
Under review as a conference paper at ICLR 2019

DADAM: A CONSENSUS-BASED DISTRIBUTED ADAP-
TIVE GRADIENT METHOD FOR ONLINE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Online and stochastic optimization methods such as SGD, ADAGRAD and
ADAM are key algorithms in solving large-scale machine learning problems in-
cluding deep learning. A number of schemes that are based on communications
of nodes with a central server have been recently proposed in the literature to
parallelize them. A bottleneck of such centralized algorithms lies on the high
communication cost incurred by the central node. In this paper, we present a
new consensus-based distributed adaptive moment estimation method (DADAM)
for online optimization over a decentralized network that enables data paralleliza-
tion, as well as decentralized computation. Such a framework not only can be
extremely useful for learning agents with access to only local data in a communi-
cation constrained environment, but as shown in this work also outperform cen-
tralized adaptive algorithms such as ADAM for certain realistic classes of loss
functions. We analyze the convergence properties of the proposed algorithm and
provide a dynamic regret bound on the convergence rate of adaptive moment es-
timation methods in both stochastic and deterministic settings. Empirical results
demonstrate that DADAM works well in practice and compares favorably to com-
peting online optimization methods.

1 INTRODUCTION

Online optimization is a fundamental procedure for solving a wide range of machine learning prob-
lems Shalev-Shwartz et al. (2012); Hazan et al. (2016). It can be formulated as a repeated game
between a learner (algorithm) and an adversary. The learner receives a streaming data sequence,
sequentially selects actions, and the adversary reveals the convex or nonconvex losses to the learner.
A standard performance metric for an online algorithm is regret, which measures the performance
of the algorithm versus a static benchmark Zinkevich (2003); Hazan et al. (2016). For example, the
benchmark could be an optimal point of the online average of the loss (local cost) function, had the
learner known all the losses in advance. In a broad sense, if the benchmark is a fixed sequence, the
regret is called static. Recent work on online optimization has investigated the notion of dynamic
regret Zinkevich (2003); Hall & Willett (2015); Besbes et al. (2015). Dynamic regret can take the
form of the cumulative difference between the instantaneous loss and the minimum loss. For convex
functions, previous studies have shown that the dynamic regret of online gradient-based methods can
be upper bounded by O(

√
T DT), where DT is a measure of regularity of the comparator sequence

or the function sequence Zinkevich (2003); Hall & Willett (2015). This bound can be improved to
O(DT) Mokhtari et al. (2016); Zhang et al. (2017) when all the cost functions are strongly convex
and smooth.

Decentralized nonlinear programming has received a great deal of interest in diverse scientific and
engineering fields Tsitsiklis et al. (1986); Li et al. (2002); Rabbat & Nowak (2004); Lesser et al.
(2012). The key problem involves optimizing a cost function f (x) = 1

n ∑
n
i=1 fi(x), where x ∈ Rp

and each fi is only known to the individual agent i in a connected network of n agents. The agents
collaborate by successively sharing information with other agents located in their neighborhood with
the goal of jointly converging to the network-wide optimal argument Nedic & Ozdaglar (2009).
Compared to optimization procedures involving a fusion center that collects data and performs the
computation, decentralized nonlinear programming enjoys the advantage of scalability to network
sizes, robustness to dynamic topologies, and privacy preservation in data-sensitive applications Yuan
et al. (2016); Shi et al. (2015); Jiang et al. (2017); Lian et al. (2017).

1

Under review as a conference paper at ICLR 2019

Appropriately choosing the learning rate that scale coordinates of the gradient and the way of up-
dating them are crucial issues driving the performance of first Duchi et al. (2011); Kingma & Ba
(2014) and second order optimization procedures Peyghami & Tarzanagh (2015). Indeed, the under-
standing that adaptation of the learning rate is advantageous, particularly on a per parameter basis
dynamically, led to the development of a family of widely-used adaptive gradient methods including
ADAGRAD Duchi et al. (2011), RMSPROP Tieleman & Hinton, and ADAM Kingma & Ba (2014).
The ADAM optimizer computes adaptive learning rates for different parameters from estimates of
first and second moments of the gradients and performs a local optimization. Numerical results show
that ADAM can achieve significantly better performance compared to ADAGRAD, RMSPROP and
other gradient descent procedures when the gradients are sparse, or in general small in magnitude.
However, its performance has been observed to deteriorate in settings where the loss functions are
nonconvex and gradients are dense. Further, there is currently a gap in the theoretical understanding
of these methods, especially in the nonconvex and stochastic setting Ward et al. (2018); Zeng & Yin
(2018).

1.1 CONTENTS AND CONTRIBUTIONS

In this paper, we develop and analyze a new consensus-based distributed adaptive moment esti-
mation (DADAM) method that incorporates decentralized optimization and uses a variant of the
adaptive moment estimation methods Duchi et al. (2011); Kingma & Ba (2014); Tieleman & Hin-
ton; McMahan & Streeter (2010). Existing distributed stochastic and adaptive gradient methods for
deep learning are mostly designed for central network topology Dean et al. (2012); Li et al.. The
main bottleneck of such a topology lies on the communication overload on the central node, since all
nodes need to concurrently communicate with it. Hence, performance can be significantly degraded
when network bandwidth is limited. These considerations motivate us to study an adaptive algorithm
for network topologies, where all nodes can only communicate with their neighbors and none of the
nodes is designated as “central”. Therefore, the proposed method is suitable for large scale machine
learning problems, since it enables both data parallelization and decentralized computation.

Next, we briefly summarize the main technical contributions of the work.

- Our first main result (Theorem 4) provides guarantees of DADAM for constrained convex
minimization problems defined over a closed convex set X . We provide the convergence
bound in terms of dynamic regret and show that when the data features are sparse and
have bounded gradients, our algorithm’s regret bound can be considerably better than the
ones provided by standard mirror descent and gradient descent methods Nedic & Ozdaglar
(2009); Hall & Willett (2015); Besbes et al. (2015). It is worth mentioning that the regret
bounds provided for adaptive gradient methods Duchi et al. (2011) are static and our results
generalize them to dynamic settings.

- In Theorem 5, we give a new local regret analysis for distributed gradient-based algorithms
for nonconvex minimization problems computed over a network of agents. Specifically, we
prove that under certain regularity conditions, DADAM can achieve a local regret bound of
order Õ(1

T) for nonconvex distributed optimization. To the best of our knowledge, rigor-
ous extensions of existing adaptive gradient methods to the distributed nonconvex setting
considered in this work do not seem to be available.

- In this paper, we also present regret analysis for distributed stochastic optimization prob-
lems computed over a network of agents. Theorems 8 and 10 provide regret bounds of
DADAM for minimization problem equation 3 with stochastic gradients and indicate that
the result of Theorems 4 and 5 holds true in expectation. Further, in Corollary 11 we
show that DADAM can achieve a local regret bound of order O(ξ 2

√
nT

+ 1
T) for noncon-

vex distributed stochastic optimization where ξ is an upper bound on the variance of the
stochastic gradient. Hence, DADAM outperforms centralized adaptive algorithms such as
ADAM for certain realistic classes of loss functions when T is sufficiently large.

The remainder of the paper is organized as follows. Section 2 gives a detailed description of
DADAM, while Section 3 establishes its theoretical results. Section 4 explains a network correction
technique for our proposed algorithm. Section 5 illustrates the proposed framework on a number of
synthetic and real data sets. Finally, Section 6 concludes the paper.

2

Under review as a conference paper at ICLR 2019

The detailed proofs of the main results established are delegated to the Appendix.

1.2 MATHEMATICAL PRELIMINARIES AND NOTATIONS.

Throughout the paper, Rp denotes the real coordinate space of p dimensions. For any pair of vectors
x,y ∈ Rp, 〈x,y〉 indicates the standard Euclidean inner product. We denote the `1 norm by ‖X‖1 =

∑i j |xi j|, the infinity norm by ‖X‖∞ = maxi j |xi j|, and the Euclidean norm by ‖X‖=
√

∑i j |xi j|2. The
above norms reduce to the vector norms if X is a vector. The diameter of the set X is given by

γ∞ = sup
x,y∈X

‖x− y‖∞. (1)

Let S p
+ be the set of all positive definite p× p matrices. ΠX ,A [x] denotes the Euclidean projection

of a vector x onto X for A ∈S p
+ :

ΠX ,A
[
x
]
= argmin

y∈X
‖A

1
2 (x− y)‖.

The subscript t is often used to denote the time step while yi,t,d stands for the d-th element of yi,t .
Further, yi,1:t,d ∈ Rt is given by

yi,1:t,d = [yi,1,d ,yi,2,d , . . . ,yi,t,d]
>.

We let gi,t to denote the gradient of f at xi,t . The i-th largest singular value of matrix X is denoted
by σi(X). We denote the element in the i-th row and j-th column of matrix X by [X]i j. In several
theorems, we consider a connected undirected graph G = (V ,E) with nodes V = {1,2, . . . ,n} and
edges E . The matrix W ∈ Rn×n is often used to denote a symmetric mixing matrix Shi et al. (2015)
of graph G . Indeed, for any agent i, we assign a positive weight [W]i j for the information received
from agent j 6= i so that [W]i j > 0 if and only if (i, j) ∈ E and

n

∑
i=1

[W]i j =
n

∑
j=1

[W]i j = 1. (2)

The role of W is the similar as that in decentralized gradient descent methods Yuan et al. (2016) and
average consensus Xiao et al. (2007). It has a few common choices, which can significantly affect
performance (see, Shi et al. (2015)). Throughout this paper, we consider Metropolis constant edge
weight matrix Xiao & Boyd (2004); Xiao et al. (2007) defined as follows

[Ŵ]i j =


1

max{deg(i),deg(j)}+ε
, if (i, j) ∈ E ,

0, if (i, j) /∈ E and i 6= j,
1− ∑

k∈V
[Ŵ]ik, if i = j,

for some small positive ε > 0. When Ŵ is chosen according this scheme, W = I+Ŵ
2 is found to

be very efficient. Note, the above doubly stochastic matrix implies uniqueness of σ1(W) = 1 and
warrants that other singular value of W are strictly less than one in magnitude.

The Hadamard (entrywise) and Kronecker product are denoted by � and ⊗, respectively. Finally,
the expectation operator is denoted by E.

2 PROBLEM FORMULATION AND ALGORITHM

In this section, we propose a new optimization method for online optimization that employs data
parallelization and decentralized computation over a network of agents. In our new structure, given
a connected undirected graph G = (V ,E), we let each node i ∈ V at time t ∈ {1, . . . ,T} hold its
own measurement and training data mi, and set fi,t(x) = 1

mi
∑

mi
j=1 f j

i,t(x). We also let each agent i hold
a local copy of the global variable x at time t ∈ {1, . . . ,T}, which is denoted by xi,t ∈ Rp. With this
setup, we present a distributed adaptive gradient method for solving the minimization problem

minimize
x∈X

F(x) =
1
n

T

∑
t=1

n

∑
i=1

fi,t(x), (3)

3

Under review as a conference paper at ICLR 2019

where fi,t : X → R is a continuously differentiable mapping on the convex set X .

It is known that it is impossible to achieve a sub-linear dynamic regret bound Zhang et al. (2017),
because of the arbitrary fluctuations in problem equation 3. We want to characterize the hardness of
the problem via a complexly measure that captures the pattern of the minimizer sequence {x∗t }T

t=1,
where x∗t = argminx∈X ft(x). Subsequently, we would like to provide a regret bound in terms of

DT,d =
T−1

∑
t=1
|x∗t+1,d− x∗t,d | for d ∈ {1, ..., p}, (4)

which represents the variations in {x∗t }T
t=1.

DADAM uses a new distributed adaptive gradient method in which a group of n agents seeking to
solve a sequential version of problem equation 3. Here, we assume that each component function
fi,t : X → R becomes only available to agent i ∈ V , after having made its decision at time t ∈
{1, . . . ,T}. In the t-th, the i-th agent chooses a point xi,t corresponding to what it considers the
network as a whole should have selected. After committing to this choice, the agent has access to
a cost function fi,t : X → R and the network cost is then given by ft(x) = 1

n ∑
n
i=1 fi,t(x). Note that

this function is not known to any of the agents and is not available at any single location.

The procedure of our proposed method is outlined in Algorithm 1.

Algorithm 1: A distributed adaptive moment estimation method (DADAM)

input : x1 ∈X , a positive sequence {αt}T
t=1, exponential decay rates for the moment

estimate β1,β2,β3 ∈ [0,1), and a mixing matrix W satisfying equation 2;

1 for all i ∈ V , initialize moment vectors mi,0 = υi,0 = υ̂i,0 = 0 and xi,1 = x1;
2 for i ∈ V do
3 for t← 1 to T do
4 gi,t = ∇ fi,t(xi,t);
5 mi,t = β1mi,t−1 +(1−β1)gi,t ;
6 υi,t = β2υi,t−1 +(1−β2)gi,t �gi,t ;
7 υ̂i,t = β3υi,t +(1−β3)max(υ̂i,t−1,υi,t);
8 xi,t+ 1

2
= ∑

n
j=1[W]i jx j,t ;

9 xi,t+1 = Π
X ,
√

diag(υ̂i,t)

[
xi,t+ 1

2
−αt

mi,t√
υ̂i,t

]
;

output: resulting parameter x̄ = 1
n ∑

n
i=1 xi,T+1

It is worth mentioning that DADAM computes adaptive learning rates from estimates of both first
and second moments of the gradients similar to Duchi et al. (2011); Tieleman & Hinton; Kingma
& Ba (2014); Reddi et al. (2018). However, DADAM uses a larger learning rate in comparison to
AMSGrad Reddi et al. (2018) and yet incorporates the intuition of slowly decaying the effect of
previous gradients on the learning rate. The key difference of DADAM with ADAM and AMSGrad
is that it maintains the maximum of all second moment estimates of the gradient vectors until time
step t and uses

υ̂i,t = β3υi,t +(1−β3)max(υ̂i,t−1,υi,t),

for normalizing the running average of the gradient instead of υi,t in ADAM and max(υ̂i,t−1,υi,t)
in AMSGrad. The learning rate υ̂i,t is an important component of the DADAM framework, since
it enables us to develop a convergent adaptive method similar to AMSGrad while maintaining the
efficiency of ADAM.

Next, we provide the notion of regret which measures the performance of DADAM against a se-
quence of local minimizers.

In the framework of online convex optimization, the performance of algorithms is assessed by regret
that measures how competitive the algorithm is with respect to the best fixed solution Mateos-Núnez
& Cortés (2014); Hazan et al. (2016). However, the notion of regret fails to illustrate the performance
of online algorithms in a dynamic setting. To overcome this issue, we consider a more stringent

4

Under review as a conference paper at ICLR 2019

metric–dynamic regret Hall & Willett (2015); Besbes et al. (2015); Zinkevich (2003), in which the
cumulative loss of the learner is compared against the minimizer sequence {x∗t }T

t=1, i.e.,

RegC
T :=

1
n

n

∑
i=1

T

∑
t=1

fi,t(xi,t)−
T

∑
t=1

ft(x∗t),

where x∗t = argminx∈X ft(x).

On the other hand, in the framework of nonconvex optimization, it is usual to state convergence
guarantees of an algorithm towards an ε-approximate stationary point–that is, there exist some iter-
ates xi,t for which ‖∇ ft(xi,t)‖ ≤ ε . Inspired by Hazan et al. (2017), we next provide the definition
of projected gradient and introduce local regret, a new notion of regret which quantifies the moving
average of gradients over network.

Definition 1. (Local Regret). Assume fi : X →R is a differentiable function on a closed convex set
X ⊆Rp. Given a step-size α > 0, we define GX (x, fi,α) : X →Rp the projected gradient of fi at
x, by

GX (x, fi,α) =

√
υ̂i

α
(x− x+i), ∀i ∈ V , (5)

where

x+i = argmin
y∈X

{〈y, mi√
υ̂i
〉+ 1

2α
‖y−

n

∑
j=1

[W]i jx j‖2}. (6)

Then, the local regret of an online algorithm is given by

RegN
T :=

1
n

n

∑
i=1

min
t∈{1,...,T}

‖GX (xi,t , f̄i,t ,αt)‖2,

where f̄i,t(xi,t) =
1
t ∑

t
s=1 fi,s(xi,t) is an aggregate loss.

We analyze the convergence of DADAM as applied to minimization problem equation 3 using re-
grets RegC

T and RegN
T . It is worth to mention that DADAM is initialized at xi,t = 0 to keep the

presentation of the convergence analysis clear. In general, any initialization can be selected for
implementation purposes.

3 CONVERGENCE ANALYSIS

In this section, our aim is to establish convergence properties of DADAM under the following as-
sumptions:

Assumption 2. For all i ∈ V and t ∈ {1, . . . ,T}, the function fi,t(x) is continuously differentiable
over X , and has Lipschitz continuous gradient on this set, i.e. there exists a constant ρ ≥ 0 so that

‖∇ fi,t(x)−∇ fi,t(y)‖ ≤ ρ‖x− y‖, ∀x,y ∈X .

Further, fi,t(·) is Lipschitz continuous on X with a uniform constant L≥ 0, i.e.,

| fi,t(x)− fi,t(y)| ≤ L‖x− y‖, ∀x,y ∈X . (7)

There are many cost functions fi,t that satisfy this type of Lipschitz condition. For example, it holds
for any convex function on a compact set X , or for any polyhedral function on an arbitrary domain
Duchi et al. (2011).

Assumption 3. For all i ∈ V and t ∈ {1, . . . ,T}, the stochastic gradient, as notation we use bold
letters g =∇ fi,t(xi,t), satisfies

E
[
∇ fi,t(xi,t)

∣∣Ft−1

]
= ∇ fi,t(xi,t), E

[
‖∇ fi,t(xi,t)‖2 ∣∣Ft−1

]
≤ ξ

2,

where Ft is the ξ -field containing all information prior to the outset of round t +1.

5

Under review as a conference paper at ICLR 2019

3.1 CONVEX CASE

Next, we focus on the case where for all i ∈ V and t ∈ {1, . . . ,T}, the agent i at time t has access to
the exact gradient gi,t = ∇ fi,t(xi,t). The following results apply to convex problems, as well as their
stochastic variants in a dynamic environment.

Theorem 4. Suppose that the parameters β1,β2 ∈ [0,1) satisfy η = β1√
β2

< 1. Let β1,t = β1λ t−1,λ ∈
(0,1) and ‖∇ fi,t(x)‖∞ ≤ G∞ for all t ∈ {1, . . . ,T}. Then, using a step-size αt =

α√
t for the sequence

xi,t generated by Algorithm 1, we have

RegC
T ≤

(1−β1)α
√

1+ logT

2
√

n
√
(1−β2)

p

∑
d=1
‖g1:T,d‖+

p

∑
d=1

G∞γ∞

(1−β1)(1−λ)

+
p

∑
d=1

γ∞(γ∞ +DT,d)√
n(1−β1)α

√
T υ̂T,d +

4α
√

1+ logT ∑
p
d=1 ‖g1:T,d‖

(1−σ2(W))
√

(1−β1)
√
(1−η)

√
(1−β2)

.

Next, we analyze the stochastic convex setting and extend the result of Theorem 4 to the noisy case
where agents have access to stochastic gradients of the objective function equation 3.

Theorem 5. Suppose that Assumption 3 holds. Further, the parameters β1,β2 ∈ [0,1) satisfy η =
β1√

β2
< 1. Let β1,t = β1λ t−1,λ ∈ (0,1). Then, using a step-size αt =

α√
t for the sequence xi,t

generated by Algorithm 1, we have

E
[
RegC

T
]
≤ (1−β1)α

√
1+ logT

2
√

n
√
(1−β2)

p

∑
d=1

E
[
‖g1:T,d‖

]
+

p

∑
d=1

ξ γ∞

(1−β1)(1−λ)

+
p

∑
d=1

γ∞(γ∞ +DT,d)√
n(1−β1)α

√
TE
[√

υ̂T,d

]
+

4α
√

1+ logT ∑
p
d=1E

[
‖g1:T,d‖

]
(1−σ2(W))

√
(1−β1)

√
(1−η)

√
(1−β2)

.

Remark 6. Theorems 4 and 5 show that the regret bound of DADAM can be considerably better than
the ones provided by standard mirror descent and gradient descent methods for both centralized and
decentralized settings Zinkevich (2003); Hall & Willett (2015); Besbes et al. (2015); Shahrampour
& Jadbabaie (2018) because

p

∑
d=1
‖g1:T,d‖=

p

∑
d=1

√
g2

1,d +g2
2,d + · · ·+g2

T,d ≤
p

∑
d=1

√
G2

∞ +G2
∞ + · · ·+G2

∞

=
p

∑
d=1

√
T G∞ = pG∞

√
T ,

p

∑
d=1

√
T υ̂T,d ≤

p

∑
d=1

√
T G∞ ≤ pG∞

√
T .

It is easy to show that the regret of DADAM is upper bounded by O(G∞DT
√

T
1−σ2(W)) where DT =

maxd∈{1,...,p}DT,d . Indeed, the term ∑
T
t=1 |gi,t,d |/

√
t in the proof of Lemma 14 can be bounded by

O(G∞

√
T) instead of O(G∞

√
T logT). Hence, the regret of DADAM is upper bounded by minimum

of O(G∞DT
√

T
1−σ2(W)) and the bound presented in Theorems 4 and 5, and thus the worst case dependence

on T is
√

T rather than
√

T logT .

Remark 7. We note that in the static setting, i.e. DT = 0, the regret of DADAM is upper bounded
by

O(
G∞

√
T

1−σ2(W)
),

where 1−σ2(W) is the spectral gap of the network.

6

Under review as a conference paper at ICLR 2019

3.2 NONCONVEX CASE

In this section, we provide convergence guarantees for DADAM for the nonconvex minimization
problem equation 3 defined over a closed convex set X . To do so, we use the projection map ΠX
instead of Π

X ,
√

diag(v̂i,t)
for updating parameters xi,t for t ∈ {1, . . . ,T}, i ∈ V (see, Algorithm 1 for

details).

Next, we derive an upper and lower bound for the second moment of gradient, υi,t . Assume that
there exists a positive number ῡ such that

max
d∈{1,...,p}

gi,t,d ≤ ῡ . (8)

Now, using the update rule of υi,t , we have υi,t =(1−β2)∑
t
l=1 β

t−l
2 g2

i,l . This together with equation 8
imply that

√
υi,t ≤ max

d∈{1,...,p}

√
υi,t,d = max

d∈{1,...,p}

√
(1−β2)

t

∑
l=1

β
t−l
2 g2

i,l,d

≤ ῡ

√
(1−β2)

t

∑
l=1

β
t−l
2 ≤ ῡ . (9)

On the other hand, since υi,t,d is non-decreasing and gi,t,d is required to be element-wise non-zero,
we have

υi,t,d ≥ υ
2 > 0, (10)

for some constant υ .

Now, using the update rule of υ̂i,t along with equation 10 and equation 9, we have

υ
2 ≤ β3υ

2 +(1−β3)υ
2

≤ υ̂i,t = β3υi,t +(1−β3)max(υ̂i,t−1,υi,t)

≤ β3ῡ
2 +(1−β3)ῡ

2 ≤ ῡ
2. (11)

Theorem 8. Suppose that Assumption 2 holds. Further, the parameters β1,β2 ∈ [0,1) satisfy η =
β1√

β2
< 1. Choose the positive sequence {αt}T

t=1 such that 0 < αt ≤ (2−β1)υ
2

ρῡ
with αt <

(2−β1)υ
2

ρῡ
for

at least one t. Then, for the sequence xi,t generated by Algorithm 1, we have

RegN
T ≤

1
ϑt

[(2+ logT)2L max
t∈{2,...,T}

2
√

n

(1−η)
√

(1−β2)

t−1

∑
s=0

αsσ
t−s−1
2 (W)

+
T

∑
t=1

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
], (12)

where ϑt = ∑
T
t=1[

(2−β1)αt
2ῡ

− ρα2
t

2υ2].

The following corollary shows that DADAM using a certain step-size leads to a near optimal regret
bound for nonconvex functions.

Corollary 9. Under the same conditions of Theorem 8, using the step-sizes αt =
(2−β1)υ

2

2ρῡ
and

β1,t = β1λ t−1,λ ∈ (0,1) for all t ∈ {1, . . . ,T}, we have

RegN
T ≤

(2ῡ2

(2−β1)(1−β1)(1−η)2(1−β2)(1−λ)

) 1
T

+
(16

√
nῡL

(2−β1)(1−η)
√

(1−β2)(1−σ2(W))

) (2+ logT)
T

. (13)

To complete the analysis of our algorithm in the nonconvex setting, we provide the regret bound for
DADAM, when stochastic gradients are accessible to the learner.

7

Under review as a conference paper at ICLR 2019

Theorem 10. Suppose that Assumption 2 holds. Further, the parameters β1,β2 ∈ [0,1) satisfy

η = β1√
β2

< 1. Choose the positive sequence {αt}T
t=1 such that 0 < αt ≤ (2−β1)υ

2

ρῡ
with αt <

(2−β1)υ
2

ρῡ

for at least one t. Then, for the sequence xi,t generated by Algorithm 1, we have

E
[
RegN

T
]
≤ 1

ϑt
[(2+ logT)2L max

t∈{2,...,T}

2
√

n

(1−η)
√
(1−β2)

t−1

∑
s=0

αsσ
t−s−1
2 (W)

+
T

∑
t=1

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
+

ῡξ 2

υ2(1−β1)

T

∑
t=1

αt], (14)

where ϑt = ∑
T
t=1[

(2−β1)αt
2ῡ

− ρα2
t

2υ2].

3.2.1 WHEN DOES DADAM OUTPERFORM ADAM?

We next theoretically justify the potential advantage of the proposed decentralized algorithm
DADAM over centralized adaptive moment estimation methods such as ADAM . More specifically,
the following corollary shows that when T is sufficiently large, the 1

T term will be dominated by the
1√
nT

term which leads to a 1√
nT

convergence rate.

Corollary 11. Suppose that Assumptions 2 and 3 hold. Moreover, the parameters β1,β2 ∈ [0,1)
satisfy η = β1√

β2
< 1 and β1,t = β1λ t−1,λ ∈ (0,1). Choose the step-size sequence as αt =

α√
nT

with

α = (2−β1)υ
2

ρῡ
. Then, for the sequence xi,t generated by Algorithm 1, we have

E
[
RegN

T
]

T
≤
(8ῡα

υ2(1−β1)

) ξ 2
√

nT
+2
(

f1(x1)− f1(x∗1)
) 1

T
, (15)

if the total number of time steps T satisfies

T ≥ (I1 + I2), (16a)

T ≥max{ 4ρ2ῡ2

nυ4(2−β1)2 ,
4ῡ2n

(2−β1)2 }, (16b)

where

I1 =
υ2

2(1−η)2(1−β2)(1−λ)ξ 2 , I2 =
16nL2υ4(1−β1)

2

(1−η)2(1−β2)(1−σ2(W))2ῡ2ξ 4 .

Let ε-approximation solution of equation 3 be defined by
E[RegN

T]
T ≤ ε . Corollary 11 indicates that

the total computational complexity of DADAM to achieve an ε-approximation solution is bounded
by O(1

ε2). The key setup which leads to this regret bound is that we do not use the boundedness
assumption for domain or gradient. These assumptions can simplify the proof but lose some of the
sophisticated structures in the problem.

4 AN EXTENSION OF DADAM WITH A CORRECTED UPDATE RULE

Compared to classical centralized algorithms, decentralized algorithms encounter more restrictive
assumptions and typically worse convergence rates. In order to improve the convergence rate, Shi
et al. (2015) introduced a corrected decentralized gradient method called EXTRA, which has a linear
rate of convergence if the objective function is strongly convex. Similar to EXTRA, we provide next
a corrected update rule for i ∈ V , given by

xC-DADAM
i,t+1 = xi,t+1 +

t−1

∑
s=0

n

∑
j=1

[W −Ŵ]i jx j,s︸ ︷︷ ︸
correction

, t = 0,1,
(17)

8

Under review as a conference paper at ICLR 2019

where xi,t+1 is generated by Algorithm 1.

Our numerical results on some test problems show the efficiency and effectiveness of the corrected
DADAM (C-DADAM) in practice. Note that a C-DADAM update is a DADAM update with a
cumulative correction term. The summation in equation 17 is necessary, since each individual term
∑

n
j=1[W −Ŵ]i jx j,s is asymptotically vanishing and the terms must work cumulatively.

5 NUMERICAL RESULTS

In this section, we present numerical results for Algorithm 1 (DADAM), on both synthetic and real
data sets. The employed data sets and the code will be made available on github upon acceptance
of this manuscript. We first present numerical results on a sparse binary classification problem,
comparing the performance of DADAM to that of standard decentralized gradient descent (DGD)
Nedic & Ozdaglar (2009); Yuan et al. (2016) and its corrected version EXTRA Shi et al. (2015).
In Section 5.2, we demonstrate the efficacy of DADAM in comparison with a decentralized ADAM
(Algorithm 1 with β3 = 1) and the recently proposed distributed federated averaging SGD (FedAvg)
algorithm on benchmark datasets such as MNIST and CIFAR-10. All algorithms have been imple-
mented in a Mac machine equipped with a 1.8 GHz Intel Core i5 processor and 8 GB 1600 MHz
DDR3 of memory.

5.1 BINARY CLASSIFICATION BASED ON SYNTHETIC DATA IN THE STATIC ENVIRONMENT

Consider the following online distributed learning setting: at each time t, mi randomly generated
data points are given to every agent i in the form of (yt,i, j,xt,i, j), where yt,i, j ∈ {±1} is a binary label
and xt,i, j ∈ Rp is a feature vector for j = 1, . . . ,mi. Our goal is to train a classifier θ ∈ Rp such that
for an arbitrary new feature vector x̂ it assigns ŷ = sign(〈θ , x̂〉). We design decentralized convex
logistic and nonconvex sigmoid loss functions with `2 regularization as follows:

f 1
i,t(θ) =

1
mi

mi

∑
j=1

(
1+ exp(10〈xt,i, j,θ〉yt,i, j)

)−1
+ν‖θ‖2

2,

f 2
i,t(θ) =

1
mi

mi

∑
j=1

log(1+ exp(−〈xt,i, j,θ〉yt,i, j))+ν‖θ‖2
2, (18)

where ν = 1/mi and mi is the size of the training data on node i.

For X , we consider the `1 ball X`1 = {θ ∈ Rp : ‖θ‖1 ≤ r}, when a sparse classifier is preferred.

We show results for the decentralized problem solved by DADAM, C-DADAM, DGD and EXTRA
over a medium-scale network. We have implemented EXTRA and DGD with their default settings.
The connected network is randomly generated with n = 50 agents and connectivity ratio r = 0.2.
Each agent holds 10 samples, i.e., mi = 10,∀i ∈ V . The agents shall collaboratively obtain p co-
efficients via loss functions equation 18. All samples are randomly generated, and the reference
classifier θ ∗ is pre-computed using a centralized method. As it is easy to implement in practice, we
use the Metropolis constant edge weight matrix W Shi et al. (2015) in our experimental evaluation
1. We have tested the DADAM and C-DADAM with β1 = β2 = β3 = 0.9. The numerical results are
illustrated in Figure 1. It can be seen that DADAM and C-DADAM outperform DGD and EXTRA,
showing almost linear convergence in the convex setting to the reference logistic classifier x∗.

5.2 CIFAR AND MNIST EXPERIMENTS

Next, we present the experimental results using the CIFAR-10 image recognition dataset
and the MNIST digit recognition task. The model architecture for training CNN to
classify CIFAR10 dataset was taken from the TensorFlow tutorial 2. Also, the model
for training a simple multilayer percepton (MLP) on the MNIST dataset was taken from
https://github.com/keras-team/keras/blob/master.

1 http://www.math.ucla.edu/ wotaoyin/software.html
2 http://www.tensorflow.org/tutorials

9

Under review as a conference paper at ICLR 2019

(a)

(b)

(c)

Figure 1: The residual ‖θt−θ∗‖
‖θ0−θ∗‖ on iteration (time step t ∈ {1, . . . ,T}) for binary classification prob-

lem using convex and nonconvex (with α/
√

t) loss functions. Constant α = σn/ρ is the theoretical
critical step-size given for DGD Yuan et al. (2016). (a) classification with p = 10 and ν = 0. (b)
classification with p = 20 and ν = 0. (c) classification with p = 20 and ν = 1/mi.

We compare the accuracy of DADAM with that of the decentralized ADAM (Algorithm 1 with β3 =
1) and the Federated Averaging (FedAvg) algorithm McMahan et al. (2016) which also performs
data parallelization without decentralized computation. The connected network is generated with
n = 5 agents and connectivity ratio r = 0.8. The parameters for DADAM and ADAM are selected
in a way similar to the previous experiments. In our implementation, we use same number of agents
and choose E = C = 1 as the parameters in the FedAvg algorithm since it is close to a connected
topology scenario as considered in the DADAM and ADAM. It can be easily seen from Figure 2 that
DADAM and the decentralized ADAM (β3 = 1) outperform FedAvg. Further, DADAM can achieve
high accuracy in comparison with the decentralized ADAM and FedAvg.

6 CONCLUSION

A decentralized adaptive moment estimation method DADAM was proposed for the distributed
learning of deep networks based on adaptive moment of first and second moment of estimations.
Convergence properties of the proposed algorithm were established for convex (and dynamic) and
nonconvex functions in both stochastic and deterministic settings. Numerical results on some
datasets show the efficiency and effectiveness of the new proposed method in practice.

10

Under review as a conference paper at ICLR 2019

(a)

(b)

Figure 2: Training loss and accuracy over 15 epochs. (a) MNIST digit recognition task (b) CIFAR10
image recognition dataset.

REFERENCES

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized
gauss–seidel methods. Mathematical Programming, 137(1-2):91–129, 2013.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Operations
Research, 63(5):1227–1244, 2015.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Eric C Hall and Rebecca M Willett. Online convex optimization in dynamic environments. IEEE
Journal of Selected Topics in Signal Processing, 9(4):647–662, 2015.

Elad Hazan, Karan Singh, and Cyril Zhang. Efficient regret minimization in non-convex games.
arXiv preprint arXiv:1708.00075, 2017.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in Opti-
mization, 2(3-4):157–325, 2016.

Roger A Horn, Roger A Horn, and Charles R Johnson. Matrix analysis. Cambridge university press,
1990.

Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. Collaborative deep learning in
fixed topology networks. In Advances in Neural Information Processing Systems, pp. 5904–5914,
2017.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Victor Lesser, Charles L Ortiz Jr, and Milind Tambe. Distributed sensor networks: A multiagent
perspective, volume 9. Springer Science & Business Media, 2012.

11

Under review as a conference paper at ICLR 2019

Dan Li, Kerry D Wong, Yu Hen Hu, and Akbar M Sayeed. Detection, classification, and tracking of
targets. IEEE signal processing magazine, 19(2):17–29, 2002.

Mu Li, David G Andersen, and Jun Woo Park. Scaling distributed machine learning with the param-
eter server.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems, pp. 5330–5340, 2017.

David Mateos-Núnez and Jorge Cortés. Distributed online convex optimization over jointly con-
nected digraphs. IEEE Transactions on Network Science and Engineering, 1(1):23–37, 2014.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. Online optimization
in dynamic environments: Improved regret rates for strongly convex problems. In Decision and
Control (CDC), 2016 IEEE 55th Conference on, pp. 7195–7201. IEEE, 2016.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

M Reza Peyghami and D Ataee Tarzanagh. A relaxed nonmonotone adaptive trust region method
for solving unconstrained optimization problems. Computational Optimization and Applications,
61(2):321–341, 2015.

Michael Rabbat and Robert Nowak. Distributed optimization in sensor networks. In Proceedings of
the 3rd international symposium on Information processing in sensor networks, pp. 20–27. ACM,
2004.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Shahin Shahrampour and Ali Jadbabaie. An online optimization approach for multi-agent tracking
of dynamic parameters in the presence of adversarial noise. In American Control Conference
(ACC), 2017, pp. 3306–3311. IEEE, 2017.

Shahin Shahrampour and Ali Jadbabaie. Distributed online optimization in dynamic environments
using mirror descent. IEEE Transactions on Automatic Control, 63(3):714–725, 2018.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends R© in Machine Learning, 4(2):107–194, 2012.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentral-
ized consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

T Tieleman and G Hinton. Divide the gradient by a running average of its recent magnitude. cours-
era: Neural networks for machine learning. Technical report, Technical Report. Available on-
line: https://zh. coursera. org/learn/neuralnetworks/lecture/YQHki/rmsprop-divide-the-gradient-
by-a-running-average-of-its-recent-magnitude (accessed on 21 April 2017).

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous deterministic
and stochastic gradient optimization algorithms. IEEE transactions on automatic control, 31(9):
803–812, 1986.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes, from any initialization. arXiv preprint arXiv:1806.01811, 2018.

Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control
Letters, 53(1):65–78, 2004.

12

Under review as a conference paper at ICLR 2019

Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus with least-mean-
square deviation. Journal of Parallel and Distributed Computing, 67(1):33–46, 2007.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854, 2016.

Jinshan Zeng and Wotao Yin. On nonconvex decentralized gradient descent. IEEE Transactions on
Signal Processing, 66(11):2834–2848, 2018.

Lijun Zhang, Tianbao Yang, Jinfeng Yi, Jing Rong, and Zhi-Hua Zhou. Improved dynamic regret for
non-degenerate functions. In Advances in Neural Information Processing Systems, pp. 732–741,
2017.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. 2003.

Next, we establish a series of lemmas used in the proof of main theorems.

6.1 PROPERTIES OF DADAM

Lemma 12. Beck & Teboulle (2003) Let X be a nonempty closed convex set in Rp. Then, for any
d ∈X , we have

〈x∗−d,a〉 ≤ 1
2
‖d− c‖2− 1

2
‖d− x∗‖2− 1

2
‖x∗− c‖2,

where
x∗ = argmin

x∈X
{〈a,x〉+ 1

2
‖x− c‖2}.

Lemma 13. McMahan & Streeter (2010) For any A ∈S p
+ and convex feasible set C⊂Rp, suppose

a1 = ΠC,A[b1],a2 = ΠC,A[b2], we have

‖A
1
2 (a1−a2)‖ ≤ ‖A

1
2 (b1−b2)‖.

Lemma 14. For all i ∈ V if β1,β2 ∈ [0,1) satisfy η = β1√
β2

< 1, then we have

T

∑
t=1

p

∑
d=1

αtm2
i,t,d

υ̂i,t,d
≤ α

√
1+ logT

(1−β1)(1−η)
√
(1−β2)

p

∑
d=1
‖gi,1:T,d‖,

where αt =
α√

t for all t ∈ {1, . . . ,T}.

Proof. Using the update rules in Algorithm 1, we have

T

∑
t=1

αm2
i,t,d√

tυ̂i,t,d
=

T−1

∑
t=1

αm2
i,t,d√

tυ̂i,t,d
+

αT m2
i,T,d√

(1−β3)max{υ̂i,T−1,d ,υi,T,d}+β3υi,T,d

≤
T−1

∑
t=1

αm2
i,t,d√

tυ̂i,t,d
+

αT m2
i,T,d√

(1−β3)υi,T,d +β3υi,T,d

(i)
=

T−1

∑
t=1

αm2
i,t,d√

tυ̂i,t,d
+

α(∑T
l=1(1−β1)β

T−l
1 gi,l,d)

2√
T ∑

T
l=1(1−β2)β

T−l
2 g2

i,l,d

(ii)
≤

T−1

∑
t=1

αm2
i,t,d√

tυ̂i,t,d
+

α√
T (1−β2)

(∑T
l=1 β

T−l
1)(∑T

l=1 β
T−l
1 g2

i,l,d)√
∑

T
l=1 β

T−l
2 g2

i,l,d

(iii)
≤

T−1

∑
t=1

αm2
i,t,d√

tυ̂i,t,d
+

α

(1−β1)
√

T (1−β2)

T

∑
l=1

β
T−l
1 g2

i,l,d√
β

T−l
2 g2

i,l,d

≤
T−1

∑
t=1

αm2
i,t,d√

tυ̂i,t,d
+

α

(1−β1)
√

T (1−β2)

T

∑
l=1

η
T−l |gi,l,d |,

13

Under review as a conference paper at ICLR 2019

where (i) follows from the fact that the update rules of mT and υT can be written as mT = (1−
β1)∑

T
l=1 β

T−l
1 gl and υT = (1− β2)∑

T
l=1 β

T−l
2 g2

l , respectively. (ii) follows from Cauchy-Schwarz
inequality and the fact that 0≤ β1 < 1. Inequality (iii) follows since ∑

T
l=1 β

T−l
1 ≤ 1

1−β1
. Hence, we

have

T

∑
t=1

αm2
i,t,d

(1−β1)
√

tυ̂i,t,d
≤

T

∑
t=1

α

(1−β1)
√

t(1−β2)

t

∑
l=1

η
t−l |gi,l,d |

=
α

(1−β1)
√

(1−β2)

T

∑
t=1

1√
t

t

∑
l=1

η
t−l |gi,l,d |

=
α

(1−β1)
√

(1−β2)

T

∑
t=1
|gi,t,d |

T

∑
l=t

η l−t
√

l

≤ α

(1−β1)
√
(1−β2)

T

∑
t=1
|gi,t,d |

T

∑
l=t

η l−t
√

t

(i)
≤ α

(1−β1)
√
(1−β2)

T

∑
t=1
|gi,t,d |

1
(1−η)

√
t

(ii)
≤ α

(1−β1)(1−η)
√
(1−β2)

‖gi,1:T,d‖

√
T

∑
t=1

1
t

(iii)
≤ α

√
1+ logT

(1−β1)(1−η)
√

(1−β2)
‖gi,1:T,d‖,

where inequality (i) follows since ∑
T
l=t η l−t ≤ 1

(1−η) . Inequality (ii) follows from Cauchy-Schwarz
inequality. The inequality (iii) follows since

T

∑
t=1

1
t
≤ 1+

∫ T

t=1

1
t

dt = 1+ log t|T1 = 1+ logT. (19)

Next, we provide an upper bound on the deviation of the local estimates at each iteration from
their consensual value. A similar result has been proven in Shahrampour & Jadbabaie (2017) for
online decentralized mirror descent; however, the following lemma extends that of Shahrampour &
Jadbabaie (2017) to the online adaptive setting and takes into account the sparsity of gradient vector.

Lemma 15. (Network Error with Sparse Data) If β1,β2 ∈ [0,1) satisfy η = β1√
β2

< 1, then the

sequence xi,t generated by Algorithm 1 satisfies

T

∑
t=1

n

∑
i=1

1
αt
‖V̂

1
4

i,t (x̄t − xi,t)‖2 ≤
n
√

nα
√

1+ logT ∑
p
d=1 ‖g1:T,d‖

(1−σ2(W))2(1−β1)(1−η)
√
(1−β2)

,

where V̂i,t = diag(υ̂i,t) and x̄t =
1
n ∑

n
i=1 xi,t .

14

Under review as a conference paper at ICLR 2019

Proof. Let ei,t := xi,t+1−∑
n
j=1[W]i jx j,t , where W satisfies equation 2. Using the update rule of xi,t+1

in Algorithm 1, we have
T

∑
t=1

1
αt
‖V̂

1
4

i,t ei,t‖2 =
T

∑
t=1

1
αt
‖V̂

1
4

i,t (xi,t+1−
n

∑
j=1

[W]i jx j,t)‖2

=
T

∑
t=1

1
αt
‖V̂

1
4

i,t (ΠX ,
√

V̂i,t

[n

∑
j=1

[W]i jx j,t −
αtmi,t√

υ̂i,t

]
−

n

∑
j=1

[W]i jx j,t)‖2

≤
T

∑
t=1

1
αt
‖V̂

1
4

i,t (
n

∑
j=1

[W]i jx j,t −αtV̂
−1
2

i,t mi,t −
n

∑
j=1

[W]i jx j,t)‖2

=
T

∑
t=1

p

∑
d=1

αtm2
i,t,d√

υ̂i,t,d
, (20)

where the first inequality follows from Lemma 13.

Further, from the definition of ei,t , we have

xi,t+1 =
n

∑
j=1

[W]i jx j,t + ei,t . (21)

Now, from equation 2 and equation 21, we have

x̄t+1 =
1
n

n

∑
i=1

xi,t+1 =
1
n

n

∑
i=1

n

∑
j=1

[W]i jx j,t +
1
n

n

∑
i=1

ei,t

=
1
n

n

∑
j=1

(
n

∑
i=1

[W]i j)x j,t +
1
n

n

∑
i=1

ei,t

= x̄t + ēt ,

where ēt =
1
n ∑

n
i=1 ei,t . Hence,

x̄t+1 =
t

∑
s=0

ēs. (22)

It follows from equation 21 that

xi,t+1 =
t

∑
s=0

n

∑
j=1

[W t−s]i jei,s. (23)

Now, using equation 23 and equation 22, we have

xi,t+1− x̄t+1 =
t

∑
s=0

n

∑
j=1

([W t−s]i j−
1
n
)ei,s. (24)

Now, taking the Euclidean norm of equation 24 and summing over t ∈ {1, . . . ,T}, one has:

T

∑
t=1

1
αt
‖V̂

1
4

i,t (xi,t+1− x̄t+1)‖2
(i)
≤

T

∑
t=1

t
t

∑
s=0

(
n

∑
j=1
|[W t−s]i j−

1
n
|)2 ‖V̂

1
4

i,sei,s‖2

αs

(ii)
≤

T

∑
s=0

‖V̂
1
4

i,sei,s‖2

αs

T

∑
t=1

ntσ2t−2s
2 (W)

(iii)
≤ n

(1−σ2(W))2

T

∑
t=0

‖V̂
1
4

i,t ei,t‖2

αt

(iv)
≤ n

(1−σ2(W))2

p

∑
d=1

T

∑
t=1

αtm2
i,t,d√

υ̂i,t,d

(v)
≤

nα
√

1+ logT ∑
p
d=1 ‖gi,1:T,d‖

(1−σ2(W))2(1−β1)(1−η)
√

(1−β2)
, (25)

15

Under review as a conference paper at ICLR 2019

where step (i) follows from ‖∑
n
i=1 ai‖2 ≤ n∑

n
i=1 ‖ai‖2, step (ii) follows from the following property

of mixing matrix W Horn et al. (1990),
n

∑
j=1

∣∣∣∣[W t]
i j−

1
n

∣∣∣∣≤√nσ
t
2(W), (26)

step (iii) follows from ∑
T
t=1 tσ t

2(W) < 1
(1−σ2(W))2 , step (iv) follows from equation 20 and step (v)

follows from Lemma 14.

Now, summing the equation 25 over i ∈ V and using
n

∑
i=1
‖gi,1:T,d‖ ≤

√
n(

n

∑
i=1
‖gi,1:T,d‖2)

1
2 =
√

n‖g1:T,d‖, (27)

we complete the proof.

Lemma 16. For the sequence xi,t generated by Algorithm 1, we have

1
n

n

∑
i=1

T

∑
t=1

(

√
υ̂i,t

αt
‖x∗t −

n

∑
j=1

[W]i jx j,t‖2−
√

υ̂i,t

αt
‖x∗t − xi,t+1‖2)

≤ 2γ2
∞√
n

p

∑
d=1

√
υ̂T,d

αT
+

2γ∞√
n

p

∑
d=1

√
υ̂T,d

αT

T−1

∑
t=1
|x∗t+1,d− x∗t,d |. (28)

Proof. From the left side of equation 28, we have√
υ̂i,t

αt
‖x∗t −

n

∑
j=1

[W]i jx j,t‖2−
√

υ̂i,t

αt
‖x∗t − xi,t+1‖2

=

√
υ̂i,t

αt
‖x∗t −

n

∑
j=1

[W]i jx j,t‖2−
√

υ̂i,t+1

αt+1
‖x∗t+1−

n

∑
j=1

[W]i jx j,t+1‖2

+

√
υ̂i,t+1

αt+1
‖x∗t+1−

n

∑
j=1

[W]i jx j,t+1‖2−
√

υ̂i,t+1

αt+1
‖x∗t −

n

∑
j=1

[W]i jx j,t+1‖2 (29)

+

√
υ̂i,t+1

αt+1
‖x∗t − xi,t+1‖2−

√
υ̂i,t

αt
‖x∗t − xi,t+1‖2. (30)

By construction of equation 29, we have√
υ̂i,t+1‖x∗t+1−

n

∑
j=1

[W]i jx j,t+1‖2−
√

υ̂i,t+1‖x∗t −
n

∑
j=1

[W]i jx j,t+1‖2

=
p

∑
d=1

√
υ̂i,t+1,d〈x∗t+1,d− x∗t,d ,x

∗
t+1,d + x∗t,d−2

n

∑
j=1

[W]i jx j,t+1,d〉

≤ 2γ∞

p

∑
d=1

√
υ̂i,t+1,d |x∗t+1,d− x∗t,d |, (31)

where the last inequality holds due to equation 1.

Summing equation 30 over t ∈ {1, . . . ,T}, the first term telescopes, while the second is handled with
equation 31. Hence,

T

∑
t=1

(

√
υ̂i,t

αt
‖x∗t −

n

∑
j=1

[W]i jx j,t‖2−
√

υ̂i,t

αt
‖x∗t − xi,t+1‖2)

≤
p

∑
d=1

γ2
∞

√
υ̂i,1,d

α1
+

T−1

∑
t=1

p

∑
d=1

2γ∞

√
υ̂i,t+1,d

αt+1
|x∗t+1,d− x∗t,d |+ γ

2
∞

T−1

∑
t=1

p

∑
d=1

(

√
υ̂i,t+1,d

αt+1
−
√

υ̂i,t,d

αt
)

≤
p

∑
d=1

2γ2
∞

√
υ̂i,T,d

αT
+

T−1

∑
t=1

p

∑
d=1

2γ∞

√
υ̂i,t+1,d

αt+1
|x∗t+1,d− x∗t,d |, (32)

16

Under review as a conference paper at ICLR 2019

where the last inequality follows since from definition of υ̂i,t , we have√
υ̂i,t+1,d

αt+1
≥
√

υ̂i,t,d

αt
. (33)

Now, summing equation 32 over i ∈ V and using the inequality ∑
n
i=1
√

υ̂i,t ≤
√

n
√

υ̂t , the claim in
equation 28 follows.

Lemma 17. Suppose that the parameters β1,β2 ∈ [0,1) satisfy η = β1√
β2

< 1. Let β1,t = β1λ t−1,λ ∈
(0,1) and ‖∇ fi,t(x)‖∞ ≤ G∞ for all t ∈ {1, . . . ,T}. Then, using a step-size αt =

α√
t for the sequence

xi,t generated by Algorithm 1, we have

1
n

n

∑
i=1

T

∑
t=1

(
fi,t(xi,t)− fi,t(x∗t)

)
≤ (1−β1)α

√
1+ logT

2
√
(1−β2)

p

∑
d=1
‖g1:T,d‖+

p

∑
d=1

G∞γ∞

(1−β1)(1−λ)

+
2α
√

1+ logT ∑
p
d=1 ‖g1:T,d‖

(1−σ2(W))
√

(1−β1)
√
(1−η)

√
(1−β2)

+
γ2

∞√
n

p

∑
d=1

√
T υ̂T,d

(1−β1)α
+

γ∞√
n

p

∑
d=1

√
T υ̂T,d

(1−β1)α

T−1

∑
t=1
|x∗t+1,d− x∗t,d |.

Proof. From convexity of fi,t(·), we have

1
n

n

∑
i=1

T

∑
t=1

fi,t(xi,t)− fi,t(x∗t)≤
1
n

n

∑
i=1

T

∑
t=1
〈∇ fi,t(xi,t),xi,t − x∗t 〉

=
1
n

n

∑
i=1

T

∑
t=1
〈∇ fi,t(xi,t),xi,t+1− x∗t 〉︸ ︷︷ ︸

I1

+
1
n

n

∑
i=1

T

∑
t=1
〈∇ fi,t(xi,t),xi,t −

n

∑
j=1

[W]i jx j,t〉︸ ︷︷ ︸
I2

+
1
n

n

∑
i=1

T

∑
t=1
〈∇ fi,t(xi,t),

n

∑
j=1

[W]i jx j,t − xi,t+1〉︸ ︷︷ ︸
I3

. (34)

Individual terms in equation 34 can be bounded in the following way. From the Young’s inequality
for products3, we have

I3 =
1
n

n

∑
i=1

T

∑
t=1
〈∇ fi,t(xi,t),

n

∑
j=1

[W]i jx j,t − xi,t+1〉

≤ 1
n

n

∑
i=1

T

∑
t=1

√
υ̂i,t

2αt(1−β1)
‖

n

∑
j=1

[W]i jx j,t − xi,t+1‖2 +
1
n

n

∑
i=1

T

∑
t=1

(1−β1)αt

2
√

υ̂i,t
‖∇ fi,t(xi,t)‖2. (35)

Note also that:

T

∑
t=1

αtg2
i,t,d√

υ̂i,t,d
=

T−1

∑
t=1

αtg2
i,t,d√

υ̂i,t,d
+

αT g2
i,T,d√

υ̂i,T,d

=
T−1

∑
t=1

αtg2
i,t,d√

υ̂i,t,d
+

αg2
i,T,d√

T (1−β2)
√

∑
T
l=1 β

T−l
2 g2

i,l,d

≤
T−1

∑
t=1

αtg2
i,t,d√

υ̂i,t,d
+

α|gi,T,d |√
T (1−β2)

.

3An elementary case of Young’s inequality is ab≤ a2

2 + b2

2 .

17

Under review as a conference paper at ICLR 2019

Using Cauchy-Schwarz inequality, equation 19 and equation 27, we have
n

∑
i=1

T

∑
t=1

αtg2
i,t,d√

υ̂i,t,d
≤ α√

(1−β2)

n

∑
i=1

T

∑
t=1

|gi,t,d |√
t

≤ α√
(1−β2)

n

∑
i=1
‖gi,1:T,d‖

√
T

∑
t=1

1
t

≤ α
√

1+ logT√
(1−β2)

n

∑
i=1
‖gi,1:T,d‖

≤
√

nα
√

1+ logT√
(1−β2)

‖g1:T,d‖. (36)

Using equation 35 and equation 36, we have

I3≤ 1
n

n

∑
i=1

T

∑
t=1

√
υ̂i,t

2αt(1−β1)
‖

n

∑
j=1

[W]i jx j,t − zi,t+1‖2 +
(1−β1)

√
nα
√

1+ logT

2
√

(1−β2)
‖g1:T,d‖. (37)

In addition, we have

I2 =
1
n

n

∑
i=1

T

∑
t=1
〈gi,t ,xi,t −

n

∑
j=1

[W]i jx j,t〉

=
1
n

n

∑
i=1

T

∑
t=1
〈gi,t ,xi,t − x̄t + x̄t −

n

∑
j=1

[W]i jx j,t〉

=
1
n

n

∑
i=1

T

∑
t=1
〈gi,t ,xi,t − x̄t〉+

1
n

n

∑
i=1

T

∑
t=1

n

∑
j=1

[W]i j〈gi,t , x̄t − x j,t〉

=
1
n

n

∑
i=1

T

∑
t=1
〈
√

αtV̂
−1
4

i,t gi,t ,
V̂

1
4

i,t√
αt

(xi,t − x̄t)〉

+
1
n

n

∑
i=1

T

∑
t=1

n

∑
j=1

[W]i j〈
√

αtV̂
−1
4

i,t gi,t ,
V̂

1
4

i,t√
αt

(x̄t − x j,t)〉

≤ 1
n

n

∑
i=1

√
T

∑
t=1

αtV̂
−1
2

i,t g2
i,t

√√√√ T

∑
t=1

V̂
1
2

i,t

αt
(xi,t − x̄t)

2

+
1
n

n

∑
i=1

n

∑
j=1

[W]i j

√
T

∑
t=1

αtV̂
−1
2

i,t g2
i,t

√√√√ T

∑
t=1

V̂
1
2

i,t

αt
(x j,t − x̄t)

2 (38)

where equation 38 follows from Cauchy-Schwarz inequality.

Now, using equation 38 we obtain

I2 ≤
1
n

√
n

∑
i=1

T

∑
t=1

p

∑
d=1

αt υ̂
−1
2

i,t,dg2
i,t,d

√√√√ n

∑
i=1

T

∑
t=1

p

∑
d=1

υ̂
1
2

i,t,d

αt
(xi,t,d− x̄t,d)

2

+
1
n

n

∑
j=1

[W]i j

√
n

∑
i=1

T

∑
t=1

p

∑
d=1

αt υ̂
−1
2

i,t,dg2
i,t,d

√√√√ n

∑
i=1

T

∑
t=1

p

∑
d=1

υ̂
1
2

i,t,d

αt
(x j,t,d− x̄t,d)

2 (39)

≤
2α
√

1+ logT ∑
p
d=1 ‖g1:T,d‖

(1−σ2(W))
√
(1−β1)

√
(1−η)

√
(1−β2)

, (40)

where equation 39 utilize Cauchy-Schwarz inequality and equation 40 follows from equation 2,
Lemma 15 and equation 36.

18

Under review as a conference paper at ICLR 2019

To bound I1, using the update rule of m̂i,t in Algorithm 1, we have

〈αt
mi,t√

υ̂i,t
,xi,t+1− x∗t 〉= 〈αt(

β1,t√
υ̂i,t

mi,t−1 +
(1−β1,t)√

υ̂i,t
∇ fi,t(xi,t)),xi,t+1− x∗t 〉

= 〈
αtβ1,t√

υ̂i,t
mi,t−1,xi,t+1− x∗t 〉+ 〈

αt(1−β1,t)√
υ̂i,t

∇ fi,t(xi,t),xi,t+1− x∗t 〉.

Now, by rearranging the above equality, we obtain:
p

∑
d=1
〈
(1−β1,t)√

υ̂i,t,d
∇ fi,t,d(xi,t,d),xi,t+1,d− x∗t,d〉

=
p

∑
d=1
〈

mi,t,d√
υ̂i,t,d

,xi,t+1,d− x∗t,d〉+
p

∑
d=1

β1,t√
υ̂i,t,d

〈mi,t−1,d ,x∗t,d− xi,t+1,d〉

≤ 〈
mi,t√

υ̂i,t
,xi,t+1− x∗t 〉+ ||x∗t − xi,t+1||∞

p

∑
d=1

β1,tmi,t−1,d√
υ̂i,t,d

≤ 1
2αt
||x∗t −

n

∑
j=1

[W]i jx j,t ||2−
1

2αt
||x∗t − xi,t+1||2−

1
2αt
||xi,t+1−

n

∑
j=1

[W]i jx j,t ||2︸ ︷︷ ︸
(II1)

+ ||x∗t − xi,t+1||∞G∞

p

∑
d=1

β1,t√
υ̂i,t,d︸ ︷︷ ︸

(II2)

, (41)

where (II1) follows from Lemma 12. The term (II2) is obtained by induction as follows: using the
assumption, ‖gi,t‖∞ ≤ G∞; now, using the update rule of mi,t in Algorithm 1, we have

‖mi,t‖∞ ≤ (β1 +(1−β1))max(‖gi,t‖∞,‖mi,t−1‖∞) = max(‖gi,t‖∞,‖mi,t−1‖∞)≤ G∞, (42)

where ‖mi,t−1‖∞ ≤ G∞ by induction hypothesis.

Note that from our assumption, we have β1,t = β1λ t−1,λ ∈ (0,1) and β1,t ≤ β1. Substituting this
into equation 41, we get

I1 = 〈∇ fi,t(xi,t),xi,t+1− x∗t 〉

≤
√

υ̂i,t

(1−β1,t)
[

1
2αt
||x∗t −

n

∑
j=1

[W]i jx j,t ||2−
1

2αt
||x∗t − xi,t+1||2

− 1
2αt
||xi,t+1−

n

∑
j=1

[W]i jx j,t ||2]+ ||x∗t − xi,t+1||∞G∞

p

∑
d=1

β1,t

(1−β1,t)

≤
√

υ̂i,t

(1−β1)
[

1
2αt
‖x∗t −

n

∑
j=1

[W]i jx j,t‖2− 1
2αt
‖x∗t − xi,t+1‖2]

−
√

υ̂i,t

(1−β1)2αt
||xi,t+1−

n

∑
j=1

[W]i jx j,t ||2 + γ∞G∞

p

∑
d=1

β1,t

(1−β1,t)
, (43)

where the last line comes from equation 1.

Plugging equation 37, equation 40, and equation 43 into equation 34, we obtain

1
n

n

∑
i=1

T

∑
t=1

(
fi,t(xi,t)− fi,t(x∗t)

)
≤ (1−β1)α

√
1+ logT

2
√

n
√

(1−β2)

p

∑
d=1
‖g1:T,d‖+ γ∞G∞

T

∑
t=1

p

∑
d=1

β1,t

(1−β1,t)

+
2α
√

1+ logT ∑
p
d=1 ‖g1:T,d‖

(1−σ2(W))
√
(1−β1)

√
(1−η)

√
(1−β2)

+
1
n

n

∑
i=1

T

∑
t=1

√
υ̂i,t

2(1−β1)
[

1
αt
||x∗t −

n

∑
j=1

[W]i jx j,t ||2−
1
αt
||x∗t − xi,t+1||2].

19

Under review as a conference paper at ICLR 2019

Now, since β1,t = β1λ t−1,λ ∈ (0,1) and β1,t ≤ β1, we have
T

∑
t=1

β1,t

(1−β1,t)
≤

T

∑
t=1

λ t−1

(1−β1)
≤ 1

(1−β1)(1−λ)
. (44)

Finally, using Lemma 16 and equation 44, we obtain the desired result.

6.1.1 PROOF OF THEOREM 4

Proof. From convexity of fi,t(·) it follows that

ft(xi,t)− ft(x∗t) = ft(xi,t)− ft(x̄t)+ ft(x̄t)− ft(x∗t)
≤ 〈gi,t ,xi,t − x̄t〉+ ft(x̄t)− ft(x∗t)

=
1
n

n

∑
i=1

fi,t(x̄t)−
1
n

n

∑
i=1

fi,t(x∗t)+ 〈gi,t ,xi,t − x̄t〉,

and

ft(xi,t)− ft(x∗t)≤
1
n

n

∑
i=1

fi,t(xi,t)−
1
n

n

∑
i=1

fi,t(x∗t)+ 〈gi,t ,xi,t − x̄t〉+
1
n

n

∑
i=1
〈gi,t ,xi,t − x̄t〉. (45)

Summing over t ∈ {1, . . . ,T} and i ∈ V , and applying Lemma 17 and equation 40 gives the desired
result.

6.1.2 PROOF OF THEOREM 5

Proof. We just need to rework the proof of Lemma 17 and Theorem 4 using stochastic gradients by
tracking the changes. Indeed, using stochastic gradient at the beginning of Lemma 17, we have

T

∑
t=1

(
fi,t(xi,t)− fi,t(x∗t)

)
≤

T

∑
t=1
〈∇ fi,t(xi,t),xi,t − x∗t 〉

=
T

∑
t=1
〈∇ fi,t(xi,t),xi,t − x∗t 〉+

T

∑
t=1
〈∇ fi,t(xi,t)−∇ fi,t(xi,t),xi,t − x∗t 〉

=
T

∑
t=1
〈∇ fi,t(xi,t),xi,t+1− x∗t 〉+

T

∑
t=1
〈∇ fi,t(xi,t),xi,t −

n

∑
j=1

[W]i jx j,t〉

+
T

∑
t=1
〈∇ fi,t(xi,t),

n

∑
j=1

[W]i jx j,t − xi,t+1〉+
T

∑
t=1
〈∇ fi,t(xi,t)−∇ fi,t(xi,t),xi,t − x∗t 〉.

Further, if we replace any bound involving G∞ which is an upper bound on the exact gradient with
the norm of stochastic gradient, we obtain

1
n

n

∑
i=1

T

∑
t=1

(
fi,t(xi,t)− fi,t(x∗t)

)
≤ (1−β1)α

√
1+ logT

2
√

n
√

(1−β2)

p

∑
d=1
‖g1:T,d‖+ γ∞‖mi,t−1‖∞

T

∑
t=1

p

∑
d=1

β1,t

(1−β1,t)

+
2α
√

1+ logT ∑
p
d=1 ‖g1:T,d‖

(1−σ2(W))
√
(1−β1)

√
(1−η)

√
(1−β2)

+
1
n

n

∑
i=1

T

∑
t=1

√
υ̂i,t

2(1−β1)
[

1
αt
||x∗t −

n

∑
j=1

[W]i jx j,t ||2−
1
αt
||x∗t − xi,t+1||2]

+
1
n

n

∑
i=1
〈∇ fi,t(xi,t)−∇ fi,t(xi,t),xi,t − x∗t 〉. (46)

Note that using Assumption 3, we have

E [〈∇ fi,t(xi,t)−∇ fi,t(xi,t),xi,t − x∗t 〉] = 0,

and

E [‖∇ fi,t(xi,t)‖]≤
(
E
[
‖∇ fi,t(xi,t)‖2]) 1

2 ≤ ξ .

20

Under review as a conference paper at ICLR 2019

Hence taking expectation from equation 46, using the above inequality and equation 42, we have

1
n

n

∑
i=1

T

∑
t=1

(
E [fi,t(xi,t)]− fi,t(x∗t)

)
≤ (1−β1)α

√
1+ logT

2
√

n
√

(1−β2)

p

∑
d=1

E
[
‖g1:T,d‖

]
+ γ∞ξ

T

∑
t=1

p

∑
d=1

β1,t

(1−β1,t)

+
2α
√

1+ logT ∑
p
d=1E

[
‖g1:T,d‖

]
(1−σ2(W))

√
(1−β1)

√
(1−η)

√
(1−β2)

+
1
n

n

∑
i=1

1
2(1−β1)

E

[√
υ̂i,t

αt
‖x∗t −

n

∑
j=1

[W]i jx j,t‖2−
√

υ̂i,t

αt
‖x∗t − xi,t+1‖2

]
.

According to the result in Lemma 16 and equation 44, we have

1
n

n

∑
i=1

T

∑
t=1

(
E [fi,t(xi,t)]− fi,t(x∗t)

)
≤ (1−β1)α

√
1+ logT

2
√

n
√

(1−β2)

p

∑
d=1

E
[
‖g1:T,d‖

]
+

p

∑
d=1

ξ γ∞

(1−β1)(1−λ)

+
2α
√

1+ logT ∑
p
d=1E

[
‖g1:T,d‖

]
(1−σ2(W))

√
(1−β1)

√
(1−η)

√
(1−β2)

+
γ2

∞√
n

p

∑
d=1

√
TE
[√

υ̂T,d
]

(1−β1)α
+

γ∞√
n

p

∑
d=1

√
TE
[√

υ̂T,d
]

(1−β1)α

T−1

∑
t=1
|x∗t+1,d− x∗t,d |.

Finally, using equation 45 we complete the proof.

Next, we establish a series of lemmas used in the proof of Theorems 8 and 10.
Lemma 18. Attouch et al. (2013) Let GX be the projected gradient defied in equation 5. Then,
GX (ϖ , fi,α) = 0 if and only if ϖ is a critical point of equation 3.

Next, we show that the projection map GX in Definition 1 is Lipschitz continuous.
Lemma 19. Suppose the second moment υ̂ satisfies equation 11. Let x+1,i and x+2,i be given in

Definition 1 with mi√
υ̂i

replaced by m1
i√
υ̂1

i
and m2

i√
υ̂2

i
, respectively. Then,

‖G1
X (xi, f̄i,α)−G2

X (xi, f̄i,α)‖ ≤ ῡ

υ
‖m1

i −m2
i ‖, ∀i ∈ V ,

where G1
X and G2

X are the projection maps corresponding to x+1,i and x+2,i, respectively.

Proof. Consider the optimality condition of equation 6, for any u ∈X . For each i ∈ V , observe
that

〈 m1
i√
υ̂1

i

+
1
α
(x+1,i−

n

∑
j=1

[W]i jx j),u− x+1,i〉 ≥ 0, (47)

〈 m2
i√
υ̂2

i

+
1
α
(x+2,i−

n

∑
j=1

[W]i jx j),u− x+2,i〉 ≥ 0. (48)

Taking u = x+2,i in equation 47, we have

〈m1
i ,x

+
2,i− x+1,i〉 ≥

√
υ̂1

i

α
〈

n

∑
j=1

[W]i jx j− x+1,i,x
+
2,i− x+1,i〉. (49)

Likewise, setting u = x+1,i in equation 48, we get

〈m2
i ,x

+
1,i− x+2,i〉 ≥

√
υ̂2

i

α
〈

n

∑
j=1

[W]i jx j− x+2,i,x
+
1,i− x+2,i〉. (50)

Now, using equation 49, equation 50 and equation 11, we obtain

‖m1
i −m2

i ‖ ≥
υ

α
‖x+2,i− x+1,i‖. (51)

21

Under review as a conference paper at ICLR 2019

Without loss of generality, assumes that
√

υ̂1
i ≤

√
υ̂2

i . Then, using equation 5, we have

‖G1
X (xi, f̄i,α)−G2

X (xi, f̄i,α)‖= ‖

√
υ̂1

i

α
(x− x+1,i)−

√
υ̂2

i

α
(x− x+2,i)‖

≤ ‖

√
υ̂1

i

α
(x− x+1,i)−

√
υ̂1

i

α
(x− x+2,i)‖

(i)
≤ ῡ

α
‖x+2,i− x+1,i‖

(ii)
≤ ῡ

υ
‖m1

i −m2
i ‖,

where (i) follows from equation 11 and (ii) follows from equation 51.

Lemma 20. Let β1,β2 ∈ [0,1) satisfy η = β1√
β2

< 1. Then, for the sequence xi,t generated by

Algorithm 1, we have

1
n

n

∑
i=1
‖xi,t − x∗t ‖ ≤

2
√

n

(1−η)
√
(1−β2)

t−1

∑
s=0

αsσ
t−s−1
2 (W) := Bt .

Proof. In the proof of Lemma 15 we showed that

xi,t+1− x̄t+1 =
t

∑
s=0

n

∑
j=1

([W t−s]i j−
1
n
)ei,s.

Now, using the above equality, we have

‖xi,t+1− x̄t+1‖=
t

∑
s=0

n

∑
j=1
|[W t−s]i j−

1
n
|‖ei,s‖. (52)

Also, using Lemma 14, we get

mi,t√
υ̂i,t
≤ 1

(1−η)
√

(1−β2)
. (53)

The above inequality together with the update rule of xi,t+1, imply that

‖ei,t‖= ‖xi,t+1−
n

∑
j=1

[W]i jx j,t‖= ‖ΠX [
n

∑
j=1

[W]i jx j,t −αt
mi,t√

υ̂i,t
]−

n

∑
j=1

[W]i jx j,t‖

≤ ‖
n

∑
j=1

[W]i jx j,t −αt
mi,t√

υ̂i,t
−

n

∑
j=1

[W]i jx j,t‖

= αt‖
mi,t√

υ̂i,t
‖

≤ αt

(1−η)
√
(1−β2)

, (54)

where the first inequality follows from the nonexpansiveness property of the Euclidean projection4.

Substituting equation 26 and equation 54 into equation 52, we get

‖xi,t − x̄t‖ ≤
√

n

(1−η)
√
(1−β2)

t−1

∑
s=0

αsσ
t−s−1
2 (W).

Summing the above inequality over i ∈ V , we conclude that

n

∑
i=1
‖xi,t − x∗t ‖ ≤

n

∑
i=1
‖xi,t − x̄t‖+

n

∑
i=1
‖x̄t − x∗t ‖ ≤

2n
√

n

(1−η)
√

(1−β2)

t−1

∑
s=0

αsσ
t−s−1
2 (W).

4‖ΠX [x1]−ΠX [x2]‖ ≤ ‖x1− x2‖, ∀x1,x2 ∈ Rp.

22

Under review as a conference paper at ICLR 2019

Lemma 21. For the sequence xi,t generated by Algorithm 1, we have

〈∇ f̄i,t ,GX (xi,t , f̄i,t ,αt)〉 ≥
(2−β1,t)

2(1−β1,t)
‖GX (xi,t , f̄i,t ,αt)‖2−

β1,t υ̂i,t

2(1−β1,t)(1−η)2(1−β2)
.

Proof. A quick look at optimality condition of equation 6 verifies that

〈
mi,t√

υ̂i,t
+

1
αt

(xi,t+1−
n

∑
j=1

[W]i jx j,t),z− xi,t+1〉 ≥ 0, ∀z ∈X .

Substituting z = xi,t into the above inequality, we get

〈
mi,t√

υ̂i,t
,xi,t − xi,t+1〉 ≥

1
αt
〈xi,t+1−

n

∑
j=1

[W]i jx j,t ,xi,t+1− xi,t〉.

Now using equation 2, we have√
υ̂i,t

αt
‖xi,t − xi,t+1‖2 ≤ 〈mi,t ,xi,t − xi,t+1〉= 〈β1,tmi,t−1 +(1−β1,t)∇ f̄i,t ,xi,t − xi,t+1〉

=
β1,t
√

υ̂i,t−1

αt
〈

αtmi,t−1√
υ̂i,t−1

,xi,t − xi,t+1〉+(1−β1,t)〈∇ f̄i,t ,xi,t − xi,t+1〉

≤
β1,t
√

υ̂i,t

2αt
(

α2
t

(1−η)2(1−β2)
+‖xi,t − xi,t+1‖2)+(1−β1,t)〈∇ f̄i,t ,xi,t − xi,t+1〉,

where the first equality follows from the update rule of mi,t . The last inequality is valid since Cauchy-
Schwarz inequality and inequality

√
υ̂i,t−1β1,t ≤

√
υ̂i,tβ1. The claim then follows after using Defi-

nition 1.

6.1.3 PROOF OF THEOREM 8

Proof. Let f̄i,t(xi,t) =
1
t ∑

t
s=1 fi,s(xi,t). Using Assumption 2, Taylor’s expansion and Definition 1, we

have

f̄i,t(xi,t+1)≤ f̄i,t(xi,t)+ 〈∇ f̄i,t(xi,t),xi,t+1− xi,t〉+
ρ

2
‖xi,t+1− xi,t‖2

≤ f̄i,t(xi,t)−
αt√
υ̂i,t
〈∇ f̄i,t(xi,t),GX (xi,t , f̄i,t ,αt)〉+

ρα2
t

2υ̂i,t
‖GX (xi,t , f̄i,t ,αt)‖2.

The above inequality together with Lemma 21, equation 11 and β1,t ≤ β1, imply that

f̄i,t(xi,t+1)≤ f̄i,t(xi,t)−
αt(2−β1)

2ῡ
‖GX (xi,t , f̄i,t ,αt)‖2

+
αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
+

ρα2
t

2υ2 ‖GX (xi,t , f̄i,t ,αt)‖2. (55)

Let ∆i,t = f̄i,t(xi,t)− f̄i,t(x∗t) denotes the instantaneous loss at round t. We have

∆i,t+1 =
t

t +1
(f̄i,t(xi,t+1)− f̄i,t(x∗t+1))︸ ︷︷ ︸

(I)

+
1

t +1
(fi,t+1(xi,t+1)− fi,t+1(x∗t+1)). (56)

Note that (I) can be bounded as follows:

f̄i,t(xi,t+1)− f̄i,t(x∗t+1)≤ f̄i,t(xi,t+1)− f̄i,t(x∗t)≤ ∆i,t − [
(2−β1)αt

2ῡ
− ρα2

t

2υ2]‖GX (xi,t , f̄i,t ,αt)‖2

+
αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
, (57)

23

Under review as a conference paper at ICLR 2019

where the first inequality is due to the optimality of x∗t and the second inequality follows from
equation 55.

Now, combining equation 57 and equation 56 gives

∆i,t+1 ≤
t

t +1
(∆i,t − [

(2−β1)αt

2ῡ
− ρα2

t

2υ2]‖GX (xi,t , f̄i,t ,αt)‖2

+
αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
)+

1
t +1

(fi,t+1(xi,t+1)− fi,t+1(x∗t+1)).

By rearranging the above inequality, we have
t

t +1
[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]‖GX (xi,t , f̄i,t ,αt)‖2 ≤ t
t +1

(∆i,t +
αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
)

+
1

t +1
(fi,t+1(xi,t+1)− fi,t+1(x∗t+1))−∆i,t+1. (58)

Using the definition of ∆i,t+1, we get 1
t+1 (fi,t+1(xi,t+1)− fi,t+1(x∗t+1))−∆i,t+1 =−(t

t+1)(f̄i,t(xi,t+1)−
f̄i,t(x∗t+1)). Hence, using equation 58 and simplifying terms, we obtain

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]‖GX (xi,t , f̄i,t ,αt)‖2

≤ ∆i,t − (f̄i,t(xi,t+1)− f̄i,t(x∗t+1))+
αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
. (59)

Note that:
1
n

n

∑
i=1

T

∑
t=1

(
∆i,t − (f̄i,t(xi,t+1)− f̄i,t(x∗t+1))

)
=

1
n

n

∑
i=1

T

∑
t=1

(
(f̄i,t(xi,t)− f̄i,t(xi,t+1))− (f̄i,t(x∗t)− f̄i,t(x∗t+1))

)
=

1
n

n

∑
i=1

[− f̄i,T (xi,T+1)+ f̄i,1(xi,1)− f̄i,1(x∗1)+ f̄i,T (x∗T+1)]

+
1
n

n

∑
i=1

T

∑
t=2

t−1
(

fi,t(xi,t)− f̄i,t−1(xi,t)− (fi,t(x∗t)− f̄i,t−1(x∗t))
)

(60)

≤ 1
n

n

∑
i=1

L
(
‖xi,T+1− x∗T+1‖+‖xi,1− x∗1‖+

T

∑
t=2

2t−1‖xi,t − x∗t ‖
)

(61)

≤ 2L max
t∈{2,...,T}

Bt(1+
T

∑
t=2

t−1)≤ 2L max
t∈{2,...,T}

Bt(2+ logT), (62)

where the first equality uses

f̄i,t(xi,t)− f̄i,t−1(xi,t) = t−1(fi,t(xi,t)− f̄i,t−1(xi,t)).

The first inequality follows from Assumption 2. The second inequality follows from Lemma 20 and
equation 19.

Summing equation 59 over i ∈ V , t ∈ {1, . . . ,T} and using equation 62, we have

1
n

n

∑
i=1

min
t∈{1,...,T}

‖GX (xi,t , f̄i,t ,αt)‖2
T

∑
t=1

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]

≤ 1
n

n

∑
i=1

T

∑
t=1

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]‖GX (xi,t , f̄i,t ,αt)‖2

≤ (2+ logT)2L max
t∈{2,...,T}

2
√

n

(1−η)
√

(1−β2)

t−1

∑
s=0

αsσ
t−s−1
2 (W)

+
T

∑
t=1

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
. (63)

24

Under review as a conference paper at ICLR 2019

Note that ∑
T
t=1[

(2−β1)αt
2ῡ

− ρα2
t

2υ2] > 0. Therefore, dividing both sides of the equation 63 by

∑
T
t=1[

(2−β1)αt
2ῡ

− ρα2
t

2υ2], we obtain equation 14.

6.1.4 PROOF OF COROLLARY 9

Proof. With the constant step-sizes αt =
(2−β1)υ

2

2ρῡ
for all t ∈ {1, . . . ,T}, we have

ϑt =
T

∑
t=1

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2] =
T (2−β1)

2υ2

8ρῡ2 .

Therefore, using the above equality and equation 12 together with αt =
(2−β1)υ

2

2ρῡ
for all t ∈

{1, . . . ,T}, we obtain

1
ϑt

T

∑
t=1

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
=

4ῡ

T (2−β1)

T

∑
t=1

β1,t ῡ

2(1−β1,t)(1−η)2(1−β2)

≤ 4ῡ

T (2−β1)

T

∑
t=1

λ t−1ῡ

2(1−β1)(1−η)2(1−β2)

≤ 2ῡ2

T (2−β1)(1−β1)(1−η)2(1−β2)(1−λ)
, (64)

and

1
ϑt

(2+ logT)2L max
t∈{2,...,T}

2
√

n

(1−η)
√

(1−β2)

t−1

∑
s=0

αsσ
t−s−1
2 (W)

≤ 16ῡ(2+ logT)L
√

n

T (2−β1)(1−η)
√

(1−β2)
max

t∈{2,...,T}

t−1

∑
s=0

σ
t−s−1
2 (W)

≤ 16ῡ(2+ logT)L
√

n

T (2−β1)(1−η)
√

(1−β2)(1−σ2(W))
. (65)

Combine the results in equation 64 and equation 65, we have equation 13.

6.1.5 PROOF OF THEOREM 10

Proof. Let
δi,t =∇ f̄i,t(xi,t)−∇ f̄i,t(xi,t), ∀t ≥ 1,

where ∇ f̄i,t(xi,t) =
1
t ∑

t
s=1∇ fi,s(xi,t) denotes the minibatch stochastic gradient on node i.

Since fi,t is ρ-smooth, it follows that f̄i,t is also ρ-smooth. Hence for every i∈ V and t ∈ {1, . . . ,T},
we have

f̄i,t(xi,t+1)≤ f̄i,t(xi,t)+ 〈∇ f̄i,t(xi,t),xi,t+1− xi,t〉+
ρ

2
‖xi,t+1− xi,t‖2

≤ f̄i,t(xi,t)−
αt√
υ̂i,t
〈∇ f̄i,t(xi,t),GX (xi,t , f̄i,t ,αt)〉+

ρα2
t

2υ̂i,t
‖GX (xi,t , f̄i,t ,αt)‖2

= f̄i,t(xi,t)−
αt√
υ̂i,t
〈∇ f̄i,t(xi,t),GX (xi,t , f̄i,t ,αt)〉+

ρα2
t

2υ̂i,t
‖GX (xi,t , f̄i,t ,αt)‖2

+
αt√
υ̂i,t
〈δi,t ,GX (xi,t , f̄i,t ,αt)〉,

where GX (xi,t , f̄i,t ,αt) denotes the projected stochastic gradient on node i.

25

Under review as a conference paper at ICLR 2019

The above inequality together with Lemma 21, equation 11 and β1,t ≤ β1, imply that

f̄i,t(xi,t+1)≤ f̄i,t(xi,t)−
αt(2−β1)

2ῡ
‖GX (xi,t , f̄i,t ,αt)‖2 +

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)

+
ρα2

t

2υ2 ‖GX (xi,t , f̄i,t ,αt)‖2 +
αt√
υ̂i,t
〈δi,t ,GX (xi,t , f̄i,t ,αt)〉

+
αt√
υ̂i,t
〈δi,t ,GX (xi,t , f̄i,t ,αt)−GX (xi,t , f̄i,t ,αt)〉

≤ f̄i,t(xi,t)−
αt(2−β1)

2ῡ
‖GX (xi,t , f̄i,t ,αt)‖2 +

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)

+
ρα2

t

2υ2 ‖GX (xi,t , f̄i,t ,αt)‖2 +
αt√
υ̂i,t
〈δi,t ,GX (xi,t , f̄i,t ,αt)〉

+
αt√
υ̂i,t
‖δi,t‖‖GX (xi,t , f̄i,t ,αt)−GX (xi,t , f̄i,t ,αt)‖

≤ f̄i,t(xi,t)−
αt(2−β1)

2ῡ
‖GX (xi,t , f̄i,t ,αt)‖2 +

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)

+
ρα2

t

2υ2 ‖GX (xi,t , f̄i,t ,αt)‖2 +
αt√
υ̂i,t
〈δi,t ,GX (xi,t , f̄i,t ,αt)〉

+
αt√
υ̂i,t
‖δi,t‖

ῡ

υ

t

∑
r=1

(1−β1,r)β
t−r
1 ‖δi,r‖, (66)

where the second inequality follows from the Cauchy-Schwartz inequality. The last inequality
follows from the fact that β1,t = β1λ t−1,λ ∈ (0,1) and Lemma 19 if we set G1

X (xi, f̄i,α) =

GX (xi,t , f̄i,t ,αt), and G2
X (xi, f̄i,α) = GX (xi,t , f̄i,t ,αt).

Let ∆i,t = f̄i,t(xi,t)− f̄i,t(x∗t) denotes the instantaneous stochastic loss at time t. We have

∆i,t+1 =
t

t +1
(f̄i,t(xi,t+1)− f̄i,t(x∗t+1))︸ ︷︷ ︸

(I)

+
1

t +1
(fi,t+1(xi,t+1)− fi,t+1(x∗t+1)). (67)

Observe that (I) can be bounded as follows:

f̄i,t(xi,t+1)− f̄i,t(x∗t+1)≤ f̄i,t(xi,t+1)− f̄i,t(x∗t)≤ ∆i,t − [
(2−β1)αt

2ῡ
− ρα2

t

2υ2]‖GX (xi,t , f̄i,t ,αt)‖2

+
αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
+

αt√
υ̂i,t
〈δi,t ,GX (xi,t , f̄i,t ,αt)〉+

ῡαt

υ2

t

∑
r=1

β
t−r
1 ‖δi,r‖‖δi,t‖, (68)

where the first inequality is due to x∗t+1 ∈X and the optimality of x∗t and the second inequality is
due to equation 66 and the fact that 0≤ β1,r < 1. Thus, using equation 67 and equation 68, we get

∆i,t+1 ≤
t

t +1

(
∆i,t − [

(2−β1)αt

2ῡ
− ρα2

t

2υ2]‖GX (xi,t , f̄i,t ,αt)‖2 +
αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)

+
αt√
υ̂i,t
〈δi,t ,GX (xi,t , f̄i,t ,αt)〉+

ῡαt

υ2

t

∑
r=1

β
t−r
1 ‖δi,r‖‖δi,t‖

)
+

1
t +1

(fi,t+1(xi,t+1)− fi,t+1(x∗t+1)).

By rearranging the above inequality, we have

t
t +1

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]‖GX (xi,t , f̄i,t ,αt)‖2 ≤ t
t +1

(
∆i,t +

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)

+
αt√
υ̂i,t
〈δi,t ,GX (xi,t , f̄i,t ,αt)〉+

ῡαt

υ2

t

∑
r=1

β
t−r
1 ‖δi,r‖‖δi,t‖

)
+

1
t +1

(fi,t+1(xi,t+1)− fi,t+1(x∗t+1))−∆i,t+1. (69)

26

Under review as a conference paper at ICLR 2019

Now, using definition of ∆i,t+1, 1
t+1 (fi,t+1(xi,t+1)− fi,t+1(x∗t+1))− ∆i,t+1 = −(t

t+1)(f̄i,t(xi,t+1)−
f̄i,t(x∗t+1)), together with equation 69, we obtain

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]‖GX (xi,t , f̄i,t ,αt)‖2 ≤ ∆i,t − (f̄i,t(xi,t+1)− f̄i,t(x∗t+1))

+
αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
+

αt√
υ̂i,t
〈δi,t ,GX (xi,t , f̄i,t ,αt)〉+

ῡαt

υ2

t

∑
r=1

β
t−r
1 ‖δi,r‖‖δi,t‖. (70)

Note that from Assumption 3, we have E
[
〈δi,t ,GX (xi,t , f̄i,t ,αt)〉

]
= 0 and

E
[
‖∇ fi,t(xi,t)−∇ fi,t(xi,t)‖2]= E

[
‖∇ fi,t(xi,t)‖2]−‖E [∇ fi,t(xi,t)]‖2 ≤ E

[
‖∇ fi,t(xi,t)‖2]≤ ξ

2,

which implies that

E
[
‖δi,t‖2]= E

[
‖∇ f̄i,t(xi,t)−∇ f̄i,t(xi,t)‖2]

= E

[
‖1

t

t

∑
s=1

(∇ fi,s(xi,t)−∇ fi,s(xi,t))‖2

]

≤ 1
t

t

∑
s=1

E
[
‖∇ fi,s(xi,t)−∇ fi,s(xi,t)‖2]≤ ξ

2.

The above inequality together with Cauchy-Schwarz for expextations, imply that

E [‖δi,t‖‖δi,r‖]≤
√

E [‖δi,r‖2]
√
E [‖δi,t‖2]≤ ξ

2. (71)

Now, using equation 71 and equation 62, summing equation 70 over i ∈ V and t ∈ {1, . . . ,T}, and
taking expectation, we obtain

1
n

n

∑
i=1

min
t∈{1,...,T}

E
[
‖GX (xi,t , f̄i,t ,αt)‖2] T

∑
t=1

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]

≤
T

∑
t=1

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]
1
n

n

∑
i=1

E
[
‖GX (xi,t , f̄i,t ,αt)‖2]

≤ (2+ logT)2L max
t∈{2,...,T}

2
√

n

(1−η)
√

(1−β2)

t−1

∑
s=0

αsσ
t−s−1
2 (W)

+
T

∑
t=1

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
+

ῡξ 2

υ2

T

∑
t=1

αt

t

∑
r=1

β
t−r
1 . (72)

Note that ∑
T
t=1[

(2−3β1)αt
2ῡ

− ρα2
t

2υ2]> 0, and

T

∑
t=1

αt

t

∑
r=1

β
t−r
1 =

T

∑
t=1

αt

T

∑
r=t

β
r−t
1 ≤

T

∑
t=1

αt

(1−β1)
. (73)

Therefore, dividing both sides of the equation 75 by ∑
T
t=1[

(2−3β1)αt
2ῡ

− ρα2
t

2υ2], using equation 73, we
complete the proof.

6.1.6 PROOF OF COROLLARY 11

Proof. Let ϑt = ∑
T
t=1[

(2−β1)αt
2ῡ

− ρα2
t

2υ2]. We claim that if

T ≥max{ 4ρ2ῡ2

nυ4(2−β1)2 ,
4ῡ2n

(2−β1)2 }, (74)

then ϑt ≥ 1/2. One can easily seen that T must satisfy (2−β1)αt
2ῡ

− ρα2
t

2υ2 ≥ 1
2T which results in

−T ρα
2
t ῡ +T υ

2(2−β1)αt − ῡυ
2 ≥ 0.

27

Under review as a conference paper at ICLR 2019

By rearranging the above inequality, we obtain

1≥ ραt ῡ

υ2(2−β1)
+

ῡ

T (2−β1)αt
:= A1 +A2.

Now, if A1,A2 ≤ 1
2 , then αt ≤ υ2(2−β1)

2ρῡ
, and αt ≥ 2ῡ

T (2−β1)
, respectively. These bounds together with

our assumption on αt give equation 74.

Now, let equation 74 holds. Using equation 70, and since ϑt ≥ 1/2, we have
1

T n

n

∑
i=1

min
t∈{1,...,T}

E
[
‖GX (xi,t , f̄i,t ,αt)‖2]

≤ 2
T n

n

∑
i=1

min
t∈{1,...,T}

E
[
‖GX (xi,t , f̄i,t ,αt)‖2] T

∑
t=1

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]

≤ 2
T

T

∑
t=1

[
(2−β1)αt

2ῡ
− ρα2

t

2υ2]
1
n

n

∑
i=1

E
[
‖GX (xi,t , f̄i,t ,αt)‖2]

≤ 2
T n

n

∑
i=1

(
fi,1(xi,1)− fi,1(x∗1)

)
+L
(
‖xi,T+1− x∗T+1‖+

T

∑
t=2

2t−1‖xi,t − x∗t ‖
)

+
2
T

T

∑
t=1

αtβ1,t ῡ

2(1−β1,t)(1−η)2(1−β2)
+

2ῡξ 2

υ2(1−β1)T

T

∑
t=1

αt , (75)

where the last inequality follows from equation 60, equation 61 and equation 71.

We proceed to bound RHS of equation 75. By substituting αt =
α√
nT

and β1,t = β1λ t−1,λ ∈ (0,1)
into the last two terms of equation 75, we have

2ῡξ 2

υ2(1−β1)T

T

∑
t=1

αt =
2αῡξ 2

υ2(1−β1)
√

nT
, (76)

and
1
T

T

∑
t=1

αtβ1,t ῡ

(1−β1,t)(1−η)2(1−β2)
=

αῡ

T
√

nT (1−η)2(1−β2)

T

∑
t=1

β1,t

(1−β1,t)

=
αῡ

T
√

nT (1−η)2(1−β2)(1−β1)(1−λ)
. (77)

Further, using equation 75 and Lemma 20, we get

L
T n

n

∑
i=1
‖xi,T+1− x∗T+1‖ ≤

2
√

nαL

T (1−η)
√

(1−β2)
√

nT

T

∑
s=0

σ
T−s
2 (W)

≤ 2
√

nαL

T (1−η)
√

(1−β2)
√

nT (1−σ2(W))
. (78)

Similarly, using equation 75 and Lemma 20, we have

L
T n

n

∑
i=1

T

∑
t=2

t−1‖xi,t − x∗t ‖ ≤
2
√

nαL√
nT (1−η)

√
(1−β2)T

T

∑
t=2

t−1
t−1

∑
s=0

σ
t−s−1
2 (W)

≤ 2
√

nαL√
nT (1−η)

√
(1−β2)T

√
T

∑
t=2

t−2

√
T

∑
t=2

(
t−1

∑
s=0

σ
t−s−1
2 (W))2

≤ 2
√

nαL√
nT (1−η)

√
(1−β2)T (1−σ2(W))

, (79)

where the second inequality is due to Cauchy-Schwarz inequality and the last inequality follows
because ∑

T
t=2

1
t2 ≤ 1.

Using equation 16a, equation 77, equation 78 and equation 79 are bounded by equation 76. This
completes the proof.

28

Under review as a conference paper at ICLR 2019

6.2 SENSITIVITY OF DADAM TO ITS PARAMETERS

Next, we examine the sensitivity of DADAM on the parameters related to the network connection
and update of the moment estimate. As it is clear from Figure 3 the convergence of training accuracy
value happens faster for sparser networks (higher σ2(W)). This is similar to the trend observed for
FedAvg algorithm while reducing parameter C which makes the agent interaction matrix sparser.
This is also expected as discussed in Theorems 4 and 5. Note that with the availability of a central
parameter server (as in FedAvg algorithm), sparser topology may be useful for a faster convergence,
however, topology density of graph is important for a distributed learning scheme with decentralized
computation on a network.

Figure 3: Performance of the DADAM algorithm with varying network topology: training loss and
accuracy over 30 epochs based on the MNIST digit recognition library.

We also empirically evaluate the effect of the β3 in Algorithm 1. We consider a range of hyper-
parameter choices, i.e. β3 ∈ {0,0.9,0.99}. From Figure 4 it can be easily seen that DADAM per-

Figure 4: Performance of the DADAM algorithm with varying decay rate β3. DADAM1 (β3 = 0),
DADAM2 (β3 = 0.9), and DADAM3 (β3 = 0.99) for training loss and accuracy over 30 epochs
based on the MNIST digit recognition library.

forms equal or better than AMSGrad (β3 = 0), regardless of the hyper-parameter setting for β1 and
β2.

29

	Introduction
	Contents and Contributions
	Mathematical Preliminaries and Notations.

	Problem Formulation and Algorithm
	Convergence Analysis
	Convex Case
	Nonconvex Case
	When does DADAM Outperform ADAM?

	An Extension of DADAM with a Corrected Update Rule
	Numerical results
	Binary classification based on synthetic data in the static environment
	CIFAR and MNIST experiments

	Conclusion
	Properties of DADAM
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 8
	Proof of Corollary 9
	Proof of Theorem 10
	Proof of Corollary 11

	Sensitivity of DADAM to its parameters

