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ABSTRACT

Mixed-precision arithmetic combining both single- and half-precision operands
on the same operation has been successfully applied to train deep neural net-
works. Despite the advantages of mixed-precision arithmetic in terms of reducing
the need for key resources like memory bandwidth or register file size, it has a lim-
ited capacity for diminishing computing costs and requires 32-bits to represent its
output operands. This paper proposes two approaches to replace mixed-precision
for half-precision arithmetic during a large portion of the training. The first ap-
proach achieves accuracy ratios slightly slower than the state-of-the-art by using
half-precision arithmetic during more than 99% of training. The second approach
reaches the same accuracy as the state-of-the-art by dynamically switching be-
tween half- and mixed-precision arithmetic during training. It uses half-precision
during more than 94% of the training process. This paper is the first in demon-
strating that half-precision can be used for a very large portion of DNNs training
and still reach state-of-the-art accuracy.

1 INTRODUCTION

The use of Deep Neural Networks (DNNs) is becoming ubiquitous in areas like computer vi-
sion (Krizhevsky et al., 2012; Szegedy et al., 2015), speech recognition (Hinton et al., 2012), or
language translation (Wu et al., 2016). DNNs display very remarkable pattern detection capacities
and, more specifically, Convolutional Neural Networks (CNNs) are able to accurately detect and
classify objects over very large image sets (Krizhevsky et al., 2012). Despite this success, a large
amount of samples must be exposed to the model for tens or even hundreds of times during train-
ing until an acceptable accuracy threshold is reached, which drives up training costs in terms of
resources like memory storage or computing time.

To mitigate these very large training costs, approaches based on data representation formats simpler
than the Floating Point 32-bit (FP32) standard have been proposed (Courbariaux et al., 2014; Gupta
et al., 2015). These approaches successfully mitigate the enormous training costs of DNNs by using
data representation formats that either reduce computing costs or diminish the requirements in terms
of memory storage and bandwidth. In particular, some of these proposals have shown the bene-
fits of combining half-precision and single-precision compute during training in terms of keeping
model accuracy and reducing compute and memory costs (Micikevicius et al., 2017; Kalamkar et al.,
2019). These approaches accelerate linear algebra operations by accumulating half-precision input
operands to generate 32-bit outputs. While this mixed-precision (MP) arithmetic can successfully
reduce the use of resources like memory bandwidth or hardware components like register file size,
it has a very limited capacity for diminishing computing costs and it is unable to reduce output data
size.

In this paper we propose new training methodologies able to exclusively use half-precision for a
large part of the training process, which constitutes a very significant improvement over mixed-
precision approaches in terms of compute and memory bandwidth requirements. We propose two
different approaches, the first one statically assigns either the Brain Floating Point 16-bit (BF16) or
the FP32 format to the model parameters involved in the training process, while the second dynam-
ically switches between BF16 and MP during training depending on its progress. Our approaches
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do not require mixed-precision arithmetic while computing linear algebra operations for a large por-
tion of the training process, which enables them to deliver the same performance as if they were
operating with half-precision arithmetic during the whole training while providing the same model
accuracy as if FP32 was used. This paper is the first in demonstrating that half-precision can be
extensively used during DNNs training without the need for mixed-precision arithmetic. We made
our code available1.

2 BACKGROUND ON MIXED-PRECISION APPROACHES AND MOTIVATION

Mixed-Precision training has been extensively explored in recent years. Approaches mixing Float-
ing Point 16-bit (FP16) and FP32 datatypes have been proposed (Micikevicius et al., 2017). In these
approaches, multiplications of FP16 parameters are accumulated in FP32 registers to minimize data
representation range and precision issues. Importantly, relevant phases of the training process like
computing weight updates (WU) or dealing with batch normalization (BN) layers entirely use FP32,
which implies that a FP32 representation of network weights and biases is kept during the whole
training. This approach requires some additional computations to enforce that FP32 values are con-
verted to FP16 without data representation range issues. This approach is used by Nvidia Tesla V100
GPUs via mixed-precision computing units called tensor cores, which are able to multiply FP16 pa-
rameters and store the results in FP32. Figure 1a displays the most fundamental operation of this
approach combining FP16 and FP32, the mixed-precision Fused Multiply-Add (FMA) instruction,
which computes D = A · B + C. Input parameters A and B are represented in the FP16 format.
The result of the A ·B operation is kept in FP32 and added to the C parameter, which is represented
in FP32 as well. The final output D is also represented in FP32. FMA instructions constitute around
60% of the whole training workload for several relevant CNN models, as Section 3 shows.

A more recent approach proposes mixed-precision arithmetic combining BF16 and FP32 (Kalamkar
et al., 2019). It is very close to its FP16 counterpart with the exception of the full to half precision
conversion. Since BF16 has the same data representation range as FP32, conversion from full to
half precision is very simple in this case since it just requires applying the Round to Nearest Even
(RNE) technique. This approach also processes WU and BN layers with FP32. Figure 1b shows
a representation of a mixed-precision FMA combining BF16 and FP32. It is very close to the
previously described FP16-FP32 FMA with the only difference being the data representation format
of input parameters A and B.

While mixed-precision FMA instructions bring significant benefits since they require less memory
bandwidth and register storage than FP32 FMAs, there is still a large margin for improvement if
an entirely BF16 FMA like the one represented in Figure 1c could be extensively used for training
purposes. First, since BF16 FMA requires exactly one half of the register storage of a FP32 FMA,
it doubles its Single Instruction Multiple Data (SIMD) vectorization capacity and, therefore, it may
significantly increase its FMA instructions per cycle ratio. Extensions of Instruction Set Architec-
tures (ISA) to allow SIMD parallelism are becoming a key element for floating-point performance,
which has motivated major hardware vendors to include them in their products (Jeffers et al., 2016;
Stephens et al., 2017). Finally, BF16 FMA instructions also bring significant reductions in terms of
memory bandwidth since they involve 50% and 25% less data than FP32 and MP FMAs, respec-
tively. While half-precision arithmetic has not been used to train DNNs due to its lack of training
convergence, this paper describes two techniques to fully use it while keeping the same convergence
properties as FP32. This paper analyzes in detail 3 relevant training workloads in Section 3, and
applies these findings to build its two main contributions in Section 4.

3 WORKLOAD ANALYSIS

We consider three CNN models: AlexNet, Inception V2, and ResNet-50. Section 5 describes the
exact way we use these models and the methodology we follow to analyze their training workload.
Figure 2a shows an instruction breakdown of processing one batch on these networks. This figure
shows how floating-point instructions constitute a large portion of these workloads. For example,
they represent 58.44% of the total in the case of AlexNet. A very large portion of these floating-
point instructions, 57.42% of the total, are FMA instructions. In the cases of Inception and ResNet-

1https://github.com/dynamicprec/dynamic
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Figure 1: Approaches to compute Fused Multiply-Add (FMA) instructions
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Figure 2: CNN Analysis

50, FMA instructions represent 60.93% and 62.95% of the total, respectively. Therefore, FMA
instructions constitute a large portion of the whole training workload, while other FP32 instructions
represent a small instruction count that remain below 1.1% for these three CNNs. This justifies to
focus on FMA instructions, as executing them in half-precision has a large potential for performance
improvement.

Prior research (Micikevicius et al., 2017; Kalamkar et al., 2019) describes the need for using 32-
bit arithmetic in Weight Updates (WU) and Batch Normalization (BN) layers when using training
approaches based on mixed-precision arithmetic. We run an experimental campaign to confirm this
observation and to measure the number of instructions devoted to WU and BN. For the case of
ResNet-50, this instruction count is around 30 million instructions per batch, that is, just 0.04% of
the FP instructions. AlexNet and Inception V2 produce similar results. In conclusion, reducing the
cost of FMA instructions has a high potential for very significant performance improvements even
if WU and BN layers are computed using full precision arithmetic.

Processing one training batch for the cases of AlexNet, Inception and ResNet-50 requires running
53.3, 37.2, and 70.0 billion dynamic instructions per batch, respectively. The number of model
parameters drives the size of these workloads. AlexNet was trained with a batch size of 256, while
Inception and ResNet use a batch size of 64.

4 PROPOSAL

We propose two training methodologies that rely exclusively on half-precision BF16 for a large
portion of the training process, i.e., a large portion of FMA instructions. Prior mixed-precision
approaches preclude large gains in computing costs as some of the data elements remain in FP32.
However, an FMA entirely relying on BF16 can potentially double the SIMD vectorization through-
put of current processors and alleviate memory bandwidth requirements.
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We first propose a scheme that performs all FMA instructions in BF16 (see Figure 1c) except those
involved in computing WU and processing BN layers, which are entirely performed in FP32. While
this method might not deliver the desired level of accuracy for all CNNs, Section 6 shows how it
behaves remarkably well for the Inception V2 model, since it obtains the same level of accuracy as
state-of-the training using MP and FP32.

However, some CNNs cannot entirely rely on half-precision arithmetic during training. For ex-
ample, Figure 2b shows top1 accuracy achieved by three training techniques during 15 epochs for
ResNet-50. The first technique (referred as FP32 in Figure 2b) entirely relies in FP32 arithmetic,
the second approach (referred as MP in Figure 2b) represents the state-of-the art Mixed-Precision
training (Kalamkar et al., 2019), and the third approach (referred as BF16 in Figure 2b) performs
all FMA instructions in BF16 except for WU and BN. While the BF16 approach behaves relatively
well, it displays lower accuracy than MP and FP32 for all the epochs, which indicates the need for
an approach able to take advantage of BF16 arithmetic while delivering the same accuracy results
as mixed- or full-precision approaches. The methodology we use to generate Figure 2b is described
in Section 5.

Our second contribution dynamically switches between MP and BF16 to deliver the same accuracy
as MP while relying in BF16 FMAs during a large portion of the training process. Algorithm 1 dis-
plays a high level pseudo-code of our proposal. It starts the training process using the state-of-the art
mixed-precision approach (Kalamkar et al., 2019) for several batches, defined by numBatchesMP
parameter. Then, it computes the Exponential Moving Average (EMA) (Lawrance & Lewis, 1977)
of the training loss and, if its reduction is larger than a certain threshold (emaThreshold parameter),
it computes the next numBatchesBF16 using BF16 FMAs, except for WU and BN. Once training
has gone through these numBatchesBF16 batches, our algorithm checks EMA and compares its
reduction with the emaThreshold parameter. If this reduction is not large enough, the algorithm
switches back to MP arithmetic. Otherwise, it keeps using BF16 arithmetic for numBatchesBF16
batches before checking EMA again.

5 EXPERIMENTAL METHODOLOGY

5.1 EXPERIMENTAL SETUP

Our experiments are performed on Intel Xeon Platinum 8160 processors, which include the AVX512
ISA. We use the Intel-Caffe (Intel, a) framework (version 1.1.6a). We use the Intel MKLDNN
(Intel, c) (version 0.18.0) Deep Neural Network library and the Intel MKL library (Intel, b) (version
2019.0.3) to run numerical kernels since both libraries are optimized to perform well on our testing
infrastructure. Finally, to define and run the experiments we use the pyCaffe python interface, which
takes care of loading the data and orchestrating the execution.

5.2 EMULATION OF BF16 USING DYNAMIC BINARY INSTRUMENTATION

Due to the lack of available hardware implementing the BF16 numerical format, we rely on an em-
ulation technique to perform our experiments. Several approaches have been used in the past to
emulate the behaviour of reduced floating-point representations, most notably via libraries that per-
form transformations like truncation and rounding (Chatelain et al., 2019; Dawson & Düben, 2017;
Kalamkar et al., 2019). We develop a binary analysis tool based on PIN 3.7 (Luk et al., 2005). Our
tool captures and instruments dynamic instructions, which enables adaptating numerical operands
to the targeted numerical data format. Our approach seamlessly works on complex frameworks like
PyTorch, Tensorflow, or Caffe, with interpreted languages, and is able to instrument instructions
triggered by dynamically linked libraries. Our binary analysis tool performs the following steps:

• It checks the current operation mode, which can be FP32, MP, or BF16 (see Figure 1).

• It checks the current execution routine to determine if we are executing routines that belong
to WU or BN layers. If that is the case, computation proceeds with FP32.

• The tool intercepts the dynamic instructions of the workload and detects all floating-point
operations, including FMAs. For each FMA instruction, operands that need to be rounded
to BF16, depending on the current operation mode, are rounded using the RNE algorithm.
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Algorithm 1 Dynamic Precision

1: numBatchesMP ← 10 . Number of consecutive MP batches
2: numBatchesBF16← 1000 . Number of consecutive BF16 batches
3: emaThreshold← 0.04 . Defines EMA reduction threshold
4:
5: precisionModeBF16← False . Indicates current precision mode, True means BF16
6: countBatchesBF16← 0 . Counts how many numBatchesBF16 have been executed
7: numBatchesTrain← numBatchesMP . Number of batches per training loop iteration
8:
9: for i = 0 to niter do . Training Loop: niter value depends on the number of epochs

10: train.step(numBatchesTrain) . Execute numBatchesTrain batches in precisionModeBF16
11: trainingLoss[i]← train.trainingLoss
12: if (i = 5) then . Initial history to calculate EMA
13: EMA← average(trainingLoss)

14: if (i > 5) then
15: EMAprev ← EMA
16: EMA← emaCalculation(trainingLoss,EMAprev) . Each numBatchesMP
17: if (precisionModeBF16! = True) then
18: if ((EMAprev − EMA) > emaThreshold) then . If training loss goes down
19: precisionModeBF16← True
20: changeToBF16() . Switch precision to BF16
21: else
22: countBatchesBF16← countBatchesBF16 + numBatchesTrain
23: if (countBatchesBF16 = numBatchesBF16) then
24: if ((EMAprev−EMA) > emaThreshold) then . If training loss goes down
25: countBatchesBF16← 0 . Stay in BF16 precision
26: else . If training loss stagnates
27: precisionModeBF16← False
28: changeToMP() . Switch precision to MP
29: countBatchesBF16← 0

• The tool can dynamically change its operation mode anytime via a simple inter-process
communication method that can be invoked from the python high-level interface.

To mitigate the overhead of our binary analysis tool, we implement two optimizations: First, we vec-
torize the truncation and rounding routines via AVX512 instructions. Second, we avoid redundant
rounding and truncation operations by identifying instructions belonging to the same basic block
sharing some input operands already stored in the register file. These two optimizations reduce the
overhead of the tool from 100× to 25× with respect to native runs of the binary on real hardware.

5.3 DYNAMIC AND STATIC TECHNIQUES

This paper considers two different types of training techniques: static schemes and dynamic
schemes. When using static schemes, the training procedure uses the same data representation form
for a given parameter during its complete execution. For example, the three techniques displayed in
Figure 2b are static. We define the following schemes:

• MP: FMA instructions belonging to WU and BN layers always use FP32 precision. The
remaining FMA instructions use the mixed-precision approach represented in Figure 1b).
This scheme replicates prior work on mixed-precision(Kalamkar et al., 2019).

• BF16: FMA instructions belonging to WU and BN layers always use FP32 precision. The
remaining FMA instructions use BF16 operands to multiply and to accumulate (Figure 1c).

The BF16 method is the first contribution of this paper. It extensively uses half-precision arithmetic
while displaying good convergence properties.

The Dynamic scheme we propose in this paper switches between the MP and BF16 static techniques
during training, as explained in Section 4 and detailed in Algorithm 1. This dynamic method im-
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proves the training convergence properties of BF16 while still relying in half-precision FMAs for a
very large portion of the execution.

The EMA threshold (emaTreshold) is set at 4%. This value is computed as the average EMA reduc-
tion when using FP32 computations. The minimum number of batches to be performed in BF16,
defined by the numBatchesBF16 parameter is set to 1,000, which precludes frequent unnecessary
transitions between the two schemes. We set the numBatchesMP parameter to 10, which keeps
the number of batches using the MP regime low while keeping its benefits in terms of convergence.

5.4 CONVOLUTIONAL NEURAL NETWORK MODELS

To evaluate our proposals we consider the AlexNet (Krizhevsky et al., 2012), Inception V2 (Szegedy
et al., 2015) and ResNet50 (He et al., 2015b) models. They are representative CNN state-of-the-art.

We use the ImageNet database (Deng et al., 2009) as training input. To keep execution times man-
ageable when using our binary instrumentation tool, we run the experiments using a reduced Im-
ageNet Database, similar to the Tiny ImageNet Visual Recognition challenge data set (Fei-Fei).
Therefore, we use 256,000 images divided into 200 categories for training, and 10,000 images for
validation. The images have no modifications in terms of the size. All the evaluated CNN models
remain unmodified, the only change is loading a reduced dataset.

AlexNet is selected due to its simplicity in terms of structure and amount of required computations.
To train AlexNet we consider a batch size of 256 and the base learning rate is 0.01, which is adjusted
every 20 epochs taking into account a weight decay of 0.0005 and a momentum of 0.9. This model
is trained for 32 epochs.

We use Inception because it is a model conceived to reduce computational costs via cheap 1x1
convolutions. To train it we use a batch size of 64 and a base learning rate of 0.045, which is
updated every 427 steps (0.11 epochs). The gamma, momentum and weight decay are set to 0.96,
0.9, and 0.0002, respectively. The training process is executed for 16 epochs.

Finally we use ResNet-50. It is a network that delivers good accuracy and avoids the vanishing
gradients issue by using residual blocks and the MSRA initializer (He et al., 2015a). We train it
using a multi-step approach. The batch size is 64 and the base learning rate is 0.05, which is updated
every 30 epochs. The gamma hyperparameter, momentum value, and weight decay are set to 0.1,
0.9, and 0.0001, respectively. The training process runs for a total of 32 epochs.

6 EVALUATION

Figure 3 and Table 1 show results from our evaluation campaign. The x-axis of the three plots
belonging to Figure 3 represent the epochs of the training process while the y-axis represents the
accuracy reached by the model over the validation set. Table 1 shows the test accuracy we reach for
the three network models when using the FP32 and MP baselines and our two contributions: BF16
and Dynamic.

The AlexNet model, due to its structure, shows a good response when lower precision numerical data
types are used. As can be seen in Figure 3a all techniques converge, although the BF16 approach
shows the worse accuracy when compared to the Dynamic or the MP techniques. Table 1 shows that
FP32, MP, Dynamic, and BF16 reach top-5 accuracies of 84.50%, 84.43%, 84.02% and 82.56% for
AlexNet after 32 epochs. Importantly, Dynamic reaches the same accuracy as FP32 and MP while
using the BF16 approach for 94.60% of the FMAs. In contrast, the BF16 static technique does

Table 1: Accuracy and percentage of FMAs executed in BF16 precision for evaluated CNNs

Model Epoch FP32 MP Dynamic BF16
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 BF16FMA Top-1 Top-5 BF16FMA

AlexNet 32 60.79% 84.50% 60.18% 84.43% 60.32% 84.02% 94.60% 57.80% 82.56% 99.93%
Inception 16 74.01% 92.36% 73.73% 92.67% 72.80% 92.02% 95.55% 72.03% 92.05% 99.90%

ResNet-50 32 75.97% 93.37% 75.76% 93.20% 74.20% 92.70% 96.40% 73.00% 92.30% 99.91%
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Figure 3: Test accuracy achieved by the different training approaches.
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99.93% of the FMAs in full BF16 precision (0.07% are in WU and BN layers), but the accuracy
drops by almost 3% in Top-1 and 2% in Top-5. This drop in accuracy happens just by doing an
additional 5% BF16 FMAs. This give us some space to improve the Dynamic approach by reducing
the percentage of BF16 FMAs with the objective to increase the accuracy of the model.

Figure 3b shows the validation accuracy during 16 epochs for the Inception V2 model. It shows
fluctuation on the accuracy evaluation during training due to its structure and hyperparameters tun-
ing. Dynamic responds in a robust way to these changes, which highlights its general applicability.
Table 1 shows that FP32, MP, Dynamic, and BF16 reach top-5 accuracies of 93.36%, 92.67%,
92.02%, and 92.05% for Inception V2 after 16 epochs.

Finally, the evaluation on ResNet-50 demonstrates that the Dynamic approach is effective when
applied to deeper CNNs. In this case, the precision of the model reaches state-of-the-art levels
while using half-precision for 96.4% of the FMA instructions. Figure 3c and Table 1 display the
exact accuracy numbers we get from our evaluation after 32 epochs. In this experiment the Top-1
accuracy drops just 1.2% comparing the BF16 and dynamic approaches, however we could improve
the dynamic technique relaxing the quantity of BF16 FMA executed to gain more accuracy.

6.1 SENSITIVITY ANALYSIS FOR DYNAMIC PRECISION ALGORITHM

We provide a sensitivity analysis for the parameters employed in Algorithm 1. The objective is to
show that for a range of reasonable parameters the algorithm behaves as expected. To do this analysis
we set one of the parameters to the currently used value (numBatchesMP to 10) to have a manage-
able number of combinations. We then test all the possible combinations using numBatchesBF16 =
{500, 1000, 2000} and emaThreshold = {0.02, 0.04, 0.08}, that is, a total of 9 different combina-
tions. As stated in Section 5.3, during our evaluation we used the configuration {numBatchesMP,
numBatchesBF16, emaThreshold} = {10, 1000, 0.04} for all the evaluated networks.

Figure 4 shows, for a number of ResNet-50 epochs, the accuracy obtained for each of the 9 tested
configurations as part of the sensitivity analysis. The name convention for these configurations is
Dyn-<emaThreshold> <numBatchesBF16>. In addition, we include accuracy for BF16, MP, and
FP32 executions.

As shown in the figure, the accuracies obtained at each epoch are always above that of the BF16
technique. For early epochs (i.e., 2 and 4) the dynamic configurations remain between BF16 and
FP32 accuracy, or even slightly above FP32, due to initial noise. As training advances all dynamic
techniques behave similarly and present accuracies that are above BF16 and similar to those obtained
with MP and FP32, as we would expect. The most important parameter is the emaThreshold, as it
decides when a precision change occurs. As long as this parameter is reasonably set to detect training
loss improvement or degradation the algorithm is bound to behave as expected.
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Figure 4: Sensitivity analysis to dynamic precision algorithm parameters on ResNet-50.
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7 RELATED WORK

Prior work indicates that dynamic fixed-point is effective to train deep neural networks with low
precision multipliers (Courbariaux et al., 2014). This approach obtains state-of-the-art results by
uniformly applying the dynamic fixed point format with different scaling factors, which are driven
by the overflow rate displayed by the fixed-point numbers. Our proposals target deeper neural net-
works than this approach and do not uniformly apply the same format to all network parameters. In-
stead, we differentiate between computations requiring FP32 during the whole training, like weight
updates, from the ones that are well-suited for dynamic data representation schemes.

Previous approaches show the benefits of applying stochastic rounding to 16-bit fixed-point multiply
and add operators Gupta et al. (2015). This previous work rely on FPGA emulation to show the
benefits of stochastic rounding when applied to a custom fully connected neural network dealing
with the MNIST dataset. The authors also consider a CNN similar to LeNet-5 to enlarge their
experimental campaign.

Previous approaches propose a training process of DNN using 8-bit floating point numbers (Wang
et al., 2018). They rely on a combination of 8-bit and 16-bit and additionally using stochastic
rounding to obtain state-of-the-art results. The neural networks used in this previous approach are
much simpler than the ones we consider in this paper, which do not allow 8-bit arithmetic.

The BF16 numerical format has been applied to specific-purpose hardware targeting deep neural
networks (Wang & Kanwar, 2019). This specific hardware used an approach very similar to the
mixed-precision techniques described in the paper by Kalamkar et al. (2019) and, consequently, our
Dynamic approach can be applied on top of them to reduce computing costs.

8 CONCLUSIONS AND FUTURE WORK

This paper analyzes the instruction breakdown of workloads focused on deep neural network training
that rely on mixed-precision training. We show that mixed-precision FMAs constitute around 60%
of these workloads and propose two approaches based on half-precision FMAs to accelerate the
training process without hurting accuracy.

The first approach uses BF16 FMAs for most of the training workload, except routines involved
in weight updates or batch normalization layers. This approach uses BF16 for more than 99% of
the FMAs, which has a very strong potential for performance improvement, while reaching slightly
smaller accuracy than the state-of-the-art. We propose a second approach that dynamically switches
between different data representation formats. This dynamic approach uses BF16 for around 96%
of the FMAs while reaching the same precision levels as the standard single-precision and mixed-
precision approaches.

Our two proposals are evaluated considering three state-of-the-art deep neural networks and a binary
analysis tool that applies the required precision for each instruction. To the best of our knowledge,
this is the first paper that demonstrates that half-precision can be used extensively on ≥94% of all
FMAs during the training of very deep models without the need for mixed-precision arithmetic.
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