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Abstract

Deterministic models are approximations of reality that are often easier to build and inter-
pret than stochastic alternatives. Unfortunately, as nature is capricious, observational data
can never be fully explained by deterministic models in practice. Observation and process
noise need to be added to adapt deterministic models to behave stochastically, such that
they are capable of explaining and extrapolating from noisy data. Adding process noise to
deterministic simulators can induce a failure in the simulator resulting in no return value
for certain inputs – a property we describe as “brittle.” We investigate and address the
wasted computation that arises from these failures, and the effect of such failures on down-
stream inference tasks. We show that performing inference in this space can be viewed as
rejection sampling, and train a conditional normalizing flow as a proposal over noise values
such that there is a low probability that the simulator crashes, increasing computational
efficiency and inference fidelity for a fixed sample budget when used as the proposal in an
approximate inference algorithm.

1. Introduction

In order to compensate for epistemic uncertainty due to modelling approximations and un-
modeled aleatoric uncertainty, deterministic simulators are often “converted” to “stochas-
tic” simulators by randomly perturbing the state at each time step. In practice, models
adapted in this way often provide better inferences (Møller et al., 2011; Saarinen et al.,
2008; Lv et al., 2008; Pimblott and LaVerne, 1990; Renard et al., 2013). State-independent
white noise with heuristically tuned variance is often used to perturb the state (Adhikari
and Agrawal, 2013; Brockwell and Davis, 2016; Fox, 1997; Reddy and Clinton, 2016; Du
and Sam, 2006; Allen, 2017; Mbalawata et al., 2013). However, naively adding noise to the
state will, in many applications, render the perturbed input state “invalid,” inducing fail-
ure (Razavi et al., 2019; Lucas et al., 2013; Sheikholeslami et al., 2019). These failures waste
computational resources and reduce sample diversity, worsening inference performance.

Examples of failure modes include ordinary differential equation (ODE) solvers not
converging to the required tolerance in the allocated time, or, the state crossing into an
unhandled configuration, such as solid bodies overlapping. Establishing the cause of failure
is non-trivial and hence, the simulation artifact can be sensitive to seemingly inconsequential
alterations to the state – a property we describe as “brittle.”
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The principal contribution of this paper is a technique for minimizing this failure rate.
We proceed by first framing sampling from brittle simulators as rejection sampling. We
then eliminate rejections by learning the state-dependent density over perturbations that
do not induce failure, using conditional autoregressive flows (Papamakarios et al., 2017).
Doing so renders the joint distribution unchanged and retains the interpretability afforded
by the simulator, but improves sample efficiency. We show that using the learned proposal
increases the fidelity of the inference results attainable on a range of examples.

2. Methodology

We denote the brittle deterministic simulator as f : X → {X , ⊥} ,X = RD, where a return
value of ⊥ denotes failure. Over the whole support, f defines a many-to-one function, as
many states map to ⊥, however we only require that f is one-to-one in the accepted region,
a condition satisfied by ODE models. A stochastic, additive perturbation to state, denoted
zt ∈ X , is proposed such that xt ← f(xt−1 +zt), zt ∼ p(·|xt−1), although this is often state
independent. We include more detailed derivations in Supplementary Materials Section B.

Brittle Simulators as Rejection Samplers The naive approach to iterate the per-
turbed system is to repeatedly sample from the proposal distribution and evaluate f until
the simulator successfully exists. We begin by showing that this process defines a rejection
sampler. The use of f and p(zt|·) implicitly specifies a distribution over successfully iter-
ated states, p(xt|xt−1); and consequently a second distribution over accepted perturbations,
denoted p(zt|xt−1), which, under the process outlined above, can be written as:

p̄(zt|xt−1) =

{
1
Mp
p(zt|xt−1), if f(xt−1 + zt) 6= ⊥

0, otherwise
(1)

where the normalizing constant Mp is the acceptance rate under p. In regions that fail
the sample is rejected with certainty. In the accepted region, p̄ ∝ p, which is a sufficient
condition for a rejection sampler to be valid, without needing to evaluate Mp or p̄. This
represents a rejection sampler with an acceptance rule of I [f(xt−1 + zt) 6= ⊥] targeting
p̄(xt|xt−1).

Change of Variable in Brittle Simulator We now seek to learn a proposal distribution
over zt values conditioned on the current state xt−1, denoted qφ, parameterized by φ, to
replace p but placing no mass on regions that are rejected, resulting in an acceptance rate
tending to unity. We denote qφ as the proposal we train, which, coupled with the simulator,
implicitly defines a proposal over accepted samples, denoted qφ. We wish to minimize the
distance between joint distribution implicitly specified over accepted iterated states using
p, f and qφ, amortized across state space (Le et al., 2016):

φ∗ = arg min
φ

Ep(xt−1)

[
DKL

[
p(xt|xt−1)||qφ(xt|xt−1)

]]
. (2)

Expanding the Kullback–Leibler divergence (DKL), applying a change of variables yields,
and noting that the Jacobian terms can be cancelled yields:

φ∗ = argmax
φ

Ep(xt−1)Ezt∼p(·|xt−1)

[
log qφ(zt|xt−1)

]
. (3)
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However, qφ is defined implicitly after rejection sampling, and so we can adapt (1) for qφ and
substitute back into (3). Differentiation of the acceptance rate (Mqφ) is intractable. How-
ever, noting that φ∗ is a maximizer for both qφ and q̄φ, we can instead optimize qφ(zt|xt−1):

φ∗ = argmax
φ

Ep(xt−1)Ezt∼p(zt|xt−1) [log (qφ(zt|xt−1))] . (4)

By removing the rejection sampler as we have, we have implicitly specified that the proposal
distribution must have an acceptance rate of one. This term is differentiable with respect
to φ and so we can maximize this quantity using stochastic gradients.

Importantly the flow is not explicitly trained to maximize the acceptance rate. The flow
is trained to minimize the KL divergence between the implicitly specified distribution over
accepted samples and the learned proposal distribution. Accordingly the flow retains the
shape of the proposal distribution in regions of state space that do not yield failure (this can
be seen by comparing red and green contours in the interior of the dashed lines in Figure
1a) and hence the learned distribution cannot collapse to add trivially small perturbations,
as would be the case if we had directly optimized for high acceptance rates. By exploiting
change of variables we are able to “project” back through the rejection sampling procedure
and hence we can optimize qφ as we do not need to compute the derivative of the rejection
rate as we would have otherwise needed to do.

Finally, we note that generation of data training data and learning of the autoregres-
sive flow is a computationally intensive procedure. However simulators can take on the
order of seconds to iterate and so the intention of this work is to create a technique that
maximizes computational efficiency when deployed. Sampling from the flow takes on the
order of milliseconds, can be accelerated using GPUs and scale favourably in the number of
samples being produced. Furthermore, the training procedure is performed once and hence
represents an offline, one-off cost exchanged for higher efficiency deployment. The training
data can also be generated using large-scale distributed computing (as the mini-batching
process is inherently embarrassingly parallelizable) that may not be available or practical
for use at deployment time.

Implementation We use a conditional masked autoregressive flow (Papamakarios et al.,
2017) as the structure of qφ, with 5 single-layer MADE blocks (Germain et al., 2015), 256
hidden units per layer and batch normalization layers at the input to each intermediate
MADE block. The dimensionality of the flow is the number of states perturbed in the
original model. To introduce conditioning we use the current state vector, xt−1, as input
to a hypernetwork (Ha et al., 2016) that outputs the parameters for each layer in the
flow. The networks are implemented in PyTorch (Paszke et al., 2017), and optimized using
ADAM (Kingma and Ba, 2014).

3. Experiments

We demonstrate on two examples here, and an additional two experiments in the appendix.
In these experiments we first aim to demonstrate that learning the required conditional
autoregressive flow is tractable and faithfully represents the conditional distribution over
accepted perturbations. We then use the learned proposal in a particle-based sequential
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Figure 1: Results for the annulus problem introduced in Section 3.1. 1a indicates the
permissible region as a black dashed band, where p and qφ is shown in red and green
respectively. The shape of qφ is the same as p inside the band, with little mass outside of
the band. This shows the flow has learned p̄ effectively with a low rejection rate. 1b confirms
qφ all-but eliminates rejection. 1c shows the reduction in the variance of the evidence across
100 independent sequential Monte Carlo sweeps of 100 independent datasets.

Monte Carlo state-space inference scheme and show that lower-variance inference results
can be obtained for a fixed sample budget.

3.1. Annulus

In this example, the (unknown) true generative model of the observed data is a constant
speed circular orbit around the origin in the x-y plane. We perform inference using a
misspecified model that only simulates constant velocity forward motion, such that xt ∈
R4, with Gaussian perturbations to position and velocity. We impose a failure constraint
limiting the change in the distance of the point from the origin to a fixed threshold. This
condition mirrors the notion that states in brittle simulators have large allowable covariances
in particular directions, but very narrow permissible perturbations in other directions.

Figure 1a and Figure 1b shows qφ has effectively learned p̄(zt|xt−1), reducing rejection
rate under qφ to less than 4% compared to approximately 75% under p. We then use the
learned qφ as the proposal in a particle filter (Doucet et al., 2001), an approximate inference
algorithm often applied to posterior inference in time-series models. We use a fixed sample
budget and hence failed samples are discarded, without retrying a new sample from the
proposal. The results in Figure 1c show that we are able to recover lower variance evidence
approximations using qφ compared to p, achieving a paired t-test score of < 0.0001. This
experiment confirms we are able to learn a proposal that incurs lower rejection, and that
reducing the rejection rate increases fidelity of inference (for a fixed computational budget).

3.2. MuJoCo

We now apply our method to the robotics simulator MuJoCo (Todorov et al., 2012), us-
ing the built-in example “tosser.” MuJoCo allows some overlap between solid objects to
simulate the contact dynamics. This is an example of model misspecification borne out of
the requirements of reasonably writing a simulator. We therefore place a hard limit on the
amount objects are allowed to overlap. We add Gaussian perturbations to the state.
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Figure 2: Results of the “tosser” experiment introduced in Section 3.2. 2a shows a typical
state evolution. 2b shows the conditional autoregressive flow we learn markedly reduces the
number of rejections. 2c shows the results of performing sequential Monte Carlo using p
and qφ. 2d shows the results of performing hypothesis testing, where the correct hypothesis
(3) not selected using p, but is using qφ.

Figure 2 shows the results of this experiment. Collisions are generally rare events and
hence the rejection rate of p is just 10%. Figure 2b shows that the autoregressive flow learns
a proposal with a significantly lower rejection rate, reaching 3% rejection. However these
rejections are concentrated in the critical regions of state-space and so this reduction yields
an large reduction in the variance of the evidence approximation, as shown in Figure 2c. We
conclude by applying our method to hypothesis testing, selecting the mass of the capsule.
Shown in Figure 2d, using p results in higher variance evidence approximations than when
qφ is used, causing p to select the wrong model, with a reasonable level of significance
(p = 0.125), while using qφ selects the correct hypothesis with p = 0.0127.

4. Conclusion

In this paper we have tackled reducing simulator failures caused by naively perturbing the
input state. We achieve this by defining these simulators as rejection samplers and learning
a conditional autoregressive flow to estimate the state-dependent proposal distribution con-
ditioned on acceptance. We show that using this learned proposal reduces the variance of
inference results when used as the proposal in a subsequent approximate inference scheme.
This work has readily transferable practical contributions in the scientific community where
naively modified simulation platforms are widely deployed.
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Appendix A. Background

A.1. Smoothing Deterministic Models

Deterministic simulators are often stochastically perturbed to increase the diversity of the
achievable simulations and to fit data more effectively. White noise perturbation to time
series systems is common, such as the widely used ARMA models (Adhikari and Agrawal,
2013; Brockwell and Davis, 2016). The most straightfoward example of this however is the
widely used Kalman filter (Kalman et al., 1960). The Kalman filter, at its core, is determin-
stic transition model which is then perturbed with additive Gaussian noise. The form of
the process and noise kernels are chosen such the system has a closed form representation.
Without the additive process noise, the Kalman filter is deterministic and would be unable
to represent the variability in the real-world.

More complex systems cannot be analyzed in closed form like the Kalman filter. Accord-
ingly deterministic simulators of the dynamics with stochastic perturbations and numer-
ical methods are used in practice. Specific examples of such systems that are: stochas-
tic Hodgkin Huxley models of neural dynamics (Fox, 1997; Coutin et al., 2018; Gold-
wyn and Shea-Brown, 2011; Saarinen et al., 2008), computational finance analysis of asset
prices (Gamba, 2003; Reddy and Clinton, 2016; Kalogeropoulos et al., 2010), predator-prey
dynamics (Du and Sam, 2006), epidemiology (Allen, 2017) and mobile robotics (Thrun
et al., 2001; Fallon et al., 2012).

A.2. Simulator Failure

As simulators become more complex, guaranteeing robustness is more difficult, and indi-
vidual function evaluations are more expensive. Lucas et al. (2013) and Edwards et al.
(2011) establish the sensitivity of earth science models to static input parameter values by
building a discriminative classifer for parameters that induce failure. Sheikholeslami et al.
(2019) take an alternative approach instead treating simulator failure as an imputation
problem, fitting a function regressor to predict the outcome of the failed experiment given
the neighbouring experiments that successfully terminated. However these methods are
limited by the lack of clear probabilistic interpretation in terms of the originally specified
joint distribution in time series models and their ability to scale to high dimensions.

A.3. Autoregressive Flows

Autoregressive flows (AFs) (Papamakarios et al., 2017) are a flexible class of density estima-
tors. AFs define a density, qφ(x), trainable using stochastic gradient descent to approximate
the target distribution p(x), by minimizing the KL-divergence between the target distribu-
tion and the approximation:

φ∗ = arg min
φ

KL [p(x)||qφ(x)] , (5)

AFs operate by transforming samples from a “base distribution” through a series of learned
warpings, interpretable as a change of variables, into samples distributed according to the
target distribution. The flow layers are designed such that the required Jacobians and
inverses are cheaply computable.
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A popular flow structure is the masked autoencoder for distribution estimation (Ger-
main et al., 2015), or MADE, that facilitates GPU-based parallelization. Multiple MADE
blocks are used in masked autoregressive flows (MAF) (Papamakarios et al., 2017) over-
coming the ordering dependency of autoregressive flows. AFs are also capable of learning
conditional distributions by making the parameters of the flow dependent on the data using
hypernetworks (Ha et al., 2016).

Appendix B. Methodology

We include here a more complete derivation of the results presented in the main text.
The overarching aim of this work is to develop a flexible proposal over perturbations that

places minimal mass on perturbations that cause the simulator to not return a value, while
not changing the originally specified model. Doing so reduces the wasted computational
cost incurred by simulations failing, and also increases the effective sample size for a given
sample budget.

We consider deterministic models, expressed as simulators, describing the time-evolution
of a state xt ∈ X , where we denote application of the simulator iterating the state as
xt ← f(xt−1). However, brittle simulators fail for “invalid” inputs, which we denote as a
return value of ⊥ (read as “bottom”) from the simulator. Hence the complete definition
of f is f : X → {X ,⊥}. We denote the region of valid inputs as XA ⊂ X , and the region
of invalid inputs as XR ⊂ X , such that XA ∪ XR = X , where the boundary between these
regions is unknown. Over the whole support, f defines a many-to-one function, as all XR
maps to ⊥. However, the algorithm we go on to derive only requires that f is one-to-one
in the accepted region. This is not uncommon in real simulators, and is satisfied by, for
example, ODE models.

A stochastic, additive perturbation to state, denoted zt ∈ X , is applied to induce a dis-
tribution over states. The distribution of this perturbation is denoted p(zt|xt−1), although,
in practice, this distribution is often state independent. The iterated state is therefore cal-
culated as xt ← f(xt−1 + zt). We define the random variable At ∈ {0, 1} to denote whether
the perturbation (as xt−1 is being conditioned on) is accepted.

B.1. Brittle Simulators as Rejection Samplers

The naive approach to sampling from the perturbed system, shown in Algorithm 1, is to
repeatedly sample from the proposal distribution and evaluate f until the simulator suc-
cessfully exists. This procedure defines At = I [f(xt−1 + zt) 6= ⊥] , zt ∼ p(zt|xt−1), i.e.
successfully iterated samples are accepted with certainty. This approach incurs significant
wasted computation as the simulator must be called repeatedly, with failed iterations being
discarded. Therefore the objective of this work is to derive a more efficient sampling mech-
anism. We begin by showing that Algorithm 1 defines a rejection sampler, with a specific
form, targeting the space of successfully iterated states. This reasoning is illustrated in
Figure 3.

The behavior of f and the distribution p(zt|·) implicitly define a distribution over suc-
cessfully iterated states. We denote this “target” distribution as p(xt|xt−1) = p(xt|xt−1, At =
1), where the bar indicates that the sample was accepted, and hence places no probability
mass on failures. Note there is no bar on p(zt|xt−1) above, indicating that it is defined

10
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Algorithm 1 Sampling from a brittle simulator.

Data: Current state xt−1, brittle simulator f , perturbation proposal p(zt|xt−1).
Result: Iterated state xt and perturbation zt.
xt ← ⊥
while xt == ⊥ do

zt ∼ p(zt|xt−1)
xt ← f(xt−1 + zt)

end
return xt, zt

0

1

�2 0 2

zt

0

1

I [f(zt) 6= ?]

Mpp(zt)

p̄(zt)

Figure 3: Graphical representation of how a brittle deterministic simulator acts as a rejection
sampler, targeting p̄(zt|xt−1). For clarity here we assume xt=1 = 0 and zt is independent
of xt. The simulator, f(zt), returns ⊥ for some unknown input regions, shown in green.
The proposal over zt is shown in blue. The target distribution, p̄(zt), shown in orange, is
implicitly defined as p̄(zt) = 1

Mp
p(zt)I [f(zt) 6= ⊥], where Mp is the normalizing constant

from p, equal to the acceptance rate. Accordingly the proposal distribution, scaled by
Mp, is exactly equal to p̄(zt) in the accepted region. Therefore sampling from p until f
successfully exits, as in Algorithm 1, can be seen as constructing a rejection sampler with
proposal p(zt), and acceptance ratio, p̄(zt)

Mp(zt)
. This reduces to I [f(zt) 6= ⊥], requiring no

additional parameters.

with no knowledge of the accept/reject behaviors of f and hence probability mass may be
placed on regions that yield failure. The functional form of p̄ is unavailable, and the density
cannot be evaluated for any input value. Importantly, p̄ is the distribution specified a-priori
by the modeler, sampled from by the entire simulation pipeline, and hence any algorithm
we develop must also target p̄(xt|xt−1).

The existence of p(xt|xt−1) implies the existence of a second distribution: the distri-
bution over accepted perturbations, denoted p(zt|xt−1). Note that this distribution is also
conditioned on acceptance under the chosen simulator indicated be the presence of a bar.
We assume f is one-to-one in the accepted regime, and so the change of variables rule can
be applied to directly relate this to p(xt|xt−1). Under our initial algorithm for sampling
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from a brittle simulator we can therefore write the following identity:

p̄(zt|xt−1) =

{
1
Mp
p(zt|xt−1), if f(xt−1 + zt) 6= ⊥

0, otherwise
(6)

where the normalizing constant Mp is the acceptance rate under p. By inspecting (6),
accepting with certainty perturbations that exit successfully can be seen as proportionally
shifting mass from regions of p where the simulator does not exit to regions where it does.

In a rejection sampler, the probability of accepting a proposed sample is proportional to
the ratio between the target distribution and the proposal, scaled by a constant such that:

Mp(zt|·) ≥ p̄(zt|·) ∀zt ∈ X . (7)

As we have already stated, we cannot evaluate the target density, but we can establish if
the density is non-zero (indicated by the simulator not failing). A sufficient condition to
ensure the correctness of a rejection sampler in this scenario is that the proposal density is
proportional to the target density wherever the target density has support. Applying this
condition to our scenario implies that if the simulator fails, the density under the target
distribution is known to be zero and the sample should be rejected with certainty, regardless
of the density under the proposal distribution. In the accepted region, the sample should
be accepted with probability p(zt|·)/Mp(zt|·), where M is selected to satisfy (7). However,
from (6), it can be seen p ∝ p hence proposal and target are proportional irrespective of
the choice of M , and the value of Mp, satisfying the above criteria. The acceptance rule of
the rejection sampler is therefore reduced to I [f(xt−1 + zt) 6= ⊥]. Importantly, we do not
need to evaluate Mp, M , or p̄ to use Algorithm 1 as a valid rejection sampler.

This simple probabilistic interpretation of the behavior of the simulation process enables
us to establish (6) as a definition of p̄ valid across the entire input domain of f – a definition
we now exploit to learn an efficient proposal.

B.2. Change of Variable in Brittle Simulator

We now derive how we can learn the proposal distribution, denoted qφ parameterized by φ,
to replace p, such that the acceptance rate under qφ (denoted Mqφ) tends towards unity,
minimizing wasted computation, while also retaining the same joint distribution as the
originally specified model. We denote qφ as the proposal we train, which, coupled with the
simulator, implicitly define a proposal over accepted samples, denoted qφ.

Expressing this mathematically, we wish to minimize the distance between joint distri-
bution implicitly specified over accepted iterated states using the a-priori specified proposal
distribution p, and the joint distribution defined implicitly as qφ:

φ∗ = arg min
φ

Ep(xt−1)

[
DKL

[
p(xt|xt−1)||qφ(xt|xt−1)

]]
, (8)

where we select the Kullback-Leibler (KL) divergence as the metric of distance between
distributions. The outer expectation defines this objective as amortized across state space.
As is standard in amortized and compiled inference methods we can generate the samples
by directly sampling from the model (Le et al., 2016; Gershman and Goodman, 2014).
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We eventually perform this minimization using stochastic gradient descent, and so this
expectation defines the distribution from which we sample the minibatches used, and so we
drop this expectation for compactness.

Expanding the KL term yields:

φ∗ = arg min
φ

Ext∼p(·|xt−1) [log (w)] , (9)

w =
p(xt|xt−1)

qφ(xt|xt−1)
. (10)

Noting that qφ and p are defined only on accepted samples, where f is one-to-one, we can
apply a change of variables defined for qφ as:

qφ(xt|xt−1) = qφ(f−1(xt)|xt−1)

∣∣∣∣df−1(xt)

dxt

∣∣∣∣ , (11)

and likewise for p. This transforms the distribution over xt into a distribution over zt and
a Jacobian term:

w =
p(f−1(xt)|xt−1)

∣∣∣df−1(xt)
dxt

∣∣∣
qφ(f−1(xt)|xt−1)

∣∣∣df−1(xt)
dxt

∣∣∣ . (12)

Noting that the same Jacobian terms appear in the numerator and denominator we are able
to cancel these:

w =
p(f−1(xt)|xt−1)

qφ(f−1(xt)|xt−1)
, (13)

taking care to also apply the change variables in the distribution we are sampling from in
(9). We can now discard the remaining p term as it is independent of φ, and noting that
f−1(xt) = xt−1 + zt we can write:

φ∗ = argmax
φ

Ezt∼p(·|xt−1)

[
log qφ(zt|xt−1)

]
. (14)

It can now be read off that minimizing the KL stated in (9) can be performed by setting
qφ(zt|xt−1) equal to p(zt|xt−1). Had we have discarded p a step earlier, we would have been
unable to eliminate the Jacobian terms inside the logarithm.

However, this distribution is defined after rejection sampling, and can only be defined
as in (6):

qφ(zt|xt−1) = qφ(zt|xt−1, At = 1), (15)

=

{
1

Mqφ
qφ(zt|xt−1) if f(xt−1 + zt) 6= ⊥,

0 otherwise,
(16)

denoting Mqφ as the acceptance rate under qφ. Note again that qφ is not dependent on
the accept/reject characteristics of f . Differentiation of Mqφ is intractable. Further, there

13



Coping With Simulators That Don’t Always Return

is an infinite family of qφ proposals that yield p = qφ, that have non-zero rejection rates.
However, we observe that φ∗ is a maximizer for both qφ and q̄φ in the limit of zero rejection,
and so we can instead optimize qφ(zt|xt−1):

φ∗ = argmax
φ

Ezt∼p(zt|xt−1) [log (qφ(zt|xt−1))] , (17)

with no consideration of the rejection behavior. Additionally, by removing the rejection
sampler as we have, we have implicitly specified that the proposal distribution must have an
acceptance rate of one. This term is differentiable with respect to φ and so we can maximize
this quantity using stochastic gradients, where samples from the outer expectation over xt−1

defines the distribution from which we sample minibatches from.
This expression shows that we can learn the distribution over accepted xt values by

learning the distribution over zt, without needing to calculate the Jacobian or inverse of
the transformation defined by f . We can now perform density estimation on the accepted
samples from the a-priori specified rejection sampler to learn a proposal for accepted xt
samples, thus minimizing wasted computation, targeting the same overall joint distribution,
and retaining interpretability by utilizing the simulator.

Appendix C. Experiments

In this section we include additional results figures and experimental details for the an-
nulus and MuJoCo experiment presented in the main text, along with an additional two
experiments.

C.1. Additional Experiment – Bouncing Balls

Our first additional example uses a simulator of balls elastically bouncing in a square en-
closure, as shown in Figure 4a. The dimensionality of the state vector, xt, is four times
the number of balls – the x-y coordinate and velocity of the centre of mass, per ball. We
add a small amount of Gaussian noise at each iteration to the position and velocity of each
ball. This perturbation induces the possibility that two balls overlap, or, a ball intersects
with the wall. Both of these represent invalid physical arrangements and so the simulator
returns ⊥ for such configurations. We note that here, we are conditioning on the state of
both balls simultaneously, and proposing the perturbation to the state jointly.

Figure 4 displays the results of this experiment. Figure 5 shows the distribution over
x-y perturbations of a single ball, conditioned on the other ball being static and stationary.
Green contours show the perturbations learned by autoregressive flow such that failure is not
induced. In Figure 4c we plot the rejection rate under p and qφ as a function of the position
of the first ball, with the second ball fixed in the position shown, showing that rejection
has been all but eliminated. We again see a reduction in the variance of the evidence
approximation when comparing p and q in an SMC scheme, as shown in Figure 4d. This
example demonstrates the applicability of the autoregressive flow; but also demonstrates
how a seemingly simple simulator becomes brittle when naively perturbed.
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Figure 4: Results of the bouncing balls experiment introduced in Section C.1, with two
radius 5, unit mass balls in an enclosure of size 30. 4a shows an example trajectory of
the system. 4b shows the autoregressive flow learning to nearly eliminate rejections. 4c
shows the rejection rate as a function of the position of the first ball, with the second ball
in the position shown. The trained proposal (right) has all but eliminated rejection in the
permissible space compared to the a-priori specified proposal (left). The rejection rate under
p is much higher in the interior as the second ball may also leave the enclosure, whereas
qφ has practically eliminated rejection by jointly proposing perturbations. 4d shows the
reduction in variance achieved by using qφ. Although the reduction appears more modest
compared to, say, the annulus example, it still achieves a paired t-test score of < 0.0001,
indicating a strong level of statistical significance.

C.2. Additional Experiment – Neuroscience Simulator

We conclude by applying our algorithm to a simulator for the widely studied Caenorhabditis
elegans roundworm. WormSim, presented by Boyle et al. (2012), is a simulator of the
body of the worm, driven by a surrogate for the true neural architecture of Caenorhabditis
elegans, and uses a 510 dimensional state representation. We apply perturbations to the 98
dimensional subspace defining the 49 x-y coordinate pairs physical position of the worm,
while conditioning on the full 510 dimensional state vector. The expected rate of failure
increases sharply as a function of the scale of the perturbation applied, as shown in Figure
6a, as the integrator used in WormSim is unable to integrate highly perturbed states.

We then train a autoregressive flow targeting p̄, where the rejection rate during training
is shown in Figure 6b. We see that we are able to learn an autoregressive flow with lower
rejection rates, reaching approximately 53% rejection, for a p with approximately 75%
rejection. Although the rejection rate is higher than ultimately desired, we include this
example to show how rejections occur in real simulators through integrator failure. We
believe larger flows with regularized parameters can reduce the rejection rate further.
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Figure 5: Shown is the a-priori specified proposal distribution, p, over the perturbation to
the position of the first ball specified in the model, and the learned proposal, qφ in green,
for the bouncing balls experiment introduced in Section C.1. The edge of the permissible
region of the enclosure is shown as a black dashed line. The second ball is fixed at [25, 15],
and the resulting invalid region induced shaded. The flow has learned to deflect away from
the disallowed regions.
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Figure 6: Results from the WormSim example introduced in Section ??. 6a: The rate at
which the simulator fails increases sharply as a function of the standard deviation of the
applied perturbation. ??: The reduction in rejections during training.
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C.3. Additional Experimental Details – Annulus

The procedure we used for generating the true data is

δt = 1,

t ∈ [0, . . . , 100] ,

x0 ∼ N (0, 1),

y0 ∼ N (0, 1),

r =
√
x2

0 + y2
0,

s0 ∼ N (0, 0.1
√

2),

a0 ← arctan

(
yt
yt

)
,

ẋ0 ∼ −s0 × sin(a0),

ẏ0 ∼ s0 × cos(a0),

xt ← xt−1 + δt× ẋt−1,

yt ← yt−1 + δt× ẏt−1,

st ←
√
ẋ2
t−1 + ẏ2

t−1,

at ← arctan

(
yt
yt

)
,

ẋt ← −st × sin at,

ẏt ← st × cos at,

yt ← [N (xt, 0.1), N (yt, 0.1)] ,

where yt denotes the tth observation.
The model used at inference is:

δt = 1,

t ∈ [0, . . . , 100] ,

x0 ∼ N (0, 1),

y0 ∼ N (0, 1),

ẋ0 ∼ N (0, 0.1),

ẏ0 ∼ N (0, 0.1),

xt ← xt−1 + δt× ẋt−1 + zxt , zxt ∼ N (0, 0.1),

yt ← yt−1 + δt× ẏt−1 + zyt , zxt ∼ N (0, 0.1),

ẋt ← ẋt−1 + zẋt , zxt ∼ N (0, 0.1),

ẏt ← ẏt−1 + zẏt , zyt ∼ N (0, 0.1),

Failure is defined as the change in radius being greater than 0.03.
To compute the variances of the SMC sweep we generate 100 random traces. We then

perform 50 SMC sweeps per trace, using 100 particles, and compute the evidence.
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C.4. Additional Experimental Details – MuJoCo

We use the configuration “tosser” included in MuJoCo Todorov et al. (2012), only modifying
it by removing the second unused bucket. We use completely standard simulation configu-
ration. We introduce the limit on overlap leveraging MuJoCos in-built collision detection,
rejecting overlaps above 0.005. Typical overlaps in the standard execution of MuJoCo are
below this limit. An integration time of 0.002 is used.

We observe only the x-y position of the capsule with Gaussian distributed noise, with
standard deviation 0.1. We perturb the x-y position and velocity of the capsule with
Gaussian distributed noise, with standard deviation 0.005 and 0.1 respectively. We perturb
the angle and angular velocity of the capsule with Gaussian distributed noise, with standard
deviation 0.05 and 0.05 respectively. These values were chosen to be in line with typical
simulated values in the tosser example.

We place a prior over the initial position and velocity with standard deviation 0.01 for
positions and 0.1 for velocities, and mean equal to their true position.

In this, the state input to the normalizing flow is the position and angle, and derivatives,
of the capsule, as well as the state of the actuator. The actuators state is unobserved and is
not perturbed under the model. We also input time into the normalizing flow as the control
dynamics are not constant with time.

To compute the variances of the SMC sweep we generate 50 random traces. We then
perform 20 SMC sweeps per trace, using 100 particles, and compute the evidence.
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