure 19: Image generated by attacking the generative classifier (based on L∞ ϵ = 16 trained de-
tectors) and discriminative softmax robust classifier (Madry et al., 2017) using (the same) Gaussian
noise image. We used unconstrained L2 PGD attack of step size 0.5*255. The five columns corre-
sponding to the perturbed images at step 0, 50, 100, 150, and 200.

scenario 1 took 683 ms ± 6.76 ms per loop, while scenario 2 took 1.85 s ± 42.7 ms per loop. In
this case, we could expect generative adversarial training to be about 2.7 times slower than ordinary
adversarial training, if not considering parameter gradient computation.

In practice, large batch size is almost always preferred. And our method won’t compare as favorably
if we choose to use one.

F DENSITY ESTIMATION ON SYNTHETIC DATASETS

While ordinary discriminative training only learns a good decision boundary, GAT is able to learn
the underlying density functions that generate the training data. Results on 1D (Figure 20) and
2D benchmark datasets (Figure 21) show that through properly configured generative adversarial
training, detectors’ output recover target density functions.

26

Published as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Ordinary trained (sigmoid output)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
GAT trained (sigmoid output)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

GAT trained (estimated density function)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

True density function

Figure 20: Ordinary discriminative training and generative adversarial training on real 1D data. The
positive class data (blue points) are sampled from a mixture of Gaussians (mean 0.4 with std 0.01,
and mean 0.6 with std 0.005, each with 250 samples). Both the blue and red data has 500 samples.
The estimated density function is computed using Gibbs distribution and network logit outputs. PGD
attack steps 20, step size 0.05, and perturbation limit ϵ = 0.3.

Figure 21: 2D datasets (top row, blue points are class 1 data, and red points are class 0 data, both
have 1000 data points) and sigmoid outputs of GAT trained models (bottom row). The architecture
of the MLP model for solving these tasks is 2-500-500-500-500-500-1. PGD attack steps 10, step
size 0.05, and perturbation limit L∞ ϵ = 0.5.

27

	Introduction
	Related works
	Proposed Approach to Detecting Adversarial Examples
	A Generative approach to adversarial example detection/classification

	Evaluation methodology
	Robustness test
	Adversarial Example Detection Performance
	Robust Classification Performance

	Experiments
	MNIST
	CIFAR10

	Conclusion
	Training Details
	MNIST training
	CIFAR10 training

	Computing mean L2 distance
	More experimental results
	More MNIST results
	More CIFAR10 results
	More robustness test results
	Training step size and robustness
	Effects of perturbation limit

	ImageNet results

	Gaussian noise attack and model interpretability
	Computational cost issue
	Density estimation on synthetic datasets

