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ABSTRACT

Disease progression models are instrumental in predicting individual-level health
trajectories and understanding disease dynamics. Existing models are capable
of providing either accurate predictions of patients’ prognoses or clinically inter-
pretable representations of disease pathophysiology, but not both. In this paper,
we develop the phased attentive state space (PASS) model of disease progression,
a deep probabilistic model that captures complex representations for disease pro-
gression while maintaining clinical interpretability. Unlike Markovian state space
models which assume memoryless dynamics, PASS uses an attention mechanism
to induce "memoryful" state transitions, whereby repeatedly updated attention
weights are used to focus on past state realizations that best predict future states.
This gives rise to complex, non-stationary state dynamics that remain interpretable
through the generated attention weights, which designate the relationships be-
tween the realized state variables for individual patients. PASS uses phased LSTM
units (with time gates controlled by parametrized oscillations) to generate the at-
tention weights in continuous time, which enables handling irregularly-sampled
and potentially missing medical observations. Experiments on data from a real-
world cohort of patients show that PASS successfully balances the tradeoff be-
tween accuracy and interpretability: it demonstrates superior predictive accuracy
and learns insightful individual-level representations of disease progression.

1 INTRODUCTION

Chronic diseases – such as cardiovascular disease, cancer and diabetes – progress slowly throughout
a patient’s lifetime, causing increasing burden to the patients, their carers, and the healthcare deliv-
ery system Sevick et al. (2007). Modern electronic health records (EHR) keep track of individual
patients’ disease progression trajectories through follow-up data sequences of the form (X1, ...,Xt),
where Xt is a set of clinical observations collected for the patient at time t. The advent of EHRs1

provides an opportunity for building models of disease progression that can fulfill two central goals
of healthcare delivery systems:

� Goal A: Predicting individual-level disease trajectories.
� Goal B: Understanding disease progression mechanisms.

Goal A entails the supervised problem of predicting future clinical observations (Xt+1,Xt+2, . . .) on
the basis of past observations (X1, . . .,Xt). Goal B entails the unsupervised problem of discovering
clinically-interpretable latent structures that explain the mechanisms underlying disease progression.
Both goals A and B are entangled. This is because accurate predictions need to be transparent and
interpretable in order to ensure their actionability, whereas interpretable representations explaining
disease progression can only be trustworthy if they possess high predictive power.

Unfortunately, as a consequence of the inherent tension between model accuracy and interpretability
Lipton (2016), most existing models of disease progression fulfill either Goal A or Goal b, but
not both. State-of-the-art prediction performance is achieved by models based on recurrent neural
networks (RNN) Lim & van der Schaar (2018); Lipton et al. (2016); Choi et al. (2016a). RNN-
based models are often used for sequence prediction (or sequence labeling), where they are trained

1https://www.healthit.gov/sites/default/files/briefs/
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(d) Unrolled graphical depiction for an attentive state space

Figure 1: Depictions for different models of sequential data: (a) Graphical model for an RNN. ♢ denotes a
deterministic intermediate representation, (b) Graphical model for an HMM. ⃝ denotes probabilistic states, (c)
Graphical model for the proposed attentive state space model. (c) Unrolled instance-wise graphical depiction
for an attentive state space. Thickness of the arrows reflect the attention weights.

to estimate the predictive distribution P (Xt |Xt−1, ...,X1) by propagating a sequence of hidden
states (Z1, ...,Zt) through intermediate deterministic mappings (Figure 1a). Unfortunately, an RNN
is of a "black-box" nature since its hidden states (Z1, ...,Zt) do not explicitly map to clinically
meaningful states of disease progression. On the contrary, state space approaches based on Hidden
Markov Models (HMM) provide a natural interpretation of a disease trajectory as a sequence of
transitions between latent "progression stages" (Z1, ...,Zt) (Figure 1b), each of which corresponds
to a clinically distinguishable disease state Alaa & van der Schaar (2018); Liu et al. (2015); Wang
et al. (2014). However, the interpretability of HMMs comes at a price. That is, while RNNs can in
principle approximate any dynamical system, an HMM is limited to memoryless Markovian state
dynamics, which greatly undermine its predictive performance.

Our Contribution In this paper, we develop a deep probabilistic model of disease progression that
capitalizes on both the predictive power of RNNs and the interpretable nature of state space models
to fulfill Goals A and B. Our model maintains the probabilistic structure of a state space represen-
tation, which decouples emission and transition distributions, but uses an RNN to model a flexible
non-Markovian state transition dynamic P (Zt |Zt−1, ...,Z1) that allows future states to depend on
all past states. To model state transitions, we use an attention mechanism whereby the RNN gener-
ates a (repeatedly updated) set of attention weights (α1, ...,αt) that designate the (relative) influence
that past state realizations (Z1, ...,Zt) have on the transition probabilities to the future state Zt+1.
Our model for state transitions at time step t can be summarized as follows:

(αt
1, ...,α

t
t) = RNN(X1, ...,Xt),

P (Zt+1 = z) =
∑
i≤t

αt
i × (A baseline transition probability from Zi = z′ to z).

The model described above, which we call an attentive state space model, uses a set of RNN-
generated attention weights to induce a time-varying Markov blanket for the state variable Zt. This
Markov blanket changes for every new state transition, putting more or less attention on previous
state realizations depending on the patient’s clinical history. If we restrict the attention weights to
be binary (αt

i ∈ {0, 1}, ∀i ≤ t), the attentive state space becomes a variable-order Markov model
that decides the extent of memory involved in state transitions in every time step depending on the
patient’s current context. This allows for realistic non-stationary and time-inhomogeneous dynam-
ics that are implicitly captured by an RNN but could not be possibly modeled with an HMM. The
attentive state representation is clinically interpretable because the complex state dynamics that it
captures are fully explicable through the attention weights, which indicates the extent to which past
clinical events contribute to future state realizations. Figure 1c provides a formal graphical model
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for our attentive state space representation. Figure 1d shows an unrolled graphical depiction of
the model for a particular exemplary patient, highlighting the time-varying nature of the attention
weights and their straightforward interpretational benefit.

Because EHR data comprises irregularly-sampled and asynchronous observations gathered only at
the times when the patient visits a hospital, we use the phased LSTM units introduced in Neil et al.
(2016), with time gates controlled by parametrized oscillations, in order to generate the attention
weights at arbitrary time instances. Thus, we call our model a phased attentive state space (PASS)
model. A detailed description of the construction of the PASS model is provided in Section 2. A
detailed comparison between PASS and related models can be found in Section 4.

Indeed, state inference and parameter estimation of PASS is nontrivial since non-Markovianity hin-
ders the application of conventional backward message passing algorithms Alaa & van der Schaar
(2018); Dai et al. (2016). In Section 3, we show that PASS can be re-parameterized as a non-
stationary dynamic Bayesian network, for which conventional forward message passing algorithms
can be implemented with a complexity resembling that of the forward filtering algorithm used for
HMMs. We conduct parameter estimation via a variant of the Expectation-Maximization algorithm.
In Section 5, we conduct experiments on data from a real-world longitudinal cohort of more than
10,000 Cystic Fibrosis (CF) patients. Our experiments show that PASS successfully balances the
tradeoff between accuracy and interpretability: it demonstrates superior predictive accuracy and
learns insightful individual-level representations of disease progression. In particular, we show that
PASS learns meaningful population-level CF progression stage, and that the attention weights can
inform treatment decisions on the level of individual patients.

2 A PHASED ATTENTIVE STATE-SPACE MODEL OF DISEASE PROGRESSION

We model the progression of a target chronic disease using longitudinal EHR data for patients who
have developed, or are at risk of developing such disease. We start by describing the model variables
in Section 2.1, and then we develop the attentive state dynamics in Sections 2.2 and 2.3.

2.1 MODEL VARIABLES AND NOTATION

Structure of the EHR data A patient’s EHR record, denoted as D, is a collection of timestamped
follow-up data gathered during repeated, irregularly-spaced hospital visits, in addition to static fea-
tures (e.g., genetic variables). We represent a given patient’s EHR record as follows:

D = {Y }

Static features

∪ {(Xm, tm

Visit times

)}Mm=1, (1)

where Y is the static features’ vector, Xm is the follow-up data collected in the mth hospital visit,
tm is the time of the mth visit, and M is the total number of hospital visits. (The time-horizon t
is taken to be the patient’s chronological age.) The follow-up data Xm comprises information on
biomarkers and clinical events, such as treatments and diagnoses of comorbidities. (Refer to the
Appendix for a more elaborate discussion on the type of follow-up data collected in EHRs.) An
EHR dataset {D(i)}Ni=1 is an assembly of records for N independent patients.

Disease progression stages We assume that the target disease evolves through D different progres-
sion stages. Each stage corresponds to a distinct level of disease severity that manifests through
the follow-up data. We model the evolution of progression stages via a (continuous-time) stochastic
process Z(t) of the following form:

Z(t) =
∑
n∈N+

Z̃n · 1{Tn <t≤Tn+1}, Z̃n ∈ {1, . . ., D}, (2)

where {Tn}n is the sequence of onsets for the realized progression stages, and Z̃n is the progression
stage occupying the interval (Tn, Tn+1]. We assume that Z(0) = 1 (i.e., Z̃1 = 1) almost surely, with
stage 1 being the asymptomatic stage designating "healthy" patients. The sequence {Zm}m is the
embedded discrete-time process induced by Z(t) at the hospital visit times {tm}m, i.e. Zm = Z(tm).
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2.2 ATTENTIVE STATE SPACE REPRESENTATION

We adopt a state space representation for the disease progression process, with the state space being
the set of all stages of progression {1, . . . , D}. The states’ sequence {Zm}m is hidden whereas the
EHR data D is observed. We consider a graphical model that defines probabilistic dependencies
between {Zm}m and D through the following factorization of emission and transition distributions:

P ({Zm}m, {Xm}m |Y , {tm}m) =
m∏

m′=1

P (Xm′ |Zm′)︸ ︷︷ ︸
Emission

· P (Zm′ | Ftm′−1
)︸ ︷︷ ︸

Transition

, (3)

∀m ∈ {1, . . . ,M}, where the filtration Ftm′ = {Y , (Z1,X1, t1), . . . , (Zm′ ,Xm′ , tm′)} conveys all the
information available in the model up to time tm′ . We model the emission distribution in (3) as a
Gaussian distribution with state-specific parameters as follows:

P (Xm |Zm = z) = N (µz,Σz), z ∈ {1, . . . , D}. (4)
Binary variables are modeled with a Bernoulli state-specific distributions. The transition probability
factor in (3) assumes that the realized state at time tm depends on the entire process history Ftm−1 .
To model P (Zm′ | Ftm′−1

), we first define a D ×D baseline Markov generator matrix Λ as follows:

Λ =


−λ12 λ12 0 . . . 0
0 −λ23 λ23 . . . 0
...

...
. . .

...
...

0 . . . 0 −λD−1,D λD−1,D

0 . . . 0 0 0

 , λij ≥ 0, ∀i, j ∈ {1, . . . , D}, (5)

where λij is a Markovian transition rate from state i to state j. Λ is the transition rate matrix of a
continuous-time Markov chain model on the state space {1, . . . , D}; its bidiagonal structure forces
transitions to be permissible only between adjacent states (in an ascending order), with the last state
(state D) being an absorbing state. This enforces the states in the set {1, . . . , D} to map properly
to the disease progression stages (state 1 is the least severe stage and state D is the terminal stage
of illness). We model the state transition probability P (Zm = z | Ftm−1) by creating a "memoryful"
version of the Markov chain model in (5) through the following parametrization:

P (Zm = z | Ftm−1) = P (Zm = z | {(Zk = zk,α
m
k ,∆k)}m−1

k=1

Sufficient statistics

) =

m−1∑
k=1

αm
k

Attention weights

(e∆k Λ)z,zk , (6)

where ∆k = tm − tk is the time interval between the kth and the mth hospital visits, αm
k ∈ [0, 1] is

an attention weight assigned to the kth visit, with
∑m−1

k=1 αm
k = 1, and (e∆k Λ)z,zk is entry (z, zk) of

the exponentiation of matrix Λ. The attention weights in (6) are generated via an attention function
φ with parameter Θ as follows:

(αm
1 , . . . ,αm

m−1) = φ(Y , tm, (X1, t1), . . . , (Xm−1, tm−1);Θ). (7)
We call the representation in (6) an attentive state space representation. As shown in (6), the atten-
tive representation starts with a baseline Markov chain, and creates memory in state transitions by
weighting the baseline Markovian transition probabilities from all previous states, i.e. {e∆k Q}m−1

k=1 ,
using a set of attention weights {αm

k }m−1
k=1 . (The attention weights are generated on the basis of a

patient’s static features and follow-up data.) That is, instead of the memoryless Markovian dynamics
in which a new state realization Zm+1 is fully determined by the current realization Zm, the attentive
state dynamics pay attention to all previous realizations in proportion to their attention weights. This
gives rise to "memoryful", non-stationary, and time-inhomogeneous state transitions, whereby the
time-varying Markov blanket (sufficient statistic) {(Zk,α

m
k ,∆k)}m−1

k=1 of every new state realization
Zm determines which state realizations in the past matter most for the future.

Similar to an HMM model, the factorization in (3) decouples the transition and emission distribu-
tions by assuming that Zm d-separates Xm from all other variables. This decoupling ensures that
the clinical interpretability of the hidden states is maintained since each state is associated with a
distinct emission distribution for the observed follow-up data. Moreover, regardless of the choice
of the attention function φ, the attentive state transition matrix

∑m−1
k=1 αm

k e∆k Λ will always be
interpretable because the influence that a previous progression stage has on the future progression
trajectory is encoded in its corresponding attention weight.
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Figure 2: Illustration of phased attention mechanism. Left: Architecture of the phased attention network. The
follow-up data (augmented with the static features) are fed in a reversed order into the phased LSTM, with
reversed and shifted timestamps for the hospital visits. Right: Illustration for the operation of the phased
LSTM. The time gate gt of 4 neurons are depicted; each has different oscillatory parameters. The contents of
the cell state ct decay as we go backwards in time, implying smaller attention weights for older hospital visits.

2.3 THE PHASED ATTENTION MECHANISM

To implement the attentive state dynamics, the attention weights in (7) must be repeatedly updated
(after each hospital visit) using variable-length sequences of data. Hence, we model the attention
function φ as an RNN that maps a patient’s history to attention weights as follows:

hm−1, . . . ,h1 = pLSTM ((X̃m−1, tm − tm−1), . . . , (X̃1, tm − t1);Θ),

ej = wThj + b, ∀j ∈ {1, . . . ,m− 1},
(αm

1 , . . . ,αm
m−1) = Softmax(e1, . . . , em−1), (8)

where pLSTM is a phased LSTM network Neil et al. (2016), w and b are the output layer parameters,
hj is the hidden layer, and X̃j = [Y ,Xj , tj ] is the input at time step j. Unlike traditional RNNs, a
phased LSTM takes a timestamped sequence as an input, and performs updates at arbitrary points
of time. Phased LSTMs can also handle asynchronously-sampled sequences, which is particularly
important for EHR data as not all of the components of Xm are necessarily measured in each hospital
visits. Through phased LSTMs, we can update the attention weights with whatever follow-up data
available at arbitrary time instances without the need for explicitly imputing missing observations.
We call the attention mechanism in (8) the phased attention mechanism. The PASS model is an
attentive state space model that uses the phased attention mechanism.

In the mth time step, phased attention operates by feeding the phased LSTM with the sequence
{X̃j}m−1

j=1 in reversed order, with timestamps reversed and shifted by tm as shown in Figure 2 (left).
This allows all attention weights allocated to all previous state realizations (or equivalently, hospital
visits) to be dynamically updated at every time step while preserving the relative time spacing be-
tween hospital visits. The phased attention mechanism in (8) can be thought of as a continuous-time
analogue of the reverse-time attention mechanism in Choi et al. (2016b).

The main difference between the phased LSTM model and the conventional LSTM model is the ad-
dition of a time gate, gt, which controls the updates to the LSTM cell state ct (and consequently the
hidden layer ht). The opening and closing of the time gate gt for every neuron is controlled through
an independent (continuous-time) rhythmic oscillation specified by 3 parameters (an oscillation pe-
riod, a phase shift, and the ratio of the duration of the "open" phase to the full period) that can be
learned from the data Neil et al. (2016). With every neuron having its own oscillatory parameters,
the phased LSTM generates a continuum of possible updates that can be probed at arbitrary time
instances as illustrated in Figure 3 (right). The updated equations of the phased LSTM can be found
in Neil et al. (2016).
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Algorithm 1 EM algorithm for learning the PASS model parameters

Input: EHR data D, initial guess Γ̂(0), state space {1, . . ., D} and number of iterations R.
Output: Parameter estimate Γ̂ = {Λ̂, (µ̂, Σ̂), Θ̂}
while i ≤ R do

1 • {ẑm}m ← Forward-Backward(D | Γ̂(i))

2 • (α̂m
1 , . . . , α̂m

m−1)← φ((X̃m−1, tm− tm−1), . . . , (X̃1, tm− t1); Θ̂
(i)), m ∈ {1, . . .,M}

3 • p̂m ←
∑m−1

k=1 α̂m
k (e∆k Λ̂(i)

)ẑ,ẑk m ∈ {1, . . .,M}
4 • Θ̂(i+1) ← argmin (−

∑
m ẑm · log(p̂m))

5 • Λ̂(i+1) ← argmax log(P (D | {ẑm}Mm=1,Λ)

6 • (µ̂(i+1), Σ̂(i+1))← argmax log(P ({Xm}m | {ẑm}Mm=1)
7 • i← i+ 1

end while

3 LEARNING AND INFERENCE

In this Section, we present the parameter learning and state inference algorithms for the PASS model.
Throughout this Section, we continue with a single patient EHR record for the ease of notation.

Parameter learning Let Γ be the set of all PASS model parameters, i.e. Γ = {Λ, (µ,Σ),Θ}, where
µ = {µz}Dz=1 and Σ = {Σz}Dz=1 are the emission parameters. The complete data log-likelihood of
an EHR record D and a state sequence realization {Zm = zm}m is given by:

log(P (D, {zm}Mm=1 |Γ)) =
M∑

m=1

log

(
m−1∑
k=1

αm
k · exp(Λ (tm − tk))zk,zm

)
. (9)

Because the state sequence {Zm}m is hidden, the complete data likelihood in (9) is inaccessible,
and hence we resort to the Expectation-Maximization (EM) algorithm. The EM algorithm operates
iteratively to update its guess of Γ, where the ith iteration implements 2 steps:

E-step: Q(Γ | Γ̂(i)) = E{Zm}m |D,Γ̂(i) [ log (P (D, {Zm}m)) ] ,

M-step: Γ̂(i+1) = argmax
Γ

Q(Γ | Γ̂(i)). (10)

Algorithm 1 lists the steps involved in implementing the EM algorithm in (10). In Step 1, we first
infer the hidden states via a message passing algorithm (described later) using the current guess of
Γ. Next, in Steps 2 and 3, we compute the attention weights associated with all hospital visit times,
and then compute the transition probabilities using the formula in (6). In Step 4, the phased LSTM
parameters are updated by optimizing the cross-entropy loss of the estimated transition probabilities
and the inferred states. Maximum-likelihood is used to update the emission and transition parame-
ters using the complete data likelihood obtained by plugging the inferred states into the expression
in (9). To updated the Markov generator matrix Λ, we use the Expm method in Liu et al. (2015).

Figure 3: Rearranged super states for the attentive model in Figure 1c with truncated attention and Q = 1. The
resulting graphical model (right) corresponds to a standard Hidden Markov model.

State inference One key advantage of the attentive state construction in (9) is that the attention
weights explicitly quantify the importance of each past state to any given future state. Thus, efficient
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inference can be conducted by limiting the Markov blanket for every state variable to "important"
past states with attention weights exceeding a certain threshold. Since attention weights already
decline as we go back in time, we approximate the Markov blanket for every state Zm by only
considering the Q most recent states (Zm−1, . . .,Zm−Q). The resulting graphical model can be
rearrange by lumping together every Q consecutive states into one "super state" (as shown in Figure
3), we retrieve a first-order Markovian dynamic Bayesian network (or equivalently, a higher-order
Markov model Murphy & Russell (2002)), for which standard forward and backward message pass-
ing apply.

Finally, we note that in (6), we specified a finite-dimensional distribution over the embedded dis-
crete process {(Zm, tm)}m rather than directly modeling the continuous-time process Z(t). This is
because non-Markovian modeling of Z(t) would require solving an intractable system of integral
equations in order to compute the probability distribution of the discrete sequence {Zm}m Alaa &
van der Schaar (2018). It is easy to show, using the Kolmogorov extension Theorem, that the model
in (6) induces a consistent probability measure on Z(t) Kolmogorov (2018).

4 RELATED WORKS

Previous works related to PASS fall into three areas: state space models of disease progression,
RNN-based predictive models for healthcare applications, and (general-purpose) deep probabilistic
models. In what follows, we discuss previous works in these three areas, and then conclude the
Section by demonstrating the generality of the PASS model.

State space models of disease progression Almost all existing models of disease progression are
based on variants of the HMM model Wang et al. (2014); Liu et al. (2015); Alaa et al. (2017).
Disease dynamics in such models are very easily interpretable as they can be perfectly summarized
through a single matrix of probabilities that describes the transition rates among the different disease
states. Markovian dynamics also greatly simplify inference because the model likelihood factorizes
in a way that makes efficient forward and backward message passing possible Murphy & Russell
(2002). However, memoryless Markov models assume that a patient’s current state d-separates her
future trajectory from her clinical history. This renders HMM-based models incapable of properly
explaining the heterogeneity in the patients’ progression trajectories, which often results from their
varying clinical histories or the chronologies (timing and order) of their experienced clinical events
Valderas et al. (2009). This limitation is particularly crucial in complex chronic diseases that are ac-
companied with multiple morbidities. As discussed earlier, PASS addresses this limitation by creat-
ing memoryful state transitions that depend on the patient’s entire clinical history. (In the Appendix
material, we provide a detailed discussion on how PASS can better explain patient heterogeneity
compared to Markov models.)

RNN-based predictive modeling for healthcare Various RNN-based predictive models have been
recently developed for healthcare settings; examples of such models include Doctor AI Choi et al.
(2016a), L2D Lipton et al. (2016), and Disease-Atlas Lim & van der Schaar (2018). All those
methods do not attempt to model a disease progression trajectory, but rather predict target clinical
events on the basis of (discrete) sequential observations. Because of their black-box nature, none of
these models can help understand the mechanisms underlying disease progression.

There have been various attempts to create interpretable RNN-based predictive models using atten-
tion. The models in Choi et al. (2016b) and Ma et al. (2017) use the reverse-time attention mecha-
nism to learn visit-level and variable-level attention weights that explain the prediction of a target
label through measures of variable importance. The phased attention mechanism proposed in Sec-
tion 2.3 is a generalization of the reverse-time attention mechanism in Choi et al. (2016b) that can
operate in continuous-time, and update the attention weights at irregularly-spaced and potentially
incomplete observations. The main difference between the way attention is used in PASS and the
way it is used in models like RETAIN Choi et al. (2016b) can be summarized as follows. PASS ap-
plies attention to the latent state space, whereas RETAIN applies attention to the observable sample
space. Hence, the attention mechanism gives different types of explanations in the two models. In
PASS, the phased attention mechanism interprets the hidden disease dynamics, and hence it provides
an explanation for the mechanisms underlying disease progression. On the contrary, RETAIN uses
attention to measure feature importance, and hence it only explains predictions, but does not explain
the disease progression mechanisms.
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Deep probabilistic models Most existing works on deep probabilistic models have focused on de-
veloped structured inference algorithms for deep Markov models and their variants Krishnan et al.
(2017); Dai et al. (2016); Karl et al. (2016); Johnson et al. (2016). All such models use neural net-
works to model the transition and emission distributions, but are limited to Markovian dynamics.
Other works develop stochastic versions of RNNs for the sake of generative modeling; examples
include variational RNNs Chung et al. (2015), SRNN Fraccaro et al. (2016), and STORN Bayer
& Osendorfer (2014). All such models augment stochastic layers to an RNN in order to enrich its
output distribution. However, the transition and emission distributions in all these models cannot be
decoupled, and hence their latent state representations would not lead to clinically meaningful iden-
tification of disease states. To the best of our knowledge, PASS is the first deep probabilistic model
that provides both a clinically interpretable latent representation, and interpretable non-Markovian
state dynamics.

Generality of the attentive state space representation For particular choices of the attention
function in (7), the attentive state space representation in (6) reduces to various classical models of
sequential data. For instance, if φ always sets αm

m−1 to 1 and all other weights to 0, then we retrieve
an HMM. If the attention weights are binarized, then we retrieve a variable-order HMM Willems
et al. (1995); Begleiter et al. (2004). Furthermore, if the attention weights are fixed, then we recover
an auto-regressive model. This is a powerful feature of our model as it implies that by learning
the attention function φ, we are effectively testing the assumptions of various commonly-used time
series models in a data-driven fashion.

5 EXPERIMENTS

To validate the PASS model, we conducted a set of experiments using retrospective data for a longi-
tudinal cohort of cystic fibrosis (CF) patients. CF is a life-shortening chronic condition that causes
severe lung dysfunction, and is the most common genetic disease in Caucasian populations Szczes-
niak et al. (2017). All experimental details are listed hereunder.

Recall that, as stated in Section 1, the main purpose of the PASS model is to simultaneously fulfill
Goal A (predicting individualized disease trajectories) and Goal B (understanding disease progres-
sion mechanisms). Thus, in Sections 5.1 and 5.2, we evaluate our model with respect to both goals.

Data description. The dataset involved in the experiments was extracted from the UK CF registry,
a database maintained by the UK CF trust2. Data was gathered from hospitals all over the UK, with
99% of patients consenting to their data being submitted, and hence the cohort is representative of
the UK CF population. The dataset comprises longitudinal follow-ups for 10,263 patients over the
period spanning between 2008 and 2015, with a total of 60,218 hospital visits. Each patient is as-
sociated with 90 variables, including the intake of 36 possible treatments, diagnoses for 31 possible
comorbidities and 16 possible infections, FEV1 biomarkers, gender, and CF genetic mutations.

5.1 Goal A: PREDICTING INDIVIDUAL-LEVEL CF PROGRESSION TRAJECTORIES

Baselines. We compared the predictive accuracy of PASS to the following models:

� MLP: A multi-layer perceptron (MLP) classifier that is trained to sequentially predict the
clinical events in 1 hospital visit given the observations in the prior visits. The MLP is
trained on a static dataset that is created by unrolling the longitudinal follow-up data for all
patients and treating every hospital visit as a separate data point.

� HMM: A standard continuous-time HMM model Wang et al. (2014); Liu et al. (2015)
trained with the Baum-Welch EM algorithm. The number of HMM states was set via
the Akaike information criterion (AIC). Similar to the PASS model, the observations
(X1, . . .,Xt) are modeled as Gaussian emission variables with state-specific mean and vari-
ance parameters.

� RNN: A standard LSTM network with 2 hidden layers of size 200. The follow-up data
(X1, . . .,Xt) was used as an input, and the output was defined as a set of (binary) labels

2https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry/
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ABPA Diabetes I. Obstruction K. Pneumoniae E. Coli Aspergillus

Model AUC-ROC AUC-ROC AUC-ROC AUC-ROC AUC-ROC AUC-ROC

PASS 0.687 ± 0.022 0.771 ± 0.012 0.577 ± 0.018 0.718 ± 0.026 0.701 ± 0.019 0.640 ± 0.011

RETAIN 0.685 ± 0.026 0.764 ± 0.014 0.578 ± 0.014 0.715 ± 0.031 0.697 ± 0.015 0.641 ± 0.010

RNN 0.681 ± 0.016 0.762 ± 0.021 0.577 ± 0.010 0.719 ± 0.036 0.696 ± 0.014 0.641 ± 0.012

HMM 0.666 ± 0.021 0.755 ± 0.031 0.551 ± 0.014 0.689 ± 0.021 0.665 ± 0.013 0.620 ± 0.009

MLP 0.657 ± 0.036 0.751 ± 0.056 0.553 ± 0.024 0.685 ± 0.052 0.656 ± 0.018 0.601 ± 0.012

Table 1: Performance of the different competing models for the 6 prognostic tasks under consideration.

designating the prediction targets at every hospital visit. A sigmoid transformation was
applied to the top hidden layer.

� RETAIN: An RNN-based reverse-time attention model proposed in Choi et al. (2016b). To
ensure a fair comparison with PASS and the standard RNN benchmark, we implemented
the attention layer of RETAIN via an LSTM with 2 hidden layers of size 200, and restricted
its architecture to generate only visit-level attention. (This is equivalent to the RNN-αM

benchmark in Choi et al. (2016b).)

The baseline algorithms above are selected so as to highlight the added value of every modeling
component in PASS. That is, an MLP only uses current information to predict the future clinical
outcomes, whereas an HMM only looks 1 step back but provides a fully-fledged probabilistic model
for disease progression. On the other hand an RNN capture more flexible dynamics (and is more
memoryful) than an HMM but lacks interpretability, whereas RETAIN can provide explanations for
its predictions, but does not explain the actual mechanisms of disease progression.

Implementation of PASS. We implemented the phased LSTM in Section 3 with 2 hidden layers of
size 200 in order to match the model complexity of RETAIN and the standard RNN baseline. Hospital
visits after which a death event happens within 3 years were explicitly labeled as the absorbing state
D in our model. The number of states D was tuned via cross-validation to optimize the accuracy of
predicting mortality events. PASS was implemented in Tensorflow Abadi et al. (2016), and the
phased attention layer was implemented via tf.contrib.rnn.PhasedLSTMCell.

Prediction tasks and evaluation metric. All models were used to sequentially predict the 1-year
risk for 6 prognostic tasks of predicting 3 comorbidities and 3 lung infections that are common in the
CF population. The comorbidities are Allergic bronchopulmonary aspergillosis (ABPA), diabetes
and intestinal obstruction. The lung infections are Klebsiella Pneumoniae, E. coli and Aspergillus.
We used the area under the ROC curve (AUC-ROC) with 5-fold cross-validation for performance
evaluation, where error counts are taken over all patients and all hospital visits.

Results. The AUC-ROC performance of all models on the 6 prognostic tasks under consideration
is provided in Table 1. We note that CF is a very complex disease, for which patients encounter
various possible comorbidities and are prescribed a wide variety of possible treatments. This leads
to each patient having a very rich clinical history that influence their outcomes. Because HMMs
fail to properly integrate the patients’ rich clinical histories into the state dynamics, they displayed
modest predictive performance on the 6 prognostic tasks. As we can see in Table 1, the HMM model
did not provide any significant improvement over the static MLP model in any of the prognostic
tasks. On the contrary, RNN-based model provided significant improvements over the static MLP
model on all of the 6 tasks. The results in Table 1 show that the predictive accuracy of PASS is
comparable to that of the RNN-based models. Note that the standard RNN model issue predictions
without modeling disease progression, and hence it does not offer any interpretation benefit, whereas
RETAIN provides explanations only in the form of measures of variable importance. PASS, however,
explicitly models the CF physiology (in terms of its latent progression stages), and hence it ensures
the interpretational and modeling benefits of an HMM while maintaining the predictive accuracy of
an RNN-based predictive model.

5.2 Goal B: UNDERSTANDING DISEASE PROGRESSION MECHANISMS

In this Section, we show that the PASS model successfully extracts meaningful clinical knowledge
about the CF progression mechanisms. We also show how the PASS model parameters can inform
clinical practitioners about the progression mechanisms for individual patients.
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CF progression stages. Unlike many other chronic diseases, current clinical guidelines do not
provide classifications for the progression stages of CF Szczesniak et al. (2017). In a completely
unsupervised fashion, the PASS model successfully learned D = 3 progression stages (Stages I, II
and III) that corresponded to clinically distinguishable levels of CF severity. The learned baseline
Markov generator matrix for the transition rates among the 3 stages is given by:

Λ̂ =

[−0.0578 0.0578 0
0 −0.0691 0.0691
0 0 0

]
. (11)

From the baseline transition rates in (11), it follows that the average occupancy of a patient in Stage
I is 1

0.0578 = 17.30 years, and the occupancy in Stage II is around 1
0.0691 = 14.47 years. That

is, a typical patient who is born with CF progresses to Stage II by adulthood, before reaching the
terminal stage by the age of 31. These figures match the survival rates in CF populations, where
the median lifetime is known to be as low as 40 years of age McCarthy et al. (2013). Note that the
baseline generator matrix in (11) only describes population-level rates of progression: individual
variability among patients are captured via the patient-specific attention weights.

Figure 4: Depiction for the distributions of clinical observations and generated attention in the 3 learned pro-
gression stages.

The FEV1 % biomarker is the main spirometric measure of lung function that is currently used to
guide clinical and therapeutic decisions. In order to check that the learned progression stages cor-
respond to different levels of disease severity, we plot the estimated emission distribution for the
FEV1 % biomarker in Stages I, II and III in Figure 4. As we can see from the emission distribu-
tions in Figure 4, the mean values of the FEV1 biomarker in each stage were 87%, 65% and 36%,
respectively. This coincided with the current practice guidelines for referring critically-ill patients
to a lung transplant, which recommends a transplant for patients with FEV1 < 30%, monitoring for
a transplant for patients with FEV1 ranging from 30% to 80%, and no transplant for patients with
FEV1 above 80% Braun & Merlo (2011). Thus, the learned progression stages can be translated
into actionable information for clinical decision-making.

In Figure 4, we also obtain the maximum a posterior inferences for the progression stages of every
individual patient as described in Section 3, and plot the average attention weights assigned to the
patients’ last 6 hospital visits in every progression stage. We found that the attentive dynamics
tend to be less relevant for patients in Stage I, where most of the attention is allocated to the most
recent visit. Memory starts getting more important in Stages II and III, where the attention weights
allocated to older hospital visits gets higher. This can be explained by the fact that patients in Stages
II and III are more likely to have been diagnosed with more comorbidities in the past, and hence
more segments of their clinical history matters for predicting their outcomes.

10
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Significance of attention weights for individual patients. How can clinicians interpret and make
use of the generated attention weights for the patient at hand? One important way to utilize the at-
tention weights is to reason about the effect of different treatment decisions and how their outcomes
are impacted by the patient’s history. For the sake of illustrating this point, in Figure 5 we pick an
out-of-sample patient who has repeatedly visited the hospital over the years 2012, 2013 and 2014.
We see the attention weights generated by the PASS model can inform the clinician about the poten-
tial efficacy of the Ivacaftor treatment (a gene targeted therapy Wainwright et al. (2015)) prescribed
for this particular patient in the year 2014 by predicting the risk of progression to Stage III of lung
function severity by the year 2015.

The inferred progression stage for the pa-
tient was Stage II for all of the 3 hospi-
tal visits. We toggle the patient’s follow-
up data vector X3 (in year 2014) to let
the variable indicating the prescription of
the Ivacaftor drug be once set to 0 and
once set to 1, and compute the probabil-
ity of progressing to Stage III by the year
2015 in each case. We found that assign-
ing Ivacaftor treatment to this patients is
actually associated with an elevated risk of
progressing to the severe Stage III within
1 year. By inspecting at the attention
weights, we found that most attention is
assigned to the most recent visit when Iva-
caftor treatment is not prescribed, but the
highest attention is paid to the follow-up
data in 2012 when Ivacaftor is prescribed.

Time 

2012 2013 2014 

Liver disease 
(ICD: K76.9) 

St
ag

e
 II

 
St

ag
e

 I 
St

ag
e

 II
I 

Ivacaftor 

No Ivacaftor 

Risk = 12.37% 

Risk = 5.15% 

Attention weights =  
[2012: 0.12, 2013: 0.25, 2014: 0.63] 

Attention weights =  
[2012: 0.42, 2013: 0.21, 2014: 0.37] 

Figure 5: Usage of the PASS attention weights to reason
about treatment decisions.

The patient’s follow-up data in year 2012 included a diagnosis with Liver disease. Hence, the el-
evated risk of progression upon taking the Ivacaftor treatment may be linked to its side effects
concerning liver function complication, which may exacerbate the patient’s liver disease. The PASS
model altered the state dynamics to take into account the 2-year old follow-up data that is only
important in determining the state dynamics conditional on prescription of an Ivacaftor treatment.
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APPENDIX

DETAILED STRUCTURE OF THE EHR DATA

A patient’s EHR record, denoted as E, is a collection of timestamped follow-up data gathered during
repeated, irregularly-spaced hospital visits, in addition to static features of the patient (e.g., genetic
variables). We represent a given patient’s EHR record as follows:

E = {Y }

Static features

∪ {(Xm, tm

Visit times

)}Mm=1, Follow-up data =⇒ Xm =
[
um

Treatments

, Cm

Anchors

, Om

Observations

]
,

where Y is the static features’ vector, Xm is the follow-up data collected in the mth hospital visit, tm
is the time of the mth visit, and M is the total number of hospital visits. (The time-horizon t is taken
to be the patient’s chronological age.) The follow-up data vector Xm comprises three components:

� Treatments indicator (um ∈ {0, 1}U ): A binary vector indicating the prescription of (a
subset of) U possible treatments to the patient during the mth hospital visit.

� Anchor findings (Cm ∈ {0, 1}K): A binary vector indicating the presence of concrete di-
agnoses (i.e., ICD or HCPCS codes Blumenthal & Tavenner (2010)) for K distinct comor-
bidities that may co-occur with the target disease.

� Clinical observations (Om ∈ RO): A set of laboratory-measured biomarkers that reflect
the severity of the target disease.

An EHR dataset D is an assembly of records for N patients, i.e., D = {E(i)}Ni=1. Figure 6 provides
an illustration for the structure of the EHR data.
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Figure 6: Illustration for the structure of the EHR data.
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COMPARISON BETWEEN MARKOVIAN AND ATTENTIVE STATE DYNAMICS

Because Markovianity simplifies inference, most existing models of disease progression are based
on HMMs (e.g., Alaa et al. (2017), Liu et al. (2015), and Wang et al. (2014)). However, memo-
ryless Markovian dynamics hinder a model’s capacity for "explaining" individual-level progression
trajectories. This is because under a Markov model, all patients at the same stage of progression
would have the same expected future trajectory, irrespective of their potentially different individual
clinical histories (i.e., the timing and order of treatments and comorbidities). That is, a Markov
model captures the population-level transition rates among progression stages, but explains away
individual-level variations in progression trajectories through the randomness of the transition prob-
ability P (Zm |Zm−1, tm − tm−1). This can render Markov models highly misleading since clinical
actions are taken on an individual basis.

Interpreting the attentive state dynamics Now we use an illustrative example to show how a clin-
ician can interpret the attentive state dynamics for individual patients, and highlight the information
that is missed by Markovian dynamics but can be captured via attentive dynamics.

In Figure 7, we display exemplary progression tra-
jectories for 2 chronic kidney disease (CKD) pa-
tients through the unrolled graphical model of the
DBN in (3). With a slight abuse of graphical model
notation, we let the thickness of the arrows connect-
ing states be proportional to the attention weights
generated for predicting the state transition in the
third hospital visit. Patients A and B have identical
trajectories at the first 2 visits (both are diagnosed
with hypertension and are in the same progression
stages), with one exception being that Patient A is
administered a medication for hypertension (ACE
inhibitors) in the first visit. Patient B transits from
stage 2 to stage 3 CKD because of hypertensive re-
nal complications, whereas patient A stays in stage
2 thanks to the medication. The attentive model can
capture the difference between the 2 trajectories by
paying attention to the first visit for Patient A (when
the medication was prescribed), and little attention
to the same visit for Patient B.

1 2 2 

1 2 3 

Time 

Patient A 

Patient B 

 
Hypertension 

 
ACE inhibitors 

 
Hypertension 

 

States 

Observations 

Figure 7: Depiction for the attentive state dynamics.

By visually inspecting the attention weights assigned to past states of each individual patient, clin-
icians can interpret the decreased risk for Patient A (compared to Patient B) to be a result of the
clinical events that Patient A encountered in the first visit (i.e., administration of ACE inhibitors).
On the contrary, a memoryless Markov model would not be able to distinguish the different trajec-
tories that Patients A and B exhibit as both patients are in Stage 2 CKD during the second visit.
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