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ABSTRACT

Federated learning is a distributed, privacy-aware learning scenario which trains a
single model on data belonging to several clients. Each client trains a local model
on its data and the local models are then aggregated by a central party. Current
federated learning methods struggle in cases with heterogeneous client-side data
distributions which can quickly lead to divergent local models and a collapse in
performance. Careful hyper-parameter tuning is particularly important in these
cases but traditional automated hyper-parameter tuning methods would require
several training trials which is often impractical in a federated learning setting. We
describe a two-pronged solution to the issues of robustness and hyper-parameter
tuning in federated learning settings. We propose a novel representation matching
scheme that reduces the divergence of local models by ensuring the feature repre-
sentations in the global (aggregate) model can be derived from the locally learned
representations. We also propose an online hyper-parameter tuning scheme which
uses an online version of the REINFORCE algorithm to find a hyper-parameter
distribution that maximizes the expected improvements in training loss. We show
on several benchmarks that our two-part scheme of local representation match-
ing and global adaptive hyper-parameters significantly improves performance and
training robustness.1

1 INTRODUCTION

The size of the data used to train machine learning models is steadily increasing, and the privacy
concerns associated with storing and managing this data are becoming more pressing. Offloading
model training to the data owners is an attractive solution to address both scalability and privacy
concerns. This gives rise to the Federated Learning (FL) setting (McMahan et al., 2016) where sev-
eral clients collaboratively train a model without disclosing their data. In synchronous FL, training
proceeds in rounds where at the beginning of each round, a central party sends the latest version of
the model to the clients. The clients (or a subset of them) train the received model on their local
datasets and then communicate the resulting models to the central party at the end of the round. The
central party aggregates the client models (typically by averaging them) to obtain the new version
of the model which it then communicates to the clients in the next round.

The FL setting poses a unique set of challenges compared to standard stochastic gradient descent
(SGD) learning on a monolithic dataset. In real-world settings, data from each client may be drawn
from different distributions, and this heterogeneity can lead the local learning processes to diverge
from each other, harming the convergence rate and final performance of the aggregate model. We
address this challenge in two ways: (1) adaptive on-line tuning of hyper-parameters; and (2) adding
a regularization term that punishes divergent representation learning across clients.

Traditional hyper-parameter tuning schemes, such as random search (Bergstra & Bengio, 2012)
or Bayesian methods (Bergstra et al., 2011; Snoek et al., 2012), require several training runs to
evaluate the fitness of different hyper-parameters. This is impractical in the FL setting, which strives
to minimize unnecessary communication. To address this issue, we formulate the hyper-parameter

1Code used to run all experiments is available under the anonymous repository https://gitlab.com/
anon.iclr2020/robust_federated_learning
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selection problem as an online reinforcement learning (RL) problem: in each round, the learners
perform an action by selecting particular hyper-parameter values, and at the end of the round get a
reward which is the relative reduction in training loss. We then update the hyper-parameter selection
policy online to maximize the rewards.

Unlike centralized SGD, where there is a single trajectory of parameter updates, the FL setting has
many local parameter trajectories, one per each active client. Even though they share the same initial
point, these trajectories could significantly diverge. Averaging the endpoints of these divergent tra-
jectories at the end of a training round would then result in a poor model (Zhao et al., 2018). Clients
with heterogeneous data distributions exacerbate this effect as each client could quickly learn repre-
sentations specific to its local dataset. We introduce a scheme that mitigates the problem of divergent
representations: each client uses the representations it learns to reconstruct the representations in the
initial model it receives. A client is thus discouraged from learning representations that are too spe-
cific and that discard information about the globally learned representations. We show that this
representation matching scheme significantly improves robustness and accuracy in the presence of
heterogeneous client-side data distributions.

We evaluate the performance of our two-part scheme, representation matching and online hyper-
parameter adjustments, on image classification tasks: MNIST, CIFAR10; and on a keyword spotting
(KWS) task. We show that for homogeneous client-side data distributions, our scheme consistently
improves accuracy. For heterogeneous clients, in addition to improving accuracy, our scheme im-
proves training robustness and stops catastrophic training failures without having to manually tune
hyper-parameters for each task.

2 RELATED WORK

The simplest automated hyper-parameter tuning methods execute random searches in hyper-
parameter space to find the best-performing hyper-parameters (Bergstra & Bengio, 2012). Random
search is outperformed by Bayesian methods (Bergstra et al., 2011; Snoek et al., 2012) that use the
performance of previously selected hyper-parameters to inform the choice of new hyper-parameter
to try. In these methods, the fitness of a hyper-parameter choice is the post-training validation accu-
racy. Running the training process to completion in order to evaluate the hyper-parameter fitness is
computationally intensive. This motivates running partial training runs instead (Klein et al., 2016;
Li et al., 2016). However, in FL settings with tight communication budgets, running several (partial)
training runs to select the right hyper-parameters could still be impractical.

Hyper-parameters can be optimized using gradient descent to minimize the final validation loss.
To avoid storing the entire training trajectory in order to evaluate the hyper-gradients, Maclaurin
et al. (2015) uses reversible learning dynamics to allow the entire training trajectory to be recon-
structed from the final model. Alternatively, the hyper-gradients can be calculated in a forward
manner, albeit at an increased memory overhead (Franceschi et al., 2017). Using the hyper-gradient
to optimize hyper-parameters is an iterative process that requires several standard training runs
(hyper-iterations), again making this approach impractical in a communication-constrained FL set-
ting. Hyper-parameters can be optimized using SGD in tandem with model parameters through the
use of hyper-networks (Ha et al., 2016; Lorraine & Duvenaud, 2018) which map hyper-parameters
to optimal model parameters. It is unclear how hyper-networks can be learned in a FL setting as we
are interested in choosing hyper-parameters that result in the best post-aggregation model and not
the hyper-parameters chosen by any particular client to optimize its own model on its own dataset.

The hyper-parameter tuning approaches most related to ours are those based on RL methods. Daniel
et al. (2016); Jomaa et al. (2019) learn policies and/or state-action values that are then used to select
good hyper-parameters. However, several training runs are needed to learn the policies and the
action values. Perhaps the closest approach to ours is the method in Xu et al. (2017) which trains an
actor-critic network in tandem with the main model and uses it to select actions (hyper-parameter
choices) that maximize the expected reduction in training loss. It is unclear how this approach can
be applied in a FL setting as the training process on each client has no access to the loss of interest
which is the loss of the post-aggregation model.

FL typically struggles when the client-side data distributions are significantly different (McMahan
et al., 2016; Zhao et al., 2018) as this causes the parameter trajectories to significantly diverge
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Figure 1: The three steps in a federated learning round. (a) The server communicates the latest model
parameters wt and the training hyper-parameters ht to each client. (b) client i trains the model
parameters wi

t and the representation matching parameters θit to minimize the classification loss
and the matching loss. (c) Each client sends back the updated model parameters to the server. The
server aggregates the received parameters, evaluates the loss of the aggregate model, and updates
the parameters of the hyper-parameter distribution, ψ, based on the history of the aggregate losses.

across different clients. This severely degrades the performance of the averaged model (Zhao et al.,
2018). One straightforward solution is to reduce the SGD steps each client takes between the syn-
chronization (model averaging) points. More frequent model synchronization, however, increases
communication volume. Various compression methods (Sattler et al., 2019; Konečnỳ et al., 2016)
are able to compress the model updates, which makes it possible to synchronize more frequently and
mitigate the effect of heterogeneous data distributions. Sattler et al. (2019) takes the extreme case of
synchronizing after every SGD step, which reduces the FL setting to standard SGD. An alternative
solution is to mix the datasets of the different clients to obtain more homogeneous client-side data
distributions (Zhao et al., 2018). This, however, compromises the privacy of the clients’ data.

3 METHODS

We build upon the federated averaging (FedAvg) algorithm (McMahan et al., 2016) and introduce
two novel aspects to it: global adaptive hyper-parameters and local (per-client) representation match-
ing. We first give an informal description of the complete algorithm. We consider a synchronous
FedAvg setting with K clients, where Dk is the dataset local to client k. Training proceeds in
rounds. Figure 1 illustrates the steps involved in training round t. The server maintains a distri-
bution P (H|ψ) over the space of hyper-parameters H. At the beginning of round t (Fig. 1a), the
selected clients receive the most recent model parameters from the server, wt, together with train-
ing hyper-parameters ht sampled from P (H|ψt). Client i uses two copies of wt to initialize two
models: a fixed modelMF and a trainable modelMi

t. The parameters wi
t ofMi

t are trained using
SGD (Fig. 1b). Client i maintains a set of local parameters θit that it uses to map the activations in
Mi

t to the activations inMF . θit and wi
t are simultaneously trained to minimize a two-component

loss: the first component is the standard training loss ofMi
t on Di (for example, the cross-entropy

loss); the second component is the mean squared difference between the activations inMF and the
activations reconstructed fromMi

t using θit. We denote this second component as the representation
matching loss. In the final step in the round (Fig. 1c), each participating client sends its final model
parameters, wi

t, to the central server. The server aggregates the model parameters, and uses the loss
of the resulting model to update the parameters ψ of the hyper-parameter distribution, P (H|ψ).

3.1 REPRESENTATION MATCHING

We now describe the representation matching scheme. For an example model, Fig. 2 illustrates how
the local parameters θi in client i are used to map the activations of the model being trained,Mi,to
the activations of the fixed model MF . Mi is parameterized by wi while MF is parameterized
by w which was received from the server at the beginning of training. To simplify notation, we
dropped the index of the round, t. Given a data point x ∼ Di, x is fed toMi andMF to obtain
the layer activations [a1(x;wi), . . .aM (x;wi)] and [a1(x;w), . . . ,aM (x;w)], respectively. These
are not all the model activations, but only the M activations we are interested in matching. The
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Figure 2: Illustration of representation matching using a model with one convolutional layer and
two fully connected layers. Layers whose activations are used in the matching loss are shown in red.
The matching layers map the activations inMi to the activations inMF .

activations in the two models are matched by a set of matching layers parameterized by θi (θi ≡
[θi1, θ

i
2, θ

i
3] in Fig. 2). Instead of deriving the activations of one layer inMF from the activations of

the corresponding layer in Mi, we found performance significantly improves if the activations of
one layer are instead derived from the activations of the next layer of interest above it. As shown
in the representative example in Fig. 2, the activations/layers of interest are the input layer, the
point-wise non-linearity layers and the top layer. We use convolutional matching layers if the input
has spatial information (such as within a convolutional stack), and fully-connected matching layers
otherwise. To reverse a pooling operation, we follow the scheme in Zhao et al. (2015) and unpool
pooled activations using the pooling positions used during the pooling operation as shown in Fig. 2.

Given a training point and label (x, y) ∼ Di, we define the matching loss at client i as:

LiM (x;wi,w, θi) =

j=M−1∑
j=1

||fj(aj+1(x;wi); θij)− aj(x;w)||22 (1)

where fj denotes the jth matching layer. The per-point training loss at client i is:

Li(x, y;wi,w, θi) = LC(aM (x;wi); y) + LiM (x;wi,w, θi) (2)

where LC is the cross-entropy loss and aM (x;wi) is the top layer activation in the trainable model.

Our representation matching architecture is similar in some respects to auto-encoding architectures,
particularly ladder networks (Rasmus et al., 2015). Unlike ladder networks, however, we do not
reconstruct the activations of a non-noisy model from a noisy model but rather, reconstruct the
activations of the most recent aggregate model from the activations of the model while it is being
trained on a local dataset. This has a regularizing influence as it stops the clients from learning
representations that are too specific to their local datasets. This should also ameliorate the effect of
model divergence in the clients as all client models have to learn representations that are mappable to
a common set of representations defined by the common aggregate model. Additional regularization
comes about because a layer’s activations are used to reconstruct the activations of a layer below it.
A similar technique was used in what-where autoencoders (Zhao et al., 2015), and was shown to
significantly improve accuracy. Our approach is fundamentally distinct, however, as we use the
activations in one one model,Mi, to reconstruct the activations in a different model,MF .

Our representation matching scheme is similar in spirit to the techniques used to learn invariant
feature representations for domain adaptation where the goal is to minimize the discrepancy be-
tween the distributions of features extracted from different domains. However, current techniques
for learning domain-invariant features(Ganin et al., 2016; Shen et al., 2017) are incompatible with
the FL setting as they require the learner to have access to data from different domains (clients in
our case) in order to match the feature distributions across these domains.
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3.2 ADAPTIVE HYPER-PARAMETERS

At each round, the server provides the clients with training hyper-parameters. The hyper-parameters
ht provided in round t are a sample from P (H|ψt). Let Lt be the loss of the aggregate model at
the beginning of round t on a representative set of data points (we describe in the next subsection
practical schemes for evaluating Lt). We define the reward received for choosing hyper-parameter
ht as rt = (Lt −Lt+1)/Lt. The use of relative loss reduction is motivated by the desire to have the
scale of rewards unchanged throughout training. At round t, the goal is to maximize:

Jt = EP (ht|ψt)[rt] (3)

Taking the derivative of Jt and approximating it with a one-sample Monte Carlo estimate, we obtain

∇ψtJt = EP (ht|ψt)[rt∇ψt log(P (ht|ψt))] (4)

≈ rt∇ψt log(P (ht|ψt)) where ht ∼ P (ht|ψt) (5)

The score-function or REINFORCE gradient estimator (Williams, 1992) in Eq. 5 can be readily
evaluated and can be used to update ψt. However, the variance of this gradient estimator can be
quite high (Rezende et al., 2014), especially since we are using a single-sample estimate. To reduce
variance, we introduce a reward baseline (Greensmith et al., 2004) which is the weighted average
reward in an interval [t− Z, t+ Z] centered around t. The update equation for ψt is:

ψt+1 ← ψt − ηH(rt − r̄t)∇ψt log(P (ht|ψt)) where r̄t = γZ

τ=t+Z∑
τ=t−Z
τ 6=t

(Z + 1− |τ − t|)rτ (6)

where ηH is the hyper learning rate and γZ a normalizing constant. We weigh nearby rewards more
heavily than distant rewards when calculating the baseline in round t. A causal version of Eq. 6 that
only depends on past rewards is:

ψt+1 ← ψt − ηH
τ=t∑

τ=t−Z
(rτ − r̂t)∇ψτ log(P (hτ |ψτ )) where r̂t =

1

Z + 1

τ=t∑
τ=t−Z

rτ (7)

which is the update equation for ψ that we use. Even though we are using RL terminology, there
are several fundamental differences between our problem and traditional RL problems. First, the
setting is non-stationary as the same action in different rounds could lead to a different reward
distribution. For example, large learning rates are appropriate towards the beginning of training but
would increase the loss towards the end of training. In our scheme, this is reflected in the design of
the baseline which weighs nearby rewards more heavily as these provide a more accurate baseline
of the rewards at the current state of the learning problem. This non-stationary behavior can be
modeled as a partially-observable Markov decision process (Jaakkola et al., 1995). While several
techniques can be used to learn policies in non-stationary settings (Padakandla et al., 2019; Abdallah
& Kaisers, 2016), these methods are not online and require several trajectories (training runs in our
case) to optimize the policy. The second difference from traditional RL methods is that we do not
seek to maximize the (discounted) sum of rewards, but rather, at each round t, we seek to maximize
the rewards in a small interval [t− Z, t] which is what allows us to formulate an online algorithm.

3.3 FULL ALGORITHM AND PRACTICAL CONSIDERATIONS

Algorithm 1 describes the FedAvg algorithm with our two contributions: representation matching
and adaptive hyper-parameters. There are a couple of practical considerations that we address here:

Evaluating the loss of the aggregate model: After each round, the server needs to evaluate the
loss of the aggregate model in order to obtain the reward signal (Line 15 in algorithm 1). This could
be done in two ways:1) The server maintains a small validation set on which it evaluates the loss.
This validation set has to be representative of the clients’ data. Unlike the scheme in Zhao et al.
(2015), this validation set is not shared with the clients and can be collected from them in a secure
way to avoid revealing the origin of each data point. 2) At the start of a round, the clients themselves
evaluate the loss of the aggregate model on a small part of their training data and then send the scalar
loss to the server. The server averages these losses to obtain an estimate of the loss. This estimate
is good if the fraction of participating clients in the round is high, which would make the evaluated
loss more representative of the loss across all clients. In our experiments, we use the first approach.
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Algorithm 1 Federated averaging with representation matching and online hyper-parameter tuning.
Setting with T training rounds, K clients, nk datapoints per client, N total datapoints, and a fraction
C of clients participating in each round

1: initialize w1 and θ11, . . . , θ
K
1 and ψ1

2: L1 ← Loss(w1)
3: for t=1 to T do
4: ht ∼ P (•|ψt) . Sample a set of hyper-parameters
5: St ←(random selection of CK clients)
6: for i ∈ St do . Run in parallel in each client in St
7: wi

t ← wt . Receive model parameters from server
8: for n=1 to n iterations(ht) do . Number of SGD iterations as defined in ht
9: (X, Y )← sample(Di) . Sample a training mini-batch

10: [wi
t, θ

i
t]← [wi

t, θ
i
t]− η(ht)∇[wit,θ

i
t]
Li(X, Y ;wi

t,wt, θ
i
t) . Li as defined in Eq. 2

11: end for
12: θit+1 ← θit
13: end for
14: wt+1 ← wt +

∑
i∈St

nk
N (wi

t −wt)

15: Lt+1 ← Loss(wt+1)
16: rt ← (Lt − Lt+1)/Lt
17: Z ′ ← min(Z, t− 1)

18: ψt+1 ← ψt − ηH
τ=t∑

τ=t−Z′
(rτ − r̂t)∇ψτ log(P (hτ |ψτ )) where r̂t = 1

Z′+1

τ=t∑
τ=t−Z′

rτ

19: end for

Choosing the form of P (H|ψ) : ForD hyper-parameters, we use a discrete D-dimensional hyper-
parameter space. For the pth hyper-parameter, we have a finite set of allowable values Hp. H is
a D-dimensional grid containing all possible combinations of the allowed values of the D hyper-
parameter. |H| =

∏D
p=1 |Hp|. For P (H|ψ) we use a D-dimensional discrete Gaussian. Let

N (•|µ,A) be a standard(continuous) D-dimensional Gaussian with mean µ and precision A. Let
hj = (h1j , . . . , h

D
j ) be a point on the grid H. P (hj |ψ) = 1

ZN (hj |µ,A) where ψ = {µ,A} and
Z =

∑
h∈HN (h|µ,A). Since different hyper-parameters can have different scales, we shift and

normalize the allowed values for each hyper-parameter so that they have zero mean and are in the
range [−0.5, 0.5] before constructing the grid. The grid of hyper-parameters H thus has zero-mean
and the same scale in all dimensions. This increase the stability of the hyper-parameter tuning
algorithm as the optimization space is uniform in all directions.

We choose a discrete hyper-parameter space H to force different hyper-parameter choices to be
significantly different, which would provide more distinct reward signals to the online REINFORCE
algorithm. The choice of a uni-modal distribution, such as the discrete Gaussian, encourages hyper-
parameter exploration to focus on areas around the mode. This embodies the inductive bias that the
optimal hyper-parameter in one round is close to the optimal hyper-parameter in the previous round.

4 EXPERIMENTAL RESULTS

We evaluate the performance of our two-part scheme on the MNIST and CIFAR10 image classifi-
cation datasets, and on a KWS task using the speech commands dataset (Warden, 2018). We restrict
the KWS task to only ten keywords. In all experiments, we use ten clients and use one of two data
distributions: iid where the dataset is split randomly across the ten clients, and non-iid where each
client only has data points belonging to one of the ten classes. We use our online hyper-parameter
tuning scheme to tune the learning rate and the number of SGD iterations (see algorithm 1). In all ex-
periments, we use the same hyper-hyper-parameters controlling the hyper-parameter tuning process
which are the hyper-learning rate ηH , the hyper-parameter grid H, and the REINFORCE baseline
interval Z. One exception is the KWS task where we modify the grid H to reduce the number of
allowed SGD iterations per round to reflect the smaller size of the dataset. A batch size of 64 is used
throughout. In all experiments, we add an entropy regularization (ER) term (Pereyra et al., 2017) to
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the client losses during training. For client i in round t with input x, the ER loss term has the form:

LER(x,wi
t) = max

(
0, Hmin −H(softmax(aM (x;wi

t)))
)

(8)

where H(•) is the entropy operator and aM the top layer activity. LER penalizes highly confident
(low entropy) output distributions when their entropy falls below Hmin. This loss term significantly
improves the performance of the FedAvg algorithm in the presence of non-iid client data.

As a comparison baseline, we run experiments with a fixed decay schedule for both the learning rate
and the number of SGD iterations per round. As a baseline for our representation matching scheme,
we run experiments where each client’s training loss is augmented with a term that penalizes weight
divergence between the client model parameters and the initial parameters received from the server.
For client i in round t, this weight divergence (WD) loss term has the form ||wt − wi

t||22. This
penalty function was introduced into the FL setting by the FedProx algorithm (Li et al., 2018) to
mitigate the effect of model divergence.

We report results for the standard FedAvg algorithm (FA), FedAvg with a weight divergence loss
term in the clients (FA+WD), and FedAvg augmented with adaptive hyper-parameters(AH) and/or
representation matching (RM). We consider two values for C (the fraction of clients participating
in each round): C = 0.5 and C = 1.0. For the baselines, FA and FA+WD, we manually tuned the
hyper-parameters decay schedule to obtain best accuracy. This tuning was done separately for the
iid and non-iid cases . All experiments were repeated 3 times.

MNIST : We use a fully-connected network with two hidden layers with 100 neurons each. As
shown in table 1, the best performing algorithm is FA+AH. The use of representation matching
causes a slight degradation in performance (FA+RM+AH and FA+RM). It is interesting to look at
the trajectory of the mean µ of the discrete Gaussian hyper-parameter distribution P (H|µ,A). This
is shown in the first column of Fig. 3 for the iid and non-iid cases. In the non-iid case, the online
REINFORCE algorithm pushes the mean learning rate down as it detects that a smaller learning
rate yields greater loss reductions, while in the iid case, the mean learning rate is pushed up instead.
This aligns with what a practitioner would do to ensure convergence in the more challenging non-iid
case. The REINFORCE algorithm chooses to keep the mean number of SGD iterations per round
relatively high for most of the training run. As shown in table 1, these choices yield slightly better
accuracy (FA+AH) than the fixed training schedule used in the standard FA algorithm.

Table 1: MNIST accuracy figures

Data
Distribution FA FA+WD FA+RM+AH FA+RM FA+AH

C=1.0 iid 97.9± 0.1 97.9± 0.005 97.9± 0.06 97.8± 0.06 98.0± 0.04
non-iid 94.7± 0.07 94.8± 0.2 94.7± 0.08 94.5± 0.3 95.5± 0.04

C=0.5 iid 97.4± 0.06 97.3± 0.03 98.1± 0.06 97.4± 0.05 98.2± 0.01
non-iid 92.1± 0.8 92.0± 0.4 92.5± 0.1 91.6± 0.3 93.2± 0.8

CIFAR10 : We use a network with two convolutional layers (with 32 and 64 feature maps and 5x5
kernels) followed by two fully connected layers (with 1024 and 10 neurons). 2x2 max pooling was
used after each convolutional layer. As shown in table 2, the use of representation matching yields
a significant improvement in accuracy for the non-iid case while slightly improving performance
in the iid case. The benefit of adaptive hyper-parameters over a fixed hyper-parameter schedule
are more equivocal. The evolution of adaptive hyper-parameters is shown in the second column of
Fig. 3. Unlike the MNIST case, the REINFORCE algorithm chooses to push down the learning rate
for the iid case as well which actually leads to better performance in the iid case compared to the
fixed schedule (FA vs. FA+AH and FA+RM+AH vs. FA+RM in table 2). In the non-iid case, the
fixed schedule performs better, though.

Keyword spotting task : We calculate the mel spectrogram for each speech command to obtain
a 32x32 input to our network. The network we use has four convolutional layers with 3x3 kernels
and 64 feature maps each (with 2x2 max pooling after each pair), followed by two fully connected
layers of 1024 and 10 neurons. In this deeper network, representation matching is essential in
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Table 2: CIFAR10 accuracy figures

Data
Distribution FA FA+WD FA+RM+AH FA+RM FA+AH

C=1.0 iid 81.9± 0.3 81.4± 0.2 84.3± 0.1 83.5± 0.1 83.4± 1.2
non-iid 44.2± 0.9 44.3± 0.8 52.4± 2.2 52.9± 0.05 44.8± 5.8

C=0.5 iid 76.8± 0.3 76.6± 0.2 79.2± 1.9 76.0± 0.2 82.0± 1.04
non-iid 33.4± 1.0 34.4± 0.9 39.8± 3.8 43.3± 0.8 19.8± 7.0
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Figure 3: Evolution of the mean of the hyper-parameter distribution P (H|ψ) for the iid and non-iid
cases. Results taken from the FA+RM+AH algorithm when C = 1.0. The evolution of the means
are shown separately for the learning rate (first row) and for the number of SGD steps per round
(second row), with one column each for the MNIST, CIFAR10, and keyword spotting (KWS) tasks.
During training, the means are forced to stay within the ranges defined by the hyper-parameter grid.

the non-iid case as shown in table 3 since training consistently fails in its absence. It might be
possible that with fine tuning of hyper-parameters, training would be possible in the non-iid case.
However, representation matching obviates the need for such fine tuning. FA+RM+AH consistently
outperforms all other methods indicating the hyper-parameters schedule found by the REINFORCE
algorithm (third column in Fig. 3) is better than the fixed schedule.

Table 3: Keyword spotting task accuracy figures

Data
Distribution FA FA+WD FA+RM+AH FA+RM FA+AH

C=1.0 iid 93.0± 0.2 93.5± 0.2 94.4± 0.2 92.9± 0.3 94.0± 0.4
non-iid 28.4± 7.2 29.9± 7.3 81.1± 0.5 79.2± 0.6 9.8± 0.2

C=0.5 iid 91.4± 0.3 93.0± 0.4 94.3± 0.1 91.0± 0.2 93.2± 0.4
non-iid 11.45± 1.7 11.8± 2.7 74.9± 2.5 60.7± 3.3 10.0± 0.3

Communication and computational overhead : Our representation matching scheme does not
introduce any communication overhead between the clients and the central server. The adaptive
hyper-parameters scheme introduces a negligible communication overhead for sending two scalar
hyper-parameters to the clients each round. As for computational overhead, we quantify the wall-
clock run-time1 for training a client for 30 SGD iterations or mini-batches (mini-batch size of 64).
Where adaptive hyper-parameters are used, we also include the time needed to execute the adaptive

1Experiments were run on a machine with a single TitanXP GPU, 32G of RAM, and an Intel Xeon E5-
2699A processor.
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hyper-parameter tuning procedure. The results are shown in table 4. We note that the overhead of
our hyper-parameter tuning procedure is negligible (FA vs. FA+AH) and is typically less than 2%.
This negligible computational overhead is primarily the cost of a single inference pass to evaluate
the loss Lt on a very small subset of the training set. The representation matching scheme is more
demanding as as it requires optimizing a more complicated loss during each SGD iteration at the
client.

Table 4: Wall-clock run-time in seconds. Mean and std. from 200 trials.

Task FA FA+WD FA+RM+AH FA+RM FA+AH
MNIST 0.39± 0.007 0.41± 0.008 0.43± 0.007 0.42± 0.007 0.39± 0.007

CIFAR10 0.50± 0.02 0.54± 0.01 0.67± 0.02 0.66± 0.02 0.51± 0.02
KWS 1.83± 0.05 1.96± 0.05 2.03± 0.04 2.01± 0.04 1.85± 0.05

5 DISCUSSION

We described two additions to the FedAvg algorithm: representation matching and adaptive hyper-
parameters. We compared representation matching (FA+RM) against a scheme based on penalizing
weight divergence (FA+WD) and FA+RM came out on top by a significant margin in the more
difficult tasks we tried: CIFAR10 and KWS. We compared our adaptive hyper-parameter scheme
against a fixed hyper-parameter schedule chosen based on experience. In most cases, adaptive
hyper-parameters outperform the fixed-schedule scheme. The combination of our two new additions
(FA+RM+AH) slightly improves performance compared to standard FA in the small MNIST net-
work and significantly improves performance on the deeper networks used in CIFAR10 and KWS.

The hyper-parameter schedule chosen by our REINFORCE algorithm exhibits some easily inter-
pretable behavior such as reducing the learning rate in the more difficult non-iid cases. However,
we see some behavior that does not have an immediately obvious interpretation. For example, in
order to maximize rewards in the non-iid case, reducing the learning rate is more important than
reducing the number of SGD iterations per round as can be seen in Fig. 3. It is important to note
that at each round, our online REINFORCE algorithm only seeks to maximize the loss improvement
in the last few rounds. Moreover, our algorithm continuously samples hyper-parameters around the
mean to determine the direction of highest reward. These noisy hyper-parameter choices could prove
problematic in settings that depend on highly tuned schedules and which have no room for online
exploration of hyper-parameters. We thus expect our scheme would be outperformed by traditional
automated hyper-parameter tuning methods that tune hyper-parameters to maximize the final valida-
tion loss. However, our scheme is significantly more efficient as it does not require repeated training
and introduces only a small computational overhead in each round.
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