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Abstract

Knowledge Base Question Answering (KBQA)001
aims to answer natural language questions002
over large-scale knowledge bases (KBs), which003
can be summarized into two crucial steps:004
knowledge retrieval and semantic parsing.005
However, three core challenges remain: in-006
efficient knowledge retrieval, mistakes of re-007
trieval adversely impacting semantic parsing,008
and the complexity of previous KBQA meth-009
ods. To tackle these challenges, we introduce010
ChatKBQA, a novel and simple generate-then-011
retrieve KBQA framework, which proposes012
first generating the logical form with fine-013
tuned LLMs, then retrieving and replacing en-014
tities and relations with an unsupervised re-015
trieval method, to improve both generation016
and retrieval more directly. Experimental re-017
sults show that ChatKBQA achieves new state-018
of-the-art performance on standard KBQA019
datasets, WebQSP, and CWQ. This work can020
also be regarded as a new paradigm for combin-021
ing LLMs with knowledge graphs (KGs) for in-022
terpretable and knowledge-required question023
answering. Our code is publicly available1.024

1 Introduction025

Knowledge Base Question Answering (KBQA) is026

a classical NLP task to answer natural language027

questions based on facts over a large-scale knowl-028

edge base (KB), such as Freebase (Bollacker et al.,029

2008), Wikidata (Vrandečić and Krötzsch, 2014),030

and DBpedia (Auer et al., 2007), which are com-031

posed of structured knowledge graphs (KGs) built032

from triples consisting of (head entity, relation, tail033

entity). Previous KBQA methods primarily ad-034

dressed two core issues: knowledge retrieval (Yao035

et al., 2007) and semantic parsing (Berant et al.,036

2013). Knowledge retrieval mainly aims to locate037

the most relevant entities, relations, or triples ac-038

cording to the question from KB, to narrow the039

1Anonymous Github Code:
https://anonymous.4open.science/r/ChatKBQA

And
Hypertension

Not

Heart Failure ?

What medications have a synergistic effect with those suitable for
hypertension with heart failure but are not contraindicated for kidney failure?

(a) Natural Language Question:

(b) Logical Form:

(d) Graph Query:

Kidney Failure

(c) Knowledge Base:

suitable for

suitable for

contraindicted for

synergistic
effect

And
Hypertension

Heart Failure

Kidney Failure

suitable for suitable for

contraindicted for

contraindicted for

synergistic
 effect

suitable for

suitable for
RAS Inhibitors

Calcium
Antagonists

synergistic
 effect

Alpha Blockers

Beta Blockers

Thiazides

Thiazides
RAS Inhibitors

Calcium Antagonists
RAS Inhibitors

Calcium Antagonists
RAS Inhibitors

Calcium Antagonists

Alpha Blockers
Beta Blockers

Figure 1: An example of KBQA task to answer a natural
language question by converting the question to a graph
query which can be executed over Knowledge Base.

scope of consideration. Then, semantic parsing 040

essentially converts the question from unstructured 041

natural language into a structured logical form 042

(such as S-expression (Gu et al., 2021)), which can 043

then be converted into an executable graph database 044

query (such as SPARQL (Pérez et al., 2006)) to 045

obtain precise answers and interpretable paths, as 046

shown in Figure 1. 047

Previous KBQA work (Miller et al., 2016; Sun 048

et al., 2019; Zhang et al., 2022) proposed differ- 049

ent knowledge retrieval methods with technologies 050

of named entity recognition (NER) (Devlin et al., 051

2019), entity linking (Li et al., 2020) or subgraph 052

retrieval (Zhang et al., 2022) to align natural lan- 053

guage questions with structured KB. After retriev- 054

ing factual triples, some studies (Yih et al., 2016; 055

Lan and Jiang, 2020; Jiang et al., 2023b) utilized 056

strategies of step-wise query graph generation and 057

search answers with semantic parsing. On the other 058

hand, other work (Ye et al., 2022; Hu et al., 2022b; 059

Shu et al., 2022; Yu et al., 2023; Zhang et al., 2023) 060

performed semantic parsing by using a seq2seq 061

model like T5 (Raffel et al., 2020) to generate a 062
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ARGMAX        

Question: What is the most predominant religion in the
country Benjamin Netanyahu holds a governmental position? 

Benjamin Netanyahu m.0fm2h

Benjamin Netanyahu m.05p3vsk

Religion m.06bvp

Entity Retrieval:
location.religion_percentage.religion

location.statistical_region.religions 

base.popstra.religion_choice.religion 

Relation Retrieval:

Triple (or Subgraph) Retrieval:

m.0fm2hgovernment.government_position_held.appointed_bym.0114vpvq

m.0fm2hgovernment.government_position_held.office_holderm.0fpy4s2

m.0fm2hgovernment.government_position_held.office_holderm.07m2nl0

Logical Form Generation:

(JOIN (R location.religion_percentage.religion) 
(ARGMAX (JOIN government.government_position_held.office_holder m.0fm2h) 

location.religion_percentage.percentage)) 

What is the most predominant religion in the country Benjamin
Netanyahu holds a governmental position? 

Chat
KBQA

Generation (by Fine-tuned LLM):
After analyzing, this question can be represented as the following Logical Form:

(JOIN (R location.religion_percentage.religion) (ARGMAX (JOIN (R location.statistical_region.religions)
(JOIN government.governmental_jurisdiction.governing_officials

(JOIN government.government_position_held.appointed_by [Benjamin Netanyahu]))) 
location.religion_percentage.percentage))

Intuitively, it can be equally represented as the following Computational Graph:

Benjamin Netanyahu
g.g.a

?
g.g.g

?
l.s.r

?

l.r.p

?

l.r.r
?

m.0fm2h
g.g.a g.g.g l.s.r

l.r.p

l.r.r

Retrieval (by Unsupervised Match Model):

(JOIN (R location.religion_percentage.religion) (ARGMAX (JOIN (R location.statistical_region.religions)
(JOIN government.governmental_jurisdiction.governing_officials

(JOIN government.government_position_held.appointed_by m.0fm2h))) 
location.religion_percentage.percentage))

After retrieval, we get the final logical form, which is converted to SPARQL to get the answer.

By excuting SPARQL over Knowledge Base, the final answer is: Judaism m.03_gx

Previous Retrieve-then-Generate KBQA Framework ChatKBQA: Generate-then-Retrieve KBQA Framework

Figure 2: Comparison of the previous retrieve-then-generate KBQA framework (left) and our proposed generate-
then-retrieve KBQA framework, ChatKBQA (right). Note that labels such as "g.g.a" etc. in the computational
graph are acronyms for relation names such as "government.government_position_held.appointed_by".

logical form and then converted it to an SPARQL063

query to fetch answers when executed over KB.064

Despite this, three main challenges remain, as065

shown on the left side of Figure 2: (i) Low re-066

trieval efficiency. Traditional methods first iden-067

tify the span of candidate entities and then do entity068

retrieval and relation retrieval. Since the structure069

of natural language questions differs from KB facts,070

most approaches require training dedicated mod-071

els for extraction and linking inefficiently. (ii) In-072

correct retrieval results will mislead semantic073

parsing. Previous methods have utilized retrieved074

triples also as input of reference to the seq2seq075

model along with the original question. However,076

since the retrieved triples are not always accurate,077

they adversely impact semantic parsing outcomes.078

Additionally, if there are numerous retrieved triples,079

the seq2seq model requires a much longer con-080

text length. (iii) Multiple processing steps make081

KBQA a redundantly complex task. Previous082

work decomposed the KBQA task into multiple083

sub-tasks (Hu et al., 2022b; Shu et al., 2022; Yu084

et al., 2023), forming a complex pipeline, which085

made reproduction and migration challenging. In086

the era when large language models (LLMs) (Ope-087

nAI, 2023; Touvron et al., 2023; Zhao et al., 2023)088

are restructuring traditional NLP tasks (Chung089

et al., 2022; Pan et al., 2023), a more straightfor-090

ward solution utilizing LLMs to reformulate the091

traditional KBQA paradigm is promising.092

To overcome these challenges, we introduce093

ChatKBQA, a novel generate-then-retrieve KBQA094

framework based on open-source LLMs, such as095

Llama (Touvron et al., 2023), ChatGLM (Zeng096

et al., 2023) and Baichuan (Yang et al., 2023). As 097

illustrated on the right side of Figure 2, ChatKBQA 098

simplifies KBQA into two efficient phases: gener- 099

ating logical forms and then retrieving relevant en- 100

tities and relations. In the generation phase, lever- 101

aging instruction tuning (Mangrulkar et al., 2022), 102

fine-tuned LLMs exhibit high accuracy in seman- 103

tic parsing of natural language questions without 104

retrieval. The generated logical forms are not only 105

mostly correct in skeleton (entities and relations 106

masked) but also semantically consistent or close 107

to the ground truth in terms of entities and relations. 108

In the retrieval phase, ChatKBQA proposes an 109

unsupervised retrieval method that employs phrase- 110

level semantic retrieval within knowledge bases 111

to improve generation accuracy and retrieval effi- 112

ciency further. Additionally, ChatKBQA features 113

a plug-and-play characteristic, ensuring compat- 114

ibility with various LLMs and retrieval models, 115

making it a flexible solution for KBQA tasks. 116

To valid the performance of our proposed frame- 117

work, we conduct experiments on two standard 118

KBQA datasets, WebQSP (Yih et al., 2016) and 119

ComplexWebQuestions (CWQ) (Talmor and Be- 120

rant, 2018), with both settings of using and not 121

using golden entities. The experimental results 122

demonstrate that ChatKBQA achieves a new state- 123

of-the-art performance in the KBQA task. We also 124

set up additional experiments to validate that our 125

generate-then-retrieve approach improves both gen- 126

eration and retrieval results efficiency. Finally, we 127

also discuss how insights from this framework lead 128

us to envision future combinations of LLMs and 129

KGs for knowledgable and interpretable Q&A. 130
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2 Related Work131

2.1 Knowledge Base Question Answering132

Existing Knowledge Base Question Answering133

(KBQA) methods can be broadly categorized into134

Information Retrieval-based (IR-based) and Seman-135

tic Parsing-based (SP-based) methods. Recently,136

there have been some KBQA methods based on137

large language models (LLM-based) as well.138

(a) IR-based KBQA methods (Miller et al.,139

2016; Sun et al., 2019; Saxena et al., 2020; He140

et al., 2021; Shi et al., 2021; Zhang et al., 2022) pri-141

marily retrieve relevant factual triples or text from142

KBs based on natural language questions, forming143

a subgraph to determine answers.144

(b) SP-based KBQA methods focus on trans-145

lating questions into logical forms executable146

against KBs, such as SPARQL, query graph, and147

S-expression. Some SP-based approaches (Yih148

et al., 2016; Chen et al., 2019; Lan et al., 2019;149

Bhutani et al., 2019; Lan and Jiang, 2020; Jiang150

et al., 2023b) utilize strategies of step-wise query151

graph generation and search for semantic parsing.152

Alternatively, other SP-based methods (Das et al.,153

2021; Ye et al., 2022; Cao et al., 2022; Shu et al.,154

2022; Hu et al., 2022b; Xie et al., 2022; Yu et al.,155

2023; Zhang et al., 2023) employ seq2seq models156

to generate S-expressions completely and offer var-157

ious enhancements to the semantic parsing process.158

(c) LLM-based KBQA methods (Jiang et al.,159

2023a; Gu et al., 2023; Sun et al., 2024) utilize the160

thinking capabilities of LLMs to find answers by161

retrieving from the graph in a step-wise manner.162

In this paper, our proposed ChatKBQA is the163

first SP-based KBQA method using fine-tuned164

LLMs, which innovatively proposes a generate-165

then-retrieve approach to simplify KBQA method.166

2.2 Large Language Models167

With ChatGPT (OpenAI, 2023) displaying the168

prowess of decoder-only large language models169

(LLMs), many traditional NLP tasks are becoming170

simplified (Zhao et al., 2023). Subsequently, open-171

source LLMs like Llama (Touvron et al., 2023),172

ChatGLM (Zeng et al., 2023), and Baichuan (Yang173

et al., 2023) emerged and can be supervisedly fine-174

tuned (SFT) using Parameter-Efficient Fine-Tuning175

(PEFT) technologies (Mangrulkar et al., 2022) such176

as LoRA (Hu et al., 2022a), QLoRA (Dettmers177

et al., 2023), P-Tuning v2 (Liu et al., 2022a), and178

Freeze (Geva et al., 2021), enhancing the capabili-179

ties of LLMs for specific tasks.180

2.3 Knowledge Retrieval for KBQA 181

General retrieval methods are typically divided 182

into lexical methods, such as BM25 (Robertson 183

and Zaragoza, 2009), and dense retrieval models, 184

such as Dense Passage Retrieval (DPR) (Karpukhin 185

et al., 2020), SimCSE (Gao et al., 2021), and Con- 186

triever (Izacard et al., 2022). In KBQA task, to bet- 187

ter utilize knowledge related to the question from 188

KB, ELQ (Li et al., 2020) and FACC1 (Evgeniy 189

et al., 2013) are commonly used to entity retrieval. 190

In this paper, our ChatKBQA framework pro- 191

poses a phrase-level retrieval method for entities 192

and relations in an unsupervised manner after 193

LLM’s generation of logical form, improving both 194

generation performance and retrieval efficiency. 195

3 Preliminaries 196

In this section, we define two basic concepts of our 197

work: the knowledge base and the logical form, 198

followed by the problem statement for KBQA task. 199

Definition 1: Knowledge Base (KB). A KB 200

K = {(s, r, o)|s ∈ E , r ∈ R, o ∈ E ∪ L} is 201

an RDF graph consisting of triples (s, r, o) where 202

s is an entity, r is a relation , and o can be 203

an entity or a literal. Each entity e ∈ E in 204

the entity set E is represented by a unique ID, 205

e.g., e.id="m.0fm2h", which can be queried to 206

get its label as e.label="Benjamin Netanyahu". 207

Each relation r ∈ R in the relation set R 208

has a multiple-level label, e.g. r="government. 209

government_position_held. appointed_by". 210

Definition 2: Logical Form. A logical form 211

is a structured representation of a natural language 212

question. Taking the S-expression as an example, 213

a logical form usually consists of projection and 214

various operators. Projection operation represents a 215

one-hop query of a triple (s, r, o) on s or o, where, 216

(?, r, o) is denoted as (JOIN r o), while (s, r, ?) 217

is denoted as (JOIN (R r) s). Other operators, 218

e.g. "AND", "COUNT", and "ARGMAX", are 219

introduced in Appendix A. 220

Problem Statement. For KBQA task, given 221

a natural language question Q, and a knowledge 222

base K, we need to first convert Q into a logi- 223

cal form F = Sp(Q), where Sp(.) is a semantic 224

parsing function. Then convert F to the equiv- 225

alent SPARQL query q = Convert(F ), where 226

Convert(.) is the fixed conversion function. Fi- 227

nally, the final set of answers A = Execute(q|K) 228

is obtained by executing q against K, where 229

Execute(.) is the query execution function. 230
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PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?x
WHERE {
FILTER (?x != ns:m.06w2sn5)
FILTER (!isLiteral(?x) OR lang(?x) = '' OR langMatches(lang(?x), 'en'))
ns:m.06w2sn5 ns:people.person.sibling_s ?y .
?y ns:people.sibling_relationship.sibling ?x .
?x ns:people.person.gender ns:m.05zppz .
}

44

45

46

Efficient Fine-Tuning on
Open-source LLMs

Unsupervised Retrieval
for Entities & Relations

Fine-Tuned
LLMs for
Semantic
Parsing

Beam
Search

Open-source
LLMs

Candidate
Logical
Forms

Updated
Candidate

Logical
Forms

SPARQL
query

Answers

Input NL Question

Generation Phase Retrieval Phase

Knowledge Base

Training Data

SPARQL query
NL Question

Logical Form

Template

{"instruction": "Generate a Logical Form query that retrieves the
information corresponding to the given question. \n", 

"input": "Question: { what is the name of justin bieber brother }", 

"output": "( AND ( JOIN [ people , person , gender ] [ Male ] ) ( JOIN (
R [ people , sibling relationship , sibling ] ) ( JOIN ( R [ people ,
person , sibling s ] ) [ Justin Bieber ] ) ) )"}

Entities:
ID2label

Instruction Tuning

WebQSP

CWQ

Input Output

Entity
set of
KB

Who plays ken barlow
in coronation street ？

Generated Candidate Logical Forms

( JOIN ( R [ tv , regular tv appearance , actor ] ) ( AND ( JOIN [ tv , regular tv appearance ,
character ] [ Ken Barlow ] ) ( JOIN ( R [ tv , tv program , regular cast ] ) [ Coronation Street ] ) ) )

Candidate Entity Tuple:（ [ Ken Barlow ], [ Coronation Street ] ）

e1.label e1.id e2.label e2.id Probability

Ken Barlow m.015lwh Coronation
Street m.01_2n 98.01%

Ray Langton m.07_n0v Coronation
Street m.01_2n 0.64%

(FACC1)

Entity Retrieval

( JOIN ( R [ tv , regular tv appearance , actor ] ) ( AND ( JOIN [ tv , regular tv appearance ,
character ] m.015lwh ) ( JOIN ( R [ tv , tv program , regular cast ] ) m.01_2n ) ) )

Relation
set of
KB

Candidate Relation Tuple:（ [ tv , regular tv appearance , actor ], [ tv , regular tv appearance , character ], [ tv , tv program , regular cast ] ）

r1 r2 r3 Probability
tv.regular_tv_

appearance.actor
tv.regular_tv_

appearance.character
tv.tv_program.
regular_caset 95.72%

tv.regular_tv_
appearance.actor

tv.regular_tv_
appearance.actor

tv.tv_program.
regular_caset 78.16%

Relation Retrieval(Neighborhood)

(JOIN (R tv.regular_tv_appearance.actor) (AND (JOIN tv.regular_tv_appearance.
character m.015lwh) (JOIN (R tv.tv_program.regular_cast) m.01_2n)))

Judaism m.03_gx

(LoRA, QLoRA, P-Tuning v2, Freeze)

(Llama-2-7B, ChatGLM2-6B)

(SimCSE, Contriever, BM25)

Figure 3: The overview of ChatKBQA framework for generate-then-retrieve KBQA method with fine-tuned LLMs
and unsupervised retrieval for entities and relations in candidate logical forms.

4 Methodology231

In this section, we first present an overview of the232

ChatKBQA framework as shown in Figure 3, and233

introduce efficient fine-tuning on large language234

models (LLMs), logical form generation by fine-235

tuned LLMs, unsupervised retrieval for entities and236

relations, and interpretable query execution.237

4.1 Overview of ChatKBQA238

ChatKBQA is a generate-then-retrieve KBQA239

framework with fine-tuned LLMs. First, the ChatK-240

BQA framework needs to efficiently fine-tune an241

open-source LLM based on the (natural language242

question, logical form) pairs in the KBQA dataset243

by instruction tuning. The fine-tuned LLM is then244

used to convert the new natural language questions245

to according candidate logical forms by seman-246

tic parsing. Then, ChatKBQA retrieves the en-247

tities and relations in these logical forms at the248

phrase level, and searches for the logical forms249

that can be executed against KB after being con-250

verted to SPARQL. Finally, the converted SPARQL251

generates the final set of answers, resulting in in-252

terpretable and knowledge-required responses to253

natural language questions.254

4.2 Efficient Fine-Tuning on LLMs255

To construct the instruction fine-tuning training256

data, ChatKBQA first converts the SPARQL corre-257

sponding to the natural language questions of the258

train set in the KBQA dataset into equivalent log-259

ical forms and then replaces the entity IDs (e.g.,260

"m.06w2sn5") in these logical forms with the cor-261

responding entity tags (e.g., "[ Justin Bieber262

]"), to let LLMs understand entity labels better 263

than meaningless entity IDs. We then combine 264

the natural language question (e.g. "What is the 265

name of Justin Bieber’s brother?") and the 266

processed corresponding logical form (e.g. "(AND 267

(JOIN [ people, person, gender ] [ Male ]) 268

(JOIN (R [ people, sibling relationship, 269

sibling ]) (JOIN (R [ people, person, 270

sibling s ]) [ Justin Bieber ])))") as 271

"input" and "output" respectively, and add "instruc- 272

tion" as "Generate a Logical Form query that 273

retrieves the information corresponding 274

to the given question." constitutes the instruc- 275

tion fine-tuning training data for LLMs. 276

ChatKBQA employs Parameter Efficient Fine- 277

Tuning (PEFT) (Mangrulkar et al., 2022) tech- 278

niques including various efficient fine-tuning 279

methods, such as LoRA (Hu et al., 2022a), 280

QLoRA (Dettmers et al., 2023), P-tuning v2 (Liu 281

et al., 2022a), and Freeze (Geva et al., 2021), to 282

minimize the cost of fine-tuning LLMs with a large 283

number of parameters. ChatKBQA can switch be- 284

tween all the above fine-tuning methods as well as 285

open-source LLMs, such as Llama-2-7B (Touvron 286

et al., 2023), ChatGLM2-6B (Zeng et al., 2023) 287

and Baichuan2-7B (Yang et al., 2023). 288

4.3 Logical Form Generation by LLMs 289

Through fine-tuning, the LLMs have acquired ex- 290

pertise in semantic parsing, enabling them to con- 291

vert natural language questions into logical forms. 292

We apply the fine-tuned LLMs to perform semantic 293

parsing on the new questions in the test set and ob- 294

serve that approximately 63% of the samples match 295

the ground truth logical forms exactly. When em- 296
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ploying beam search, the set of candidate logical297

forms C generated by our LLMs includes approx-298

imately 74% of the instances with correct logical299

forms, indicating that fine-tuned LLMs possess ef-300

fective learning and parsing abilities for semantic301

parsing tasks. In addition, by replacing the entities302

and relations in the candidate logical forms with303

"[]" (for example, "(AND (JOIN [] []) (JOIN304

(R []) (JOIN (R []) [])))"), more than 91% of305

the samples contain the candidate skeleton. Hence,306

the next step involves retrieving the entities and307

relations in the logical form with the corresponding308

ones from the KB to enhance performance further.309

4.4 Unsupervised Retrieval for Ents and Rels310

Due to the strong generative capabilities of fine-311

tuned LLMs for logical form skeletons, we employ312

an unsupervised retrieval approach during the re-313

trieval phase. This method involves subjecting the314

entities and relations in the candidate logical forms315

to phrase-level semantic retrieval and replacement.316

The result is a final logical form that can be exe-317

cuted as a SPARQL query against the KB.318

Algorithm 1 Unsupervised Retrieval
Input :Candidate logical form list generated from LLM C,

top-k threshold ke, kr, k1, k2, probability threshold
te, tr, t1, t2, the entity set of KB E

Output :The equivalent SPARQL query q
C′ ← ∅ foreach F ∈ C do

foreach e ∈ F do
elist ← ∅ foreach e′ ∈ E do

se ← SimiEntities(e, e′)
elist.append((e

′, se))

elist ← TopKwithThreshold(elist, ke, te)
F.attach(elist)

Flist ← PermuteByEntity(F )
C′.append(TopKwithThreshold(Flist, k1, t1))

C′′ ← ∅ foreach F ∈ C′ do
foreach e ∈ F do

rlist ← ∅ foreach r ∈ Neighborhood(EF ) do
sr ← SimiRelations(r, r′)
rlist.append((r

′, sr))

rlist ← TopKwithThreshold(rlist, kr, tr)
F.attach(rlist)

Flist ← PermuteByRelation(F )
C′′.append(TopKwithThreshold(Flist, k2, t2))

foreach q ∈ C′′ do
q = Convert(F ) if q is valid to execute then

return q

return ∅

Specifically, as shown in the Algorithm 1, the319

input is the generated candidate logical form list320

C, and we traverse each of these logical forms F321

in order. First, we perform the entity retrieval.322

For each entity e in F , we compute the similar-323

ity se ← SimiEntities(e, e′) with the label of 324

each entity e′ in the knowledge base K entity set 325

E . We sort the retrieved entities based on the 326

similarities, take the top ke and greater than the 327

threshold te to get the retrieval result for that entity 328

elist ← TopKwithThreshold(elist, ke, te). Func- 329

tion PermuteByEntity performs permutation on 330

the retrieved entities at each position, and we get 331

the result Flist after entity retrieval. Based on prob- 332

abilities in Flist, we take top k1 and greater than 333

threshold t1 to get a new candidate logical form list 334

C′.append(TopKwithThreshold(Flist, k1, t1)). 335

Then, we perform the relation retrieval. Sim- 336

ilar to entity retrieval, but different in that for 337

each relation r in F ∈ C′, we compute the sim- 338

ilarity sr ← SimiRelations(r, r′) with each 339

candidate relation r′ according to the neighbor- 340

hood of entity set of the logical form EF . We 341

also sort the retrieved relations according to the 342

similarities, take the top kr and greater than the 343

threshold tr to get the retrieval result rlist ← 344

TopKwithThreshold(rlist, kr, tr). By permuting 345

the retrieval results of the relations at each posi- 346

tion, we get the result Flist after relation retrieval 347

and then take top k2 and greater than the thresh- 348

old t2 to get a new list of candidate logical forms 349

C′′.append(TopKwithThreshold(Flist, k2, t2)). 350

Given a query, unsupervised retrieval meth- 351

ods such as SimCSE (Gao et al., 2021), Con- 352

triever (Izacard et al., 2022), and BM25 (Robertson 353

and Zaragoza, 2009), require no additional train- 354

ing to identify the top k most semantically simi- 355

lar candidates from the set of retrieved answers. 356

ChatKBQA can switch between all the above un- 357

supervised retrieval methods. We also discuss the 358

retrieval complexity in Appendix B. 359

4.5 Interpretable Query Execution 360

After retrieval, we get a final candidate logical form 361

list C′′, which we sequentially iterate through the 362

logical form F ∈ C′′ and convert to the equiv- 363

alent of the SPARQL query q = Convert(F ). 364

When the first q that can be executed against KB 365

K is found, we execute to get the final answer 366

set A = Execute(q|K). With this approach, we 367

can also get a complete reasoning path for natural 368

language questions based on SPARQL query with 369

good interpretability. To summarize, ChatKBQA 370

proposes a thought taking both the advantages of 371

using LLMs to do natural language semantic pars- 372

ing for graph query generation and calling external 373

KBs to interpretably reason with queries. 374
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5 Experiments375

This section presents the experimental setup, re-376

sults, and analysis. We answer the following re-377

search questions (RQs): RQ1: Does ChatKBQA378

outperform other KBQA methods? RQ2: Does379

the main components of ChatKBQA work? RQ3:380

Why use Generate-then-Retrieve method instead of381

Retrieve-then-Generate method? RQ4: Why use382

fine-tuned open-source LLMs instead of calling383

ChatGPT or training traditional T5 models? RQ5:384

Does Generate-then-Retrieve method improve re-385

trieval efficiency? RQ6: Does ChatKBQA has386

plug-and-play characteristics?387

5.1 Experimental Setup388

Datasets. All experiments are conducted389

on two standard KBQA datasets: WebQuestion-390

sSP (WebQSP) (Yih et al., 2016) containing 4,737391

natural language questions with SPARQL queries392

and ComplexWebQuestions (CWQ) (Talmor and393

Berant, 2018) containing 34,689 natural language394

questions with SPARQL queries. Both datasets395

are based on Freebase (Bollacker et al., 2008) KB.396

More details of datasets are in Appendix C.397

Baselines. We compare ChatKBQA with nu-398

merous KBQA baseline methods, including IR-399

based methods (Miller et al., 2016), SP-based meth-400

ods (Yih et al., 2016; Das et al., 2021), and LLM-401

based methods (Jiang et al., 2023a) in Section 2.402

Details of more baselines are in Appendix D.403

Evaluation Metrics. Following previous404

work (Shu et al., 2022; Yu et al., 2023), we use405

F1 score, Hits@1, and Accuracy (Acc) to denote406

coverage of all the answers, single top-ranked an-407

swer, and strict exact-match accuracy, respectively.408

Hyperparameters and Enviroment. We fine-409

tune LLMs 100 epochs on WebQSP and 10 epochs410

on CWQ with batch size 4 and learning rate 5e-5,411

detailed in Apendix E. All experiments were done412

on a single NVIDIA A40 GPU (48GB), with results413

averaged from five randomly seeded experiments.414

5.2 Main Results (RQ1)415

For the KBQA task, Table 1 lists the experimen-416

tal results for our proposed generate-then-retrieve417

ChatKBQA framework, with the best setup of418

LoRA (Hu et al., 2022a) fine-tuning Llama-2-419

7B (Touvron et al., 2023) (beam size = 15) on We-420

bQSP, Llama-2-13B (Touvron et al., 2023) (beam421

size = 8) on CWQ, with SimCSE (Gao et al., 2021)422

for unsupervised retrieval, and other baseline mod-423

WebQSP CWQModel F1 Hits@1 Acc F1 Hits@1 Acc
IR-based KBQA Methods

KV-Mem 34.5 46.7 - 15.7 21.1 -
PullNet - 68.1 - - 47.2 -
EmbedKGQA* - 66.6 - - 44.7 -
NSM+h* 67.4 74.3 - 44.0 48.8 -
TransferNet - 71.4 - - 48.6 -
Subgraph Retrieval* 64.1 69.5 - 47.1 50.2 -

SP-based KBQA Methods (step-wise)
STAGG 71.7 - 63.9 - - -
UHop 68.5 - - 29.8 - -
Topic Units 67.9 68.2 - 36.5 39.3 -
QGG 74.0 73.0 - 40.4 44.1 -
UniKGQA* 72.2 77.2 - 49.4 51.2 -

SP-based KBQA Methods (seq2seq)
CBR-KBQA 72.8 - 69.9 70.0 70.4 67.1
RnG-KBQA 75.6 - 71.1 - - -
Program Transfer* 76.5 74.6 - 58.7 58.1 -
TIARA* 78.9 75.2 - - - -
GMT-KBQA 76.6 - 73.1 77.0 - 72.2
UnifiedSKG 73.9 - - 68.8 - -
DECAF 78.8 82.1 - - 70.4 -
FC-KBQA 76.9 - - 56.4 - -

LLM-based KBQA Methods
StructGPT* 72.6 - - - - -
PanGu 79.6 - - - - -
ToG* - 82.6 - - 69.5 -
ChatKBQA (ours) 79.8 83.2 73.8 77.8 82.7 73.3
ChatKBQA* (ours) 83.5 86.4 77.8 81.3 86.0 76.8

Table 1: KBQA comparison of ChatKBQA with other
baselines on WebQSP and CWQ datasets. * denotes
using oracle entity linking annotations. The results of
the models are mainly taken from their original paper.
For our proposed ChatKBQA framework, we display
the results of the best setup on WebQSP and CWQ,
respectively. The best results in each metric are in bold.

els. We can see that ChatKBQA has a significant 424

improvement over all existing KBQA methods on 425

both WebQSP and CWQ datasets. The F1 score, 426

Hits@1, and Acc have improved by about 4, 4, 427

and 4 percentage points on WebQSP and about 4, 428

16, and 4 percentage points on CWQ, respectively, 429

compared to the previous best results, which re- 430

flects ChatKBQA’s superior KBQA capability to 431

reach the new state-of-the-art performance. 432

5.3 Ablation Study (RQ2) 433

To validate the effectiveness of the generation and 434

retrieval phases of ChatKBQA, we ablate the two 435

phases separately. For the generation phase, we use 436

20%, 40%, 60%, and 80% of the training data for 437

fine-tuning versus full training set fine-tuning. For 438

the retrieval phase, to validate entity retrieval (ER) 439

and relation retrieval (RR) separately, we remove 440

ER or RR from the framework and obtain three 441

simplified variants for comparison. 442
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Figure 4: (a) Ablation study in ChatKBQA generation phase. (b) Ablation study in ChatKBQA retrieval phase. (c)
Comparison with other language models in the generation phase. (d) Comparison of retrieval efficiency between
retrieval from nature language questions (NL-R) and generated logical forms (AG-R) in the retrieval phase.

Effectiveness of LLM’s Fine-tuning. As443

shown in Figure 4(a), the performance of KBQA444

gets better as the training volume increases, prov-445

ing the effectiveness of fine-tuning. We also ob-446

serve that the F1 score has exceeded 70% when447

only using 20% training data to fine-tune, which in-448

dicates that the fine-tuned LLMs are also effective449

at learning from a limited dataset. As shown in Fig-450

ure 4(b), we also utilize beam search to improve the451

generation performance, detailed in Appendix F.452

Effectiveness of Entity Retrieval (ER). As453

shown in Figure 4(b), ER improves about 15 per-454

centage points on average over no oracle entity455

linking in the F1 score at different beam sizes. This456

is because, after LLM’s fine-tuning, the generated457

logical forms contain entities unseen in the train set,458

which can be further aligned to KB after retrieving459

the entities from the KB entity set.460

Effectiveness of Relation Retrieval (RR). As461

shown in Figure 4(b), RR enhances the F1 score462

by an average of 5% across various beam sizes in463

ablation experiments. Although relations are rarely464

directly present in natural language questions, the465

number of thousand-level relations in the KB is still466

small compared to the tens of millions of entities,467

and the LLM perceives relational information well468

during fine-tuning. Thus, RR does not improve469

performance as much as ER, but combined with470

ER, RR makes KBQA perform at its best.471

5.4 Generate-then-Retrieve Or472

Retrieve-then-Generate (RQ3)473

To verify that our proposed LLM-based Generate-474

then-Retrieve method is better than previous475

Retrieve-then-Generate methods, we add Top1,476

Top2, Top5, and Top10 retrieval knowledge frag-477

ments obtained in DECAF (Yu et al., 2023) to the478

instruction, respectively, compared with the fine-479

tuning of Llama-2-7B without retrieval.480

Fine-tuning Settings WebQSP
Max Token↓EM↑ %BM↑ %SM↑ %

Llama-2-7B w/o R 512 63.5 74.7 91.1
Llama-2-7B w Top1 R 612 58.5 72.3 88.4
Llama-2-7B w Top2 R 712 59.7 73.6 89.0
Llama-2-7B w Top5 R 1012 55.6 68.3 85.3
Llama-2-7B w Top10 R 2012 53.1 67.9 84.8

Table 2: Comparison of whether or not utilizing re-
trieval results before fine-tuning Llama-2-7B for logical
form generation in ChatKBQA.

As shown in Table 2, we find that without re- 481

trieval is better than with retrieval in the logical 482

form generation in terms of extract match ratio 483

(EM), match after beam search ratio (BM), and 484

skeleton match ratio (SM), because the information 485

obtained from retrieval will have erroneous inter- 486

fering information and increase Max Token of 487

instruction, which leads to catastrophic forgetting 488

of the original problem for LLMs and increases 489

the difficulty of training. At the same time, we ob- 490

serve that Llama-2-7B fine-tuning without retrieval 491

achieves a BM of 74.7% and SM hits 91.1%, with 492

good performance because of LLM’s well-learned 493

schema of entities and relations, which provides 494

the basis for the retrieval after generation. 495

5.5 Comparison with ChatGPT and T5 in 496

Generation Phase (RQ4) 497

To illustrate why ChatKBQA chooses to fine-tune 498

open-source generative LLMs such as Llama-2-7B 499

and ChatGLM2-6B, we replace the LLMs in the 500

generation phase with ChatGPT and GPT-4 (Ope- 501

nAI, 2023) with API call in a zero-shot setting, 502

T5 (Raffel et al., 2020) and Flan-T5 (Chung et al., 503

2022) with seq2seq training, respectively, and ob- 504

serve their results in Extract Match (EM) and Skele- 505

ton Match (SM) results without beam search. 506

Comparison with zero-shot ChatGPT. As 507

shown in Figure 4(c), ChatGPT and GPT-4, al- 508
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though having large parametric quantities, cannot509

generate standard logical forms well because they510

aren’t open-source to be fine-tuned. They can gen-511

erate the SPARQL language, but it is challenging512

to build the correct query skeleton, entities, and513

relations because they cannot perceive the complex514

structure of the external KB well through designing515

prompts in limited context length.516

Comparison with fine-tuned T5 & Flan-T5.517

While T5 and Flan-T5 can capture the skeletons518

well after fine-tuning, the EM is only about 10%,519

which is much worse than the 63% of Llama-2-7B,520

and therefore does not guarantee subsequent unsu-521

pervised entity and relation retrieval. Fine-tuned522

open-source LLMs such as Llama-2-7B (Touvron523

et al., 2023) and ChatGLM2-6B (Zeng et al., 2023)524

show stronger semantic parsing ability than models525

such as T5 and ChatGPT and can generate higher-526

quality logical forms in both EM & SM.527

5.6 Analysis of Efficiency of Retrieval in528

Retrieval Phase (RQ5)529

To embody the Generate-then-Retrieve method im-530

proving the efficiency of retrieval, we compare en-531

tity retrieval (ER) and retrieval (RR) after logical532

form generation (AG-R) with traditional retrieval533

from natural language questions (NL-R). We define534

the efficiency of retrieval as the average similarity535

ranging [0,1] between the text to be retrieved and536

the set of retrieved answers, which is scored by dif-537

ferent retrieval models. Note that the BM25 score538

needs to be mapped to the similarity range of [0,1].539

Efficiency gains in both ER & RR. As Fig-540

ure 4(d) shows, all three retrieval methods Sim-541

CSE (Gao et al., 2021), Contriever (Izacard et al.,542

2022), and BM25 (Robertson and Zaragoza, 2009)543

consider AG-R to be more efficient than NL-R for544

both ER and RR. This is due to NL-R still needs to545

determine the boundaries of the entities or relations.546

However, this step has been completed in AG-R547

after LLM generates the logical forms.548

RR has more efficiency gains than ER. More-549

over, although the generated logical form has fewer550

kinds of relations than entities in general, the rela-551

tions generally exist implicitly in natural language552

questions. Thus, relations are more difficult to553

determine the boundaries than entities in natural554

language questions, and the generation of logical555

forms with the help of fine-tuned LLMs can help556

us to better determine the boundaries of relations,557

resulting in a more significant improvement in the558

efficiency of RR over ER.559

ChatKBQA Framework WebQSP
LLMs Tuning Retrieval F1 Hits@1 Acc

Baichuan2-7B LoRA SimCSE 79.1 81.5 74.1
Baichuan2-13B LoRA SimCSE 79.4 82.1 74.4
ChatGLM2-6B LoRA SimCSE 79.8 82.7 74.5

Llama-2-7B LoRA SimCSE 80.0 82.4 75.2
Llama-2-13B LoRA SimCSE 82.6 85.2 77.5
Llama-2-13B QLoRA SimCSE 81.9 85.0 76.9

ChatGLM2-6B P-Tuning v2 SimCSE 74.6 77.8 70.6
Llama-2-13B Freeze SimCSE 81.7 84.7 76.8
Llama-2-13B LoRA Contriever 81.5 83.6 76.8
Llama-2-13B LoRA BM25 79.8 80.5 72.7

Table 3: Plug-and-play performance comparison of
ChatKBQA framework for replacing LLMs, tuning
methods, and unsupervised retrieval methods, respec-
tively, with the beam size all set as 8.

5.7 Plug-and-Play Characteristics (RQ6) 560

ChatKBQA is a KBQA framework based on LLMs 561

with plug-and-play characteristics that can flex- 562

ibly replace three parts: LLM, efficient tuning 563

method, and unsupervised retrieval method. We 564

choose Llama-2-13B (Touvron et al., 2023) for 565

LLM, LoRA (Hu et al., 2022a) for the tuning 566

method, and SimCSE (Gao et al., 2021) for the 567

retrieval method as the basic variant, setting the 568

beam size for all variants to 8 for comparison. 569

We replace Baichuan2-7B (Yang et al., 2023), 570

Baichuan2-13B (Yang et al., 2023), ChatGLM2- 571

6B (Zeng et al., 2023), Llama-2-7B (Touvron 572

et al., 2023) in the LLM part, QLoRA (Dettmers 573

et al., 2023), P-Tuning v2 (Liu et al., 2022a), 574

Freeze (Geva et al., 2021) in the tuning part, and 575

Contriever (Izacard et al., 2022), BM25 (Robertson 576

and Zaragoza, 2009) in the retrieval part. Bene- 577

fiting from the plug-and-play characteristics of the 578

ChatKBQA framework, as the LLMs and the meth- 579

ods of tuning and retrieval are upgraded, the KBQA 580

task will be solved better with good flexibility and 581

extensibility. More details are in Appendix G. 582

6 Conclusion 583

In this work, we introduce ChatKBQA, a generate- 584

then-retrieve KBQA framework that utilizes ad- 585

vanced fine-tuned LLMs, which overcomes tradi- 586

tional challenges like retrieval inefficiencies, se- 587

mantic parsing errors, and complexity of KBQA 588

methods. Experimental results on WebQSP and 589

CWQ benchmarks show that ChatKBQA achieves 590

a new state-of-the-art KBQA performance. Its sim- 591

plicity, flexibility, and plug-and-play make it an 592

effective approach for combining LLM and KG in 593

interpretable knowledge-required KBQA tasks. 594
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Limitations595

In Appendix H, we provide an error analysis of596

ChatKBQA, revealing significant room for im-597

provement. Furthermore, we also discuss more lim-598

itations of ChatKBQA for future directions, such599

as in the design of the training set, the decompo-600

sition of complex questions, support for various601

graph query languages, and applications in specific602

domains, which are detailed in Appendix I.603

Ethics Statement604

This paper investigates the problem of Knowledge605

Base Question Answering. We use large language606

models and retrieval methods to promote gener-607

ation and retrieval performance. Therefore, we608

believe it does not violate any ethics.609
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Appendix1049

A Operators in Logical Form1050

Various operators include "AND" (AND E1 E2)1051

to denote taking the intersection of E1 and E2,1052

"COUNT" (COUNT E1) to denote counting E1,1053

"ARGMAX" (ARGMAX E1 r) to denote taking the1054

max literal obtained after the projection of E1 in the1055

r relation, "ARGMIN" (ARGMIN E1 r) to denote1056

taking the min literal obtained after the projection1057

of the r relation for E1, "GT" (GT E1 l) means to1058

take the portion of E1 that is greater than l, "GE"1059

(GE E1 l) to denote taking the part of E1 greater1060

than or equal to l, "LT" (LT E1 l) to denote taking1061

the part of E1 less than l, "LE" (LE E1 l) to denote1062

taking the part of E1 which is less than or equal to1063

l, where E1 or E2 denote a sublayer logical form.1064

B Retrieval Complexity Analysis1065

During the retrieval phase, we measure the com-1066

plexity of the algorithm using two indicators: the1067

number of times vector similarity is calculated and1068

the number of attempts to execute the logical form.1069

Assuming the beam size in the generation phase1070

is set to b, the size of the KB entity set is E, and1071

the average logical form skeleton has ne entities,1072

the complexity of entity retrieval is O(bneE). For1073

each entity’s position, we select entities that rank1074

in the top ke in similarity and are greater than the1075

threshold te for replacement. For the logical form1076

as a whole, we select the top k1 logical forms with1077

a combined probability greater than the threshold1078

t1 as the result of entity retrieval.1079

In the relation retrieval phase, similarly, assum-1080

ing the size of the KB relation set is R, and the1081

average logical form skeleton has nr entities, the1082

complexity of entity retrieval is O(k1nrR). For1083

each position’s relation, we select relations that1084

rank in the top kr in similarity and are greater than1085

the threshold tr for replacement. For the logical1086

form as a whole, based on the combination proba-1087

bility of the relation retrieval results, we select the1088

top k2 logical forms greater than the threshold t21089

as the result of relation retrieval.1090

Therefore, the complexity of the number of vec-1091

tor similarity calculations is O(bneE + k1nrR).1092

For the number of attempts to execute the logical1093

form, we initially attempt with the first b logical1094

forms; if none can be executed, we proceed with1095

entity retrieval and attempt up to k1 times. If there1096

is still no executable logical form, we move to rela-1097

tion retrieval and attempt up to k2 times. Thus, the 1098

complexity of the number of logical form execution 1099

attempts is O(b + k1 + k2). 1100

In this way, for KBQA tasks with large entity and 1101

relation sets, other parameters are much smaller 1102

than E and R, making the complexity of vector 1103

similarity calculations in the order of O(n) and the 1104

complexity of logical form execution attempts in 1105

the order of O(1), both of which are controllable. 1106

C Dataset Statistics 1107

As shown in Table 4, this is the statistical infor- 1108

mation of the two KBQA datasets, WebQSP and 1109

CWQ, made by the ChatKBQA experiment. 1110

WebQSP dataset (Yih et al., 2016) is developed 1111

to evaluate the importance of gathering semantic 1112

parses compared to just answers for a set of ques- 1113

tions. WebQSP consists of 4,737 KBQA questions, 1114

with 34 logical form skeletons and 2,461 entities 1115

involved. There are 628 relations specified within 1116

the dataset, which is divided into a training set of 1117

3,098 questions and a test set of 1,639 questions. 1118

This dataset utilizes Freebase as its knowledge base 1119

and is tailored for developing systems that can pro- 1120

cess and answer natural language questions using 1121

structured data. 1122

CWQ dataset (Talmor and Berant, 2018) is de- 1123

signed to answer complex questions requiring rea- 1124

soning over multiple web snippets, which contains 1125

a large set of complex questions in natural lan- 1126

guage and is versatile in its applications. CWQ is 1127

considerably larger with 34,689 questions, under- 1128

pinned by 174 logical form skeletons. It encom- 1129

passes a more extensive set of entities amounting 1130

to 11,422 and includes 845 relations. The training 1131

set comprises 27,639 questions, supplemented by 1132

a validation set of 3,519 questions and a test set 1133

of 3,531 questions. CWQ also leverages Freebase 1134

as its knowledge base and is designed for complex 1135

question-answering tasks that require the interpre- 1136

tation and synthesis of information from various 1137

sources. 1138

D More Baseline KBQA Methods 1139

We compared ChatKBQA with more KBQA mod- 1140

els as follows in order of publication. 1141

KV-Mem (Miller et al., 2016) uses a key-value 1142

structured memory model to enhance document 1143

comprehension and question-answering by encod- 1144

ing facts and reasoning over them for accurate pre- 1145

dictions. 1146
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Dataset #Question #Skeleton(LF) #Entity #Relation #Train #Valid #Test KB

STAGG 4,737 34 2,461 628 3,098 - 1,639 Freebase
CWQ 34,689 174 11,422 845 27,639 3,519 3,531 Freebase

Table 4: Dataset statistics, where the columns respectively indicate the number of all KBQA questions, logical form
skeletons, participant entities, participant relations, and questions in train/valid/test sets, followed by KB’s name.

WebQSP CWQModel F1 Hits@1 Acc F1 Hits@1 Acc
KV-Mem 34.5 46.7 - 15.7 21.1 -
STAGG 71.7 - 63.9 - - -
GRAFT-Net 62.8 67.8 - 32.7 36.8 -
UHop 68.5 - - 29.8 - -
Topic Units 67.9 68.2 - 36.5 39.3 -
TextRay 60.3 72.2 - 33.9 40.8 -
PullNet - 68.1 - - 47.2 -
QGG 74.0 73.0 - 40.4 44.1 -
EmbedKGQA* - 66.6 - - 44.7 -
EmQL* - 75.5 - - - -
NSM+h* 67.4 74.3 - 44.0 48.8 -
GrailQA Ranking* 70.0 - - - - -
ReTraCk* 74.7 74.6 - - - -
TransferNet - 71.4 - - 48.6 -
Relation Learning 64.5 72.9 - - - -
Rigel* - 73.3 - - 48.7 -
CBR-KBQA 72.8 - 69.9 70.0 70.4 67.1
Subgraph Retrieval* 64.1 69.5 - 47.1 50.2 -
RnG-KBQA 75.6 - 71.1 - - -
Program Transfer* 76.5 74.6 - 58.7 58.1 -
TIARA* 78.9 75.2 - - - -
UniK-QA 79.1 - - - - -
ArcaneQA 75.6 - - - - -
GMT-KBQA 76.6 - 73.1 77.0 - 72.2
Uni-Parser* 75.8 - 71.4 - - -
UnifiedSKG 73.9 - - 68.8 - -
UniKGQA* 72.2 77.2 - 49.4 51.2 -
DECAF 78.8 82.1 - - 70.4 -
BeamQA* - 73.4 - - - -
HGNet* 76.6 76.9 70.7 68.5 68.9 57.8
SKP - 79.6 - - - -
StructGPT* 72.6 - - - - -
FC-KBQA 76.9 - - 56.4 - -
PanGu 79.6 - - - - -
ToG* - 82.6 - - 69.5 -
ChatKBQA (ours) 79.8 83.2 73.8 77.8 82.7 73.3
ChatKBQA* (ours) 83.5 86.4 77.8 81.3 86.0 76.8

Table 5: KBQA comparison of ChatKBQA with other
baselines on WebQSP and CWQ datasets. * denotes
using Oracle entity linking annotations. The results of
the models are mainly taken from their original paper.
For our proposed ChatKBQA framework, we display
the results of the best setup on WebQSP and CWQ,
respectively. The best results in each metric are in bold.

STAGG (Yih et al., 2016) presents a KBQA1147

method using semantic parse labeling, showing im-1148

provements in query accuracy compared to relying1149

solely on question-answer pairs.1150

GRAFT-Net (Sun et al., 2018) introduces a1151

novel graph convolution-based neural network that1152

enhances open-domain question answering by com-1153

bining information from knowledge bases and text 1154

documents into a single model. 1155

UHop (Chen et al., 2019) introduces a frame- 1156

work for unrestricted-hop relation extraction to han- 1157

dle queries requiring any number of relational hops 1158

in a knowledge graph, improving the capability to 1159

answer complex and indirect questions. 1160

Topic Units (Lan et al., 2019) utilizes a wide 1161

range of knowledge base units for question answer- 1162

ing, employing a generation-and-scoring approach 1163

and reinforcement learning to enhance the identifi- 1164

cation and ranking of relevant topic units. 1165

TextRay (Bhutani et al., 2019) decomposes com- 1166

plex questions into simpler queries, processes them 1167

individually, and combines the results, using a se- 1168

mantic matching model. 1169

PullNet (Sun et al., 2019) presents a method that 1170

iteratively constructs a question-specific subgraph 1171

from knowledge bases and text for effective multi- 1172

hop reasoning in open-domain question answering. 1173

QGG (Lan and Jiang, 2020) introduces a method 1174

that enhances complex question answering by gen- 1175

erating flexible query graphs for multi-hop ques- 1176

tions and integrating constraints early. 1177

EmbedKGQA (Saxena et al., 2020) introduces 1178

a method that uses knowledge graph embeddings to 1179

improve multi-hop question answering, addressing 1180

knowledge graph sparsity. 1181

EMQL (Sun et al., 2020) presents a method that 1182

combines centroid-sketch entity set representations 1183

with neural retrieval over embedded knowledge 1184

base triples. 1185

NSM+h (He et al., 2021) introduces a teacher- 1186

student framework for multi-hop KBQA, where 1187

the teacher network learns intermediate supervision 1188

signals through forward and backward reasoning to 1189

enhance the student network’s reasoning capability. 1190

GrailQA Ranking (Gu et al., 2021) presents 1191

a BERT-based KBQA model, demonstrating the 1192

critical role of pre-trained contextual embeddings, 1193

focusing on three levels of generalization - i.i.d., 1194

compositional, and zero-shot. 1195

ReTraCk (Chen et al., 2021) introduces a neu- 1196

ral semantic parsing framework, which combines 1197
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retriever, transducer, and checker components for1198

efficient and effective KBQA.1199

TransferNet (Shi et al., 2021) introduces a1200

model that combines a transparent, attention-based1201

approach with the ability to handle both label and1202

text relations in a unified framework.1203

Relation Learning (Yan et al., 2021) presents a1204

method that integrates pre-trained language models1205

with auxiliary tasks like relation extraction and1206

reasoning.1207

Rigel (Sen et al., 2021) introduces a method for1208

enhancing end-to-end question answering using dif-1209

ferentiable knowledge graphs, and adds an intersec-1210

tion operation to handle multiple-entity questions1211

more effectively.1212

CBR-KBQA (Das et al., 2021) employs a case-1213

based reasoning framework that retrieves similar1214

cases (questions and logical forms) from a nonpara-1215

metric memory, then reuses and revises these cases1216

to generate logical forms for new questions, demon-1217

strating its capability to handle complex questions1218

and unseen relations without retraining.1219

Subgraph Retrieval (Zhang et al., 2022) intro-1220

duces a method devising a trainable subgraph re-1221

triever (SR) decoupled from the reasoning process,1222

which efficiently retrieves relevant subgraphs for1223

question answering, enhancing performance by fo-1224

cusing on more relevant and smaller subgraphs and1225

combining with subgraph-oriented reasoners.1226

RnG-KBQA (Ye et al., 2022) introduces a1227

framework that combines ranking and generation,1228

using a rank-and-generate approach, where a ranker1229

model identifies candidate logical forms and a gen-1230

eration model refines them.1231

Program Transfer (Cao et al., 2022) proposes1232

a novel two-stage parsing framework with an effi-1233

cient ontology-guided pruning strategy for complex1234

KBQA, which involves a sketch parser that trans-1235

lates questions into high-level program sketches1236

and an argument parser that fills in detailed argu-1237

ments.1238

TIARA (Shu et al., 2022) introduces a novel1239

method that enhances question answering over1240

knowledge bases by using multi-grained retrieval,1241

which improves the performance of pre-trained lan-1242

guage models by focusing on the most relevant1243

knowledge base contexts, including entities, logical1244

forms, and schema items, and employs constrained1245

decoding to control the output space, reducing gen-1246

eration errors and enhancing robustness in various1247

generalization settings.1248

UniK-QA (Oguz et al., 2022) proposes a frame-1249

work that integrates structured, unstructured, and 1250

semi-structured knowledge sources, such as text, ta- 1251

bles, lists, and knowledge bases, which flattens all 1252

data into text and applies a unified retriever-reader 1253

model. 1254

ArcaneQA (Gu and Su, 2022) introduces a 1255

generation-based KBQA model that addresses 1256

large search space and schema linking challenges 1257

in KBQA, which employs dynamic program in- 1258

duction for efficient search space navigation and 1259

dynamic contextualized encoding for improved 1260

schema linking. 1261

GMT-KBQA (Hu et al., 2022b) proposes a 1262

multi-task learning framework with a shared T5 1263

encoder to improve question answering over knowl- 1264

edge bases by simultaneously learning entity disam- 1265

biguation, relation classification, and logical form 1266

generation. 1267

Uni-Parser (Liu et al., 2022b) unifies semantic 1268

parsing for question answering on both knowledge 1269

bases and databases by using a three-module ap- 1270

proach: primitive enumeration, ranking, and com- 1271

positional generation. 1272

UnifiedSKG (Xie et al., 2022) unifies 21 struc- 1273

tured knowledge grounding tasks into a text-to-text 1274

format, leveraging T5 models and multi-task learn- 1275

ing to improve performance across diverse tasks 1276

and facilitate zero-shot and few-shot learning in- 1277

vestigations. 1278

UniKGQA (Jiang et al., 2023b) integrates re- 1279

trieval and reasoning for multi-hop question an- 1280

swering over knowledge graphs, employing a uni- 1281

fied architecture that combines a semantic match- 1282

ing module and a matching information propaga- 1283

tion module, enhanced by pre-training and fine- 1284

tuning strategies. 1285

DECAF (Yu et al., 2023) combines the genera- 1286

tion of logical forms and direct answers, leveraging 1287

a sequence-to-sequence framework with retrieval 1288

from linearized knowledge bases. 1289

BeamQA (Atif et al., 2023) combines sequence- 1290

to-sequence prediction and beam search for multi- 1291

hop knowledge graph question answering, using a 1292

fine-tuned BART model for path generation and a 1293

novel beam search execution algorithm to traverse 1294

the knowledge graph and find answers. 1295

HGNet (Chen et al., 2023) proposes a hierar- 1296

chical query graph generation approach with an 1297

outlining stage for structural constraints and a fill- 1298

ing stage for instance selection. 1299

SKP (Dong et al., 2023) introduces structured 1300

knowledge-aware pre-training tasks, an efficient 1301
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linearization strategy, and an interval attention1302

mechanism, leading to significant improvements in1303

subgraph retrieval and encoding.1304

StructGPT (Jiang et al., 2023a) enhances LLMs’1305

reasoning over structured data using an Iterative1306

Reading-then-Reasoning (IRR) approach, which1307

includes specialized interfaces for efficient data ac-1308

cess, a novel invoking-linearization-generation pro-1309

cedure, and iterative reasoning to effectively utilize1310

structured data in answering complex questions.1311

FC-KBQA (Zhang et al., 2023) introduces a1312

Fine-to-Coarse composition framework for ques-1313

tion answering over knowledge bases, utilizing fine-1314

grained component detection, middle-grained com-1315

ponent constraints, and coarse-grained component1316

composition.1317

PanGu (Gu et al., 2023) proposes a grounded1318

language understanding framework that combines a1319

symbolic agent and a neural language model, which1320

allows for the incremental construction of valid1321

plans and utilizes the language model to evaluate1322

the plausibility of these plans.1323

ToG (Sun et al., 2024) integrates LLMs with1324

KGs for deep and responsible reasoning, using1325

a beam search algorithm in KG/LLM reasoning,1326

which allows the LLM to dynamically explore mul-1327

tiple reasoning paths in KG and make decisions1328

accordingly, enhancing LLMs’ deep reasoning ca-1329

pabilities for knowledge-intensive tasks.1330

E Hyperparameter Settings1331

We use the grid search method to select the opti-1332

mal hyperparameter settings for the network. The1333

F1 score of KBQA predicted without oracle entity1334

linking is chosen as the evaluation metric. The hy-1335

perparameters that we can adjust and the possible1336

values of the hyperparameters are first determined1337

according to the structure of our model in Table 6.1338

Afterward, the different hyperparameter choices1339

are combined to judge the merit of the hyperparam-1340

eter combinations. The optimal hyperparameter1341

combinations of the model are obtained by circular1342

traversal of all combinations. The optimal hyperpa-1343

rameter combinations are shown in bold.1344

For example, WebQSP hyperparameter choices1345

select the Llama-2-7B model, as shown by bolded1346

values, for optimal model performance. LoRA is1347

the fine-tuning type chosen, suggesting low-rank1348

adjustments to model parameters. A train batch1349

size of 4, learning rate of 5e-4, and 50 training1350

epochs indicate a preference for moderate-sized1351

data processing batches and a faster learning rate 1352

over many epochs. Test batch size of 4 and beam 1353

size of 5 indicate evaluation and prediction gener- 1354

ation configuration. The retrieval algorithm was 1355

SimCSE because it compares sentence embeddings 1356

well. The top-k and threshold values for Entity 1357

Retrieval (ER) and Relation Retrieval (RR) were 1358

set to balance retrieving relevant information and 1359

computational efficiency. 1360

F Effectiveness of Beam Search 1361

Beam search is a heuristic algorithm usually used 1362

in sequence generation tasks, which expands the 1363

search space by generating multiple highly prob- 1364

able logical forms instead of only one. As shown 1365

in Figure 4(b), an increase in beam size enhances 1366

the likelihood of executing SPARQL queries based 1367

on candidate logical forms, improving the KBQA 1368

performance. 1369

G Plug-and-Play Settings 1370

ChatKBQA has a plug-and-play characteristic, as 1371

shown in 3 parts, including the Open-source LLMs, 1372

PEFT methods, and Unsupervised Retrieval meth- 1373

ods, all of which have different candidates. The 1374

following is a description of these candidates. 1375

G.1 Open-source Large Language Models 1376

In the open-sourced macro modelling part, we 1377

choose Llama-2, ChatGLM2, and Baichuan2. 1378

Llama-2-7B / Llama-2-13B (Touvron et al., 1379

2023): Part of Meta AI’s Llama series, these mod- 1380

els are auto-regressive transformers with 7 and 1381

13 billion parameters, trained on 2 trillion tokens. 1382

They are optimized for dialogue and general lan- 1383

guage tasks, leveraging supervised fine-tuning and 1384

reinforcement learning for better alignment with 1385

human preferences. 1386

ChatGLM2-6B (Zeng et al., 2023): Developed 1387

by Tsinghua University, this 6.2 billion-parameter 1388

bilingual Chinese-English chat model improves 1389

upon its predecessor with enhanced performance, 1390

longer context support, and efficient inference. It’s 1391

designed for fluent, coherent conversations in both 1392

languages. 1393

Baichuan2-7B / Baichuan2-13B (Yang et al., 1394

2023): From Baichuan Intelligent Technology, 1395

these multilingual models have 7 and 13 billion 1396

parameters and are trained on 2.6 trillion tokens. 1397

They support Chinese and English, offering com- 1398

petitive performance on various language process- 1399
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Hyperparameter WebQSP CWQ

LLM Selection Llama-2-7B Llama-2-13B
Fine-tuning Type {LoRA,QLoRA, P-tuning v2, Freeze} {LoRA,QLoRA, P-tuning v2, Freeze}
Train Batch Size {1, 2, 3, 4} {1, 2, 3, 4}
Learning Rate {5e-5, 5e-4, 5e-3} {5e-5, 5e-4, 5e-3}
Train Epoch {10, 50, 100} {10, 50, 100}

Test Batch Size {1, 2, 3, 4} {1, 2, 3, 4}
Beam Size {1, 2, 5, 8, 15} {1, 2, 5, 8}

Retrieval Type {SimCSE,Contriever,BM25} {SimCSE,Contriever,BM25}
ER Top ke {5, 10, 50, 100} {5, 10, 50, 100}

ER Threshold te {0.0, 0.0001, 0.001, 0.01, 0.1} {0.0, 0.0001, 0.001, 0.01, 0.1}
ER Top k1 {10, 30, 50, 100, 1000} {10, 30, 50, 100, 1000}

ER Threshold t1 {0.0, 0.0001, 0.001, 0.01, 0.1} {0.0, 0.0001, 0.001, 0.01, 0.1}
RR Top kr {3, 5, 15, 30} {3, 5, 15, 30}

RR Threshold tr {0.0, 0.0001, 0.001, 0.01, 0.1} {0.0, 0.0001, 0.001, 0.01, 0.1}
RR Top k2 {30, 300, 3000, 10000} {40, 400, 4000, 10000}

RR Threshold k2 {0.0, 0.0001, 0.001, 0.01, 0.1} {0.0, 0.0001, 0.001, 0.01, 0.1}

Table 6: Hyperparameter Search.

ing benchmarks and are available for open-source1400

commercial use.1401

G.2 Parameter-Efficient Fine-Tuning1402

Methods1403

In the PEFT part, we choose LoRA, QLoRA, P-1404

tuning v2, and Freeze.1405

LoRA (Low-Rank Adaptation) (Hu et al.,1406

2022a) is a PEFT method that introduces low-rank1407

matrices to adapt large pre-trained models. Instead1408

of fine-tuning all parameters, LoRA modifies only a1409

small number of additional trainable parameters, ef-1410

fectively reducing the computational cost. It alters1411

the weights of a pre-trained model in a low-rank de-1412

composed space, allowing for efficient adaptation1413

while maintaining the original model’s structure1414

and size.1415

QLoRA (Quantized Low-Rank Adapta-1416

tion) (Dettmers et al., 2023) is an extension of1417

LoRA, combining low-rank adaptation with quan-1418

tization techniques. It aims to further reduce1419

the computational and memory overhead associ-1420

ated with fine-tuning large models. By quantiz-1421

ing the additional low-rank matrices introduced in1422

LoRA, QLoRA provides a more memory-efficient1423

approach to adapting pre-trained models.1424

P-tuning v2 (Liu et al., 2022a) advances the1425

concept of prompt tuning, where trainable prompts1426

are added to a fixed pre-trained model to guide1427

its predictions. P-tuning v2 introduces trainable1428

continuous prompts at the embedding layer and1429

employs a sophisticated bi-level optimization strat-1430

egy. This approach enhances the model’s ability1431

to adapt to specific tasks with minimal parameter1432

updates, making it more efficient than traditional1433

fine-tuning methods. 1434

Freeze (Geva et al., 2021) is a parameter- 1435

efficient approach where most of the layers of a 1436

pre-trained model are frozen, and only a small frac- 1437

tion of the parameters are fine-tuned. This tech- 1438

nique significantly reduces the computational re- 1439

sources required for fine-tuning, making it ideal 1440

for scenarios with limited budgets. By selectively 1441

updating only certain layers or parts of a model, 1442

Freeze retains the general knowledge of the pre- 1443

trained model while adapting it to specific tasks. 1444

G.3 Unsupervised Retrieval Methods 1445

In the Unsupervised Retrieval part, we choose Sim- 1446

CSE, Contriever and BM25. 1447

SimCSE (Gao et al., 2021) is an unsupervised 1448

method for generating sentence embeddings using 1449

contrastive learning. It enhances semantic under- 1450

standing by using variations of the same sentence 1451

to train neural networks, improving performance 1452

in tasks like textual similarity and natural language 1453

inference. 1454

Contriever (Izacard et al., 2022) is an unsu- 1455

pervised technique for creating dense passage em- 1456

beddings, designed for effective retrieval in large 1457

document collections. It focuses on semantic con- 1458

tent, offering an advanced alternative to traditional 1459

keyword-based retrieval methods. 1460

BM25 (Robertson and Zaragoza, 2009) is a prob- 1461

abilistic ranking function used in search engines. It 1462

evaluates document relevance to a search query, im- 1463

proving upon models like TF-IDF by incorporating 1464

document length normalization and term frequency 1465

saturation. 1466
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H Error Analysis1467

We analyze the questions in the WebQSP test set1468

that were not answered correctly by ChatKBQA1469

without oracle entity linking, and errors can be1470

summarized as follows.1471

Logical form skeleton error (40.10%). We dis-1472

cover that the majority of the errors are caused1473

by ChatKBQA failing to provide the correct logi-1474

cal form skeleton for the question, e.g. predicting1475

"(JOIN (R []) (JOIN (R []) []))" as "(JOIN1476

(R []) [])". This is due to the limited represen-1477

tation of certain complex skeletons in train set.1478

Entity retrieval error (27.17%). Then, a por-1479

tion of the samples that predicted the correct logical1480

form skeletons, but did not retrieve the correct enti-1481

ties, e.g. predicting "(JOIN (R []) m.0d3k14)"1482

as "(JOIN (R []) m.07618sw)".1483

Relation retrieval error (19.48%). In the1484

case of successful skeleton prediction and entity1485

retrieval, errors in relation retrieval can also lead1486

to failed logical form generation that does not1487

match the ground truth, e.g. predicting "(JOIN1488

(R finance.currency.countries_used)1489

m.0kz1h)" as "(JOIN (R finance.currency.1490

currency_code) m.0kz1h)".1491

SPARQL convertion error (13.26%). Finally, a1492

small proportion of the remaining errors arise from1493

the fact that, although the generated logical form is1494

consistent with the ground truth, it fails to execute1495

or the answers are inconsistent when converted to1496

SPARQL, which may be caused by the loss of the1497

conversion from logical form to SPARQL.1498

I Discussion of LLM combined with KG.1499

I.1 Insights from ChatKBQA.1500

(1) We propose a straightforward KBQA frame-1501

work that uses fine-tuned open-source large models1502

for the first time. (2) Innovatively, we adopt a1503

generate-then-retrieve approach to enhance gener-1504

ation outcomes and retrieval efficiency separately,1505

ultimately boosting KBQA performance. (3) Our1506

framework has plug-and-play capabilities, allowing1507

flexible replacement of LLMs and retrieval models1508

to address the KBQA challenge. (4) Our approach1509

introduces a new paradigm for LLMs to conduct in-1510

terpretable knowledge-based Q&A, offering a fresh1511

perspective on merging LLMs and KGs.1512

To summarize, ChatKBQA proposes a thought1513

taking both the advantages of using LLMs to do1514

natural language semantic parsing for graph query1515

generation and calling external KBs to interpretably1516

reason with queries, which we name Graph Query 1517

of Thoughts (GQoT), a promising LLM+KG com- 1518

bination paradigm to better utilize the external 1519

knowledge, improve Q&A’s interpretability, and 1520

avoid LLM’s hallucinations. 1521

I.2 Future Directions. 1522

ChatKBQA still has much room for improvement, 1523

such as in the design of the training set, the decom- 1524

position of complex questions, support for various 1525

graph query languages, and applications in specific 1526

domains, which are our future research directions: 1527

Training set design: ChatKBQA is the first 1528

method to fine-tune open-source large models us- 1529

ing unsupervised retrieval methods for the KBQA 1530

task, achieving state-of-the-art results. Therefore, 1531

the effectiveness of fine-tuning depends on the qual- 1532

ity of the dataset used to map natural language to 1533

logical forms. In future work, we plan to enhance 1534

the training set by extracting computation graphs 1535

from the knowledge graph using graph sampling, 1536

then converting them into natural language, and 1537

exploring ways to achieve maximum training effec- 1538

tiveness with the least amount of training data. 1539

Decomposition of complex questions: We have 1540

seen that for some simple tasks, such as one-hop 1541

and two-hop queries, ChatKBQA performs very 1542

well because the logical form skeletons involved 1543

are very similar and the fine-tuned LLM can gen- 1544

erate them effectively. However, generating the 1545

corresponding long logical forms for more com- 1546

plex questions is a challenge. Therefore, in future 1547

work, we plan to use techniques such as CoT or 1548

Agent to decompose natural language questions 1549

into simpler logical forms for better performance. 1550

Support for various graph query languages: 1551

Currently, ChatKBQA converts generated logical 1552

forms into SPARQL queries in two datasets, as the 1553

Freebase KB stores knowledge in RDF format. We 1554

will explore more KBs and datasets, such as those 1555

using the Cypher language like Neo4j, where the 1556

methodology of generating and then retrieving with 1557

ChatKBQA is also promising. 1558

Open-domain and specific-domain applica- 1559

tions: There is a demand for precision knowledge 1560

question answering in fields such as open-domain, 1561

medicine, finance, and telecommunications. We 1562

can first use UIE or LLM information extraction 1563

technology to build a knowledge graph, then fine- 1564

tune ChatKBQA to understand the structure of the 1565

knowledge graph, achieving interpretable knowl- 1566

edge Q&A in open and specific domains. 1567
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