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ABSTRACT

Using modern deep learning models to make predictions on time series data from
wearable sensors generally requires large amounts of labeled data. However, la-
beling these large datasets can be both cumbersome and costly. In this paper, we
apply weak supervision to time series data, and programmatically label a dataset
from sensors worn by patients with Parkinson’s. We then built a LSTM model
that predicts when these patients exhibit clinically relevant freezing behavior (in-
ability to make effective forward stepping). We show that (1) when our model
is trained using patient-specific data (prior sensor sessions), we come within 9%
AUROC of a model trained using hand-labeled data and (2) when we assume no
prior observations of subjects, our weakly supervised model matched performance
with hand-labeled data. These results demonstrate that weak supervision may help
reduce the need to painstakingly hand label time series training data.

1 INTRODUCTION

Time series data generated by wearable sensors are an increasingly common source of biomedical
data. With their ability to monitor events in non-laboratory conditions, sensors offer new insights
into human health across a diverse range of applications, including continuous glucose monitoring
(Cappon et al.,|2017), atrial fibrillation detection (Tison et al.l [2018)), fall detection (Casilari et al.,
2017), and general human movement monitoring (Kumari et al.,|2017).

Supervised machine learning with sensor time series data can help automate many of these mon-
itoring tasks and enable medical professionals make more informed decisions. However, devel-
oping these supervised models is challenging due to the cost and difficultly in obtaining labeled
training data, especially in settings with considerable inter-subject variability, as is common in hu-
man movement research (Halilaj et al., 2018)). Traditionally, medical professionals must hand label
events observed in controlled laboratory settings. When the events of interest are rare this process is
time consuming, expensive, and does not scale to the sizes needed to train robust machine learning
models. Thus there is a need to efficiently label the large amounts of data that machine learning
algorithms require for time series tasks.

In this work, we explore weakly supervised (Ratner et al.,|2016) models for time series classification.
Instead of using manually labeled training data, weak supervision encodes domain insights into the
form of heuristic labeling functions, which are used to create large, probabilistically labeled training
sets. This method is especially useful for time series classification, where the sheer number of data
points makes manual labeling difficult.

As a motivating test case, we focus on training a deep learning model to classify freezing behaviors
in people with Parkinson’s disease. We hypothesize that by encoding biomechanical knowledge
about human movement and Parkinson’s (Halilaj et al., 2018)) into our weakly supervised model,
we can reduce the need for large amounts of hand labeled data and achieve similar performance to
fully supervised models for classifying freezing behavior. We focus on two typical clinical use cases
when making predictions for a patient: (1) where we have no prior observations of the patient, and
(2) where we have at least one observation of the patient.
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2 BACKGROUND

2.1 WEAK SUPERVISION

In weak supervision, noisy training labels are programmatically generated for unlabeled data using
several heuristic labeling functions which encode specific domain knowledge. These labeling func-
tions are modeled as a generative process which allows us to denoise the labels by learning their
correlation structure and accuracies (Ratner et al., [2016)). These labeling functions are of the form
A : X — Y U which take in a single candidate x € X, and output a label y € ) or {), if the
function abstains. Using n labeling functions on m unlabeled data points, we create a label matrix
L = (YU @)™*™, We then create a generative model from this label matrix and three factor types
(labeling propensity, accuracy, and pairwise correlation) of labeling functions:

¢r3P(L,Y) = 1{Li ; # 0}

¢15°(L,Y) = 1{Li; =y}

Cor(L,Y) = WLij =Ly} (j,k)€C
where C are the potential correlations. Next, we concatenate all these factors for a given data point
x; and all labeling functions j = 1...n, resulting in ¢;(L, Y'), and learn the parameters w € R27+(CI

to maximize the objective:

m

pw(L7 Y) = Zqzl €xXp (Z wT¢i(L7yi))
=1

With this generative model, we can then generate probabilistic training labels, ¥ = p(Y'|L) where
w are the learned parameters in the label model.

Using these probabilistic labels, we can train a discriminative model that we aim to generalize be-
yond the information encoded in the labeling functions. We do this by minimizing the expected loss

with respect to Y:

6 = arg min E, _+l(ho(x;),
g ; gl (ho(zi),y)

As we increase the amount of unlabeled data, we increase predictive performance (Ratner et al.,
2017).

3 METHODOLOGY

3.1 DATASET

We use a dataset that contains series of measurements from 36 trials from 9 patients that have
Parkinson’s Disease (PD) and exhibit freezing behavior. PD is a neurodegenerative disease marked
by tremor, loss of balance, and other motor impairments, that affects over 10 million people world-
wide. Freezing of gait (FOG) — a sudden and brief episode where an individual is unable to produce
effective forward stepping (Giladi et al., [1992}|1997) —is one of the disabling problems caused by
PD, and often leads to falls (Bloem et al.,|2004).

In this dataset, subjects walked in a laboratory setting that the investigators designed to elicit freezing
events. Leg or shank angular velocity was measured during the forward walking task using wearable
inertial measurement units (sampled at 128 Hz), which were positioned in a standardized manner for
all subjects and tasks on the top of the feet, on both shanks, on the lumbar, and chest trunk regions.

3.2 PREPROCESSING

In this work, we focus on sensor streams from both shanks, though it is straightforward to include
the other sensor streams (e.g. lumbar, feet, etc.). From each Turning and Barrier Course run, we
extract left and right ankle gyroscope data in the z-direction from each trial (up to 4 trials per course
run), along with the gold labels for these trials, which were manually recorded by a neurologist. We
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Figure 1: Example: From Raw Sensor Data to Probabilistic Labels

Table 1: Labeling Function Evaluation Results

Labeling Function Coverage (%) | Emp. Accuracy (%) | F1

Swing Angular Range 71.2 55.3 64.3
Angular Range Average 71.9 59.6 60.5
Peak Angular Shank Velocity 42.7 78.1 75.5
Stride Time 48.9 53.9 56.2
Variance in Angular Shank Velocity | 75.4 63.2 65.0

combine the data from all trials from all course runs, and segment the sensor data by gait cycle (of
the right leg) which is computed analytically from the angular velocity of ankle sensor data. In this
case, we define gait cycle as the time period between two successive peaks on an angular velocity
versus time plot.

We then define a single candidate to be z%** € X’ where a is the number of sensor streams and b is
the sequence length. For our task, a = 2 since we use the left and right ankle sensor streams, and b
is the sequence length for a single gait cycle (which slightly varies from cycle to cycle).

4 EXPERIMENTAL EVALUATION

4.1 LABELING FUNCTIONS

To programatically label data, we use five labeling functions which draw on domain specific knowl-
edge and empirical observations. Specifically, these labeling functions target features which can
distinguish freezing and non-freezing events. For all labeling functions, we assign positive, nega-
tive, or abstain labels based on empirically measured threshold values from the validation set. For
example, one heuristic we employ uses stride time arrhythmicity (Plotnik et al., [2005; |2007), which
we calculate as average coefficient of variation for the past 3 stride times of the left and right leg.
For this function, we label a candidate as freezing if the arrhythmicity of that candidate is greater
than 0.55, and not freezing if the arrhythmicity is less than 0.15. If arrhythmicity for a particular
candidate is in between these two values, we abstain. Other labeling functions we use involve the
swing angular range of the shank, and the amplitude and variance in shank angular velocity.

Using these labeling functions, we build a generative label model and predict probabilistic labels
y € Y for each candidate 2**” € X in the training set (Figure . See Table |1| for the individual
performance of each labeling function.

4.2 END MODEL

We then train a discriminative model on the probabilistic labels from the generative model that
incorporates the labeling functions discussed in the last section. We use a single layer bi-directional
LSTM and hidden state dimension 300 for our end model that takes in a multivariate sensor stream
as input. Since we use time series data from only the left and right ankle sensors, our input is two
dimensional. In order to provide longer temporal context, we pass in a windowed version of each
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Table 2: Performance in Each Setting

Session Splits Patient Splits
Supervision Type F1 | AUROC | Mean F1 (SD) | Mean AUROC (SD)
Hand-labeled 70.3 85.2 352 (31.1) 69.9 (14.8)
Weakly Supervised | 60.7 77.3 35.0 (29.3) 71.2 (11.24)

Table 3: Metrics for Individual Patients (hand-labeled supervision)

Metrics Pl P2 P3 P4 P5 P6 P7 P8
Positive Class Percentage | 4.07 | 6.53 | 38.2 | 60.3 | 36.1 | 15.8 | 35.7 | 11.2
F1 0 26.8 | 69.3 | 78.4 | 67.7 | 37.3 0 2.15
AUROC 429 | 80.0 | 84.7 | 74.6 | 82.6 | 80.7 | 62.0 | 51.4

candidate that includes the last three gait cycles and the next gait cycle (Figure[I). Since sequence
length of a single gait cycle slightly varies, we then pad these sequences and truncate any sequences
over a pre-defined maximum sequence length. To provide more contextual signal, we also add
multiplicative attention to pool over the hidden states in the LSTM.

4.3 RESULTS

We evaluate our weakly supervised model in two typical clinical settings, and compare perfor-
mance with that of a fully supervised model. In the first setting, we split the data into train-
ing/validation/testing by trials/sessions. In this setting, both the validation and testing set have a
single trial from each patient, and the training set has one or more trials from each patient. In the
second setting, we split data by patient. In this case, the testing (and validation) set contains all the
trials from a novel patient. We then cross-validate on each patient. These results are summarized in
Table 2l

From the session splits setting, we note that our weakly supervised model comes within 10 points in
F1 score and 8 points in AUROC of the fully supervised (hand-labeled) model. In the patient splits
setting, our weakly supervised model matches the performance of the fully supervised model.

In both supervision types, it is clear that our end to end system performs significantly better when it
has seen 1 or more sessions of a particular patient before. In the patient splits setting, our system has
difficulty generalizing to certain patients. For example, in Table [3] we see that the fully supervised
model has trouble predicting freezing events for patients P1, P7, and P8 in particular. These diffi-
culties are inherent to the problem — each patient exhibits different freezing behaviors, and some,
such as P1, P2, and P8, have relatively rare freezing events. This highlights why, at least for this
task, it is critical to have as many subjects as possible in the dataset — an objective that is far easier
to meet if hand labels are not required.

5 CONCLUSION AND NEXT STEPS

Our work demonstrates the potential of weak supervision on time series tasks. In both experiments,
our weakly supervised models performed close to or match the fully supervised models. Further,
the amount of data available for the weak supervision task was fairly small — with more unlabeled
data, we expect to be able to improve performance (Ratner et al., 2017). These results show that
costly and time-intensive hand labeling may not be required to get the desired performance of a
given classifier.

In the future, we plan to add more and different types of sensor streams and modalities (e.g., video).
We also plan to use labeling functions to better model the temporal correlation between individual
segments of these streams, which can potentially improve our generative model and hence end to
end performance.
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