
Published as a conference paper at ICLR 2020

DYNAMIC MODEL PRUNING WITH FEEDBACK

Tao Lin
EPFL, Switzerland
tao.lin@epfl.ch

Sebastian U. Stich
EPFL, Switzerland
sebastian.stich@epfl.ch

Luis Barba
EPFL & ETH Zurich, Switzerland
luis.barba@inf.ethz.ch

Daniil Dmitriev
EPFL, Switzerland
daniil.dmitriev@epfl.ch

Martin Jaggi
EPFL, Switzerland
martin.jaggi@epfl.ch

ABSTRACT

Deep neural networks often have millions of parameters. This can hinder their
deployment to low-end devices, not only due to high memory requirements but also
because of increased latency at inference. We propose a novel model compression
method that generates a sparse trained model without additional overhead: by al-
lowing (i) dynamic allocation of the sparsity pattern and (ii) incorporating feedback
signal to reactivate prematurely pruned weights we obtain a performant sparse
model in one single training pass (retraining is not needed, but can further improve
the performance). We evaluate our method on CIFAR-10 and ImageNet, and show
that the obtained sparse models can reach the state-of-the-art performance of dense
models. Moreover, their performance surpasses that of models generated by all
previously proposed pruning schemes.

1 INTRODUCTION

Highly overparametrized deep neural networks show impressive results on machine learning tasks.
However, with the increase in model size comes also the demand for memory and computer power at
inference stage—two resources that are scarcely available on low-end devices. Pruning techniques
have been successfully applied to remove a significant fraction of the network weights while preserv-
ing test accuracy attained by dense models. In some cases, the generalization of compressed networks
has even been found to be better than with full models (Han et al., 2015; 2017; Mocanu et al., 2018).

The sparsity of a network is the number of weights that are identically zero, and can be obtained
by applying a sparsity mask on the weights. There are several different approaches to find sparse
models. For instance, one-shot pruning strategies find a suitable sparsity mask by inspecting the
weights of a pretrained network (Mozer & Smolensky, 1989; LeCun et al., 1990; Han et al., 2017).
While these algorithms achieve a substantial size reduction of the network with little degradation
in accuracy, they are computationally expensive (training and refinement on the dense model), and
they are outperformed by algorithms that explore different sparsity masks instead of a single one.
In dynamic pruning methods, the sparsity mask is readjusted during training according to different
criteria (Mostafa & Wang, 2019; Mocanu et al., 2018). However, these methods require fine-tuning
of many hyperparameters.

We propose a new pruning approach to obtain sparse neural networks with state-of-the-art test
accuracy. Our compression scheme uses a new saliency criterion that identifies important weights in
the network throughout training to propose candidate masks. As a key feature, our algorithm not only
evolves the pruned sparse model alone, but jointly also a (closely related) dense model that is used
in a natural way to correct for pruning errors during training. This results in better generalization
properties on a wide variety of tasks, since the simplicity of the scheme allows us further to study it
from a theoretical point of view, and to provide further insights and interpretation. We do not require

1

Published as a conference paper at ICLR 2020

time

sparsity

low

med

high

0 t

Pruning before training

Pruning after training

Dynamic pruning during training

Incremental pruning during training

Scheme Gradient Pruning Comments

Pruning before training g̃(w̃t) (on pruned model) once at the beginning + reaches local minima
mask m0 fixed throughout - finding suitable masks is challenging

Pruning after training g(wt) (on full model) once at the end - does not reach local minima
mask mT fixed at the end - fine-tuning of pruned model required

Incremental p. during training g̃(w̃t) (on partially pruned m.) several times during training + adaptive
incrementally, mt+1 ≤mt - cannot recover from premature pruning

Dynamic p. during training g(w̃t) (on pruned model) dynamically adapting mask mt + adaptive
every few iterations + can recover from premature pruning

Figure 1: Schematic view of different pruning methodologies and their properties.

tuning of additional hyperparameters, and no retraining of the sparse model is needed (though can
further improve performance).

Contributions.
• A novel dynamic pruning scheme, that incorporates an error feedback in a natural way Sec. 3

and finds a trained sparse model in one training pass. Sec. 5
• We demonstrate state-of-the-art performance (in accuracy and sparsity), Sec. 5

ourperforming all previously proposed pruning schemes. Sec. 5
• We complement our results by an ablation study that provides further insights. Sec. 6

and convergence analysis for convex and non-convex objectives. Sec. 4

2 RELATED WORK

Previous works on obtaining pruned networks can (loosely) be divided into three main categories.

Pruning after training. Training approaches to obtain sparse networks usually include a three stage
pipeline—training of a dense model, one-shot pruning and fine-tuning—e.g., (Han et al., 2015). Their
results (i.e., moderate sparsity level with minor quality loss) made them the standard method for
network pruning and led to several variations (Guo et al., 2016; Carreira-Perpinán & Idelbayev, 2018).

Pruning during training. Zhu & Gupta (2017) propose the use of magnitude-based pruning and to
gradually increase the sparsity ratio while training the model from scratch. A pruning schedule deter-
mines when the new masks are computed (extending and simplifying (Narang et al., 2017)). He et al.
(2018) (SFP) prune entire filters of the model at the end of each epoch, but allow the pruned filters to be
updated when training the model. Deep Rewiring (DeepR) (Bellec et al., 2018) allows for even more
adaptivity by performing pruning and regrowth decisions periodically. This approach is computation-
ally expensive and challenging to apply to large networks and datasets. Sparse evolutionary training
(SET) (Mocanu et al., 2018) simplifies prune–regrowth cycles by using heuristics for random growth
at the end of each training epoch and NeST (Dai et al., 2019) by inspecting gradient magnitudes.

Dynamic Sparse Reparameterization (DSR) (Mostafa & Wang, 2019) implements a prune–
redistribute–regrowth cycle where target sparsity levels are redistributed among layers, based on
loss gradients (in contrast to SET, which uses fixed, manually configured, sparsity levels). Sparse
Momentum (SM) (Dettmers & Zettlemoyer, 2019) follows the same cycle but instead using the
mean momentum magnitude of each layer during the redistribute phase. SM outperforms DSR
on ImageNet for unstructured pruning by a small margin but has no performance difference on
CIFAR experiments. Our approach also falls in the dynamic category but we use error compensation
mechanisms instead of hand crafted redistribute–regrowth cycles.

Pruning before training. Recently—spurred by the lottery ticket hypothesis (LT) (Frankle & Carbin,
2019)—methods which try to find a sparse mask that can be trained from scratch have attracted
increased interest. For instance, Lee et al. (2019) propose SNIP to find a pruning mask by inspecting
connection sensitivities and identifying structurally important connections in the network for a given
task. Pruning is applied at initialization, and the sparsity mask remains fixed throughout training.

2

Published as a conference paper at ICLR 2020

low

high

Loss
function

value

w2

w1

0

w

w̃

g(w)

g(w̃)

g(w̃)

w2

w1

0

One-shot pruning

Our algorithm

Figure 2: Left: One-shot pruning (red) computes a stochastic gradient at w and takes a step towards the best
dense model. In contrast, DPF (blue) computes a stochastic gradient at the pruned model w̃ (here obtained by
smallest magnitude pruning), and takes a step that best suits the compressed model. Right: One-shot pruning
commits to a single sparsity mask and might obtain sparse models that generalize poorly (without retraining).
DPF explores different available sparsity patterns and finds better sparse models.

Note that Frankle & Carbin (2019); Frankle et al. (2019) do not propose an efficient pruning scheme
to find the mask, instead they rely on iterative pruning, repeated for several full training passes.

Further Approaches. Srinivas et al. (2017); Louizos et al. (2018) learn gating variables (e.g. through
`0 regularization) that minimize the number of nonzero weights, recent parallel work studies filter
pruning for pre-trained models (You et al., 2019). Gal et al. (2017); Neklyudov et al. (2017);
Molchanov et al. (2017) prune from Bayesian perspectives to learn dropout probabilities during
training to prune and sparsify networks as dropout weight probabilities reach 1. Gale et al. (2019)
extensively study recent unstructured pruning methods on large-scale learning tasks, and find that
complex techniques (Molchanov et al., 2017; Louizos et al., 2018) perform inconsistently. Simple
magnitude pruning approaches achieve comparable or better results (Zhu & Gupta, 2017).

3 METHOD

We consider the training of a non-convex loss function f : Rd → R. We assume for a weight
vector w ∈ Rd to have access to a stochastic gradient g(w) ∈ Rd such that E[g(w)] = ∇f(w). This
corresponds to the standard machine learning setting with g(w) representing a (mini-batch) gradient
of one (or several) components of the loss function. Stochastic Gradient Descent (SGD) computes a
sequence of iterates by the update rule

wt+1 := wt − γtg(wt) , (SGD)

for some learning rate γt. To obtain a sparse model, a general approach is to prune some of the
weights of wt, i.e., to set them to zero. Such pruning can be implemented by applying a mask
m ∈ {0, 1}d to the weights, resulting in a sparse model w̃t := m � wt, where � denotes the
entry-wise (Hadamard) product. The mask could potentially depend on the weights wt (e.g., smallest
magnitude pruning), or depend on t (e.g., the sparsity is incremented over time).

Before we introduce our proposed dynamic pruning scheme, we formalize the three main existing
types of pruning methodologies (summarized in Figure 1). These approaches differ in the way the
mask is computed, and the moment when it is applied.1

Pruning before training. A mask m0 (depending on e.g. the initialization w0 or the network architec-
ture of f) is applied and (SGD) is used for training on the resulting subnetwork f̃(w) := f(m0 �w)
with the advantage that only pruned weights need to be stored and updated2, and that by training with
SGD a local minimum of the subnetwork f̃ (but not of f—the original training target) can be reached.
In practice however, it remains a challenge to efficiently determine a good mask m0 and a wrongly
chosen mask at the beginning strongly impacts the performance.

1The method introduced in Section 2 typically follow one of these broad themes loosely, with slight variations
in detail. For the sake of clarity we omit a too technical and detailed discussion here.

2When training on f̃(w), it suffices to access stochastic gradients of f̃(w), denoted by g̃(w), which can
potentially be cheaper be computed than by naively applying the mask to g(w) (note g̃(w) = m0 � g(w)).

3

Published as a conference paper at ICLR 2020

Pruning after training (one-shot pruning). A dense model is trained, and pruning is applied to the
trained model wT . As the pruned model w̃T = mT �wT is very likely not at a local optimum of f ,
fine-tuning (retraining with the fixed mask mT) is necessary to improve performance.

Pruning during training (incremental and dynamic pruning). Dynamic schemes change the
mask mt every (few) iterations based on observations during training (i.e. by observing the weights
and stochastic gradients). Incremental schemes monotonically increase the sparsity pattern, fully
dynamic schemes can also reactivate previously pruned weights. In contrast to previous dynamic
schemes that relied on elaborated heuristics to adapt the mask mt, we propose a simpler approach:

Dynamic pruning with feedback (DPF, Algorithm 1). Our scheme evaluates a stochastic gradient
at the pruned model w̃t = mt�wt and applies it to the (simultaneously maintained) dense model wt:

wt+1 := wt − γtg(mt �wt) = wt − γtg(w̃t) . (DPF)

Applying the gradient to the full model allows to recover from “errors”, i.e. prematurely masking
out important weights: when the accumulated gradient updates from the following steps drastically
change a specific weight, it can become activated again (in contrast to incremental pruning approaches
that have to stick to sub-optimal decisions). For illustration, observe that (DPF) can equivalently be
written as

wt+1 = wt − γtg(wt + et),

where et := w̃t −wt is the error produced by the compression. This provides a different intuition
of the behavior of (DPF), and connects it with the concept of error-feedback (Stich et al., 2018;
Karimireddy et al., 2019).3 We illustrate this principle in Figure 2 and give detailed pseudocode and
further implementation details in Appendix A.1. The DPF scheme can also be seen as an instance of
a more general class of schemes that apply (arbitrary) perturbed gradient updates to the dense model.
For instance straight-through gradient estimators (Bengio et al., 2013) that are used to empirically
simplify the backpropagation can be seen as such perturbations. Our stronger assumptions on the
structure of the perturbation allow to derive non-asymptotic convergence rates in the next section,
though our analysis could also be extended to the setting in (Yin et al., 2019) if the perturbations can
be bounded.

4 CONVERGENCE ANALYSIS

We now present convergence guarantees for (DPF). For the purposes of deriving theoretical guar-
antees, we assume that the training objective is smooth, that is ‖∇f(w)−∇f(v)‖ ≤ L ‖w − v‖,
∀w,v ∈ Rd, for a constant L > 0, and that the stochastic gradients are bounded E ‖g(w̃t)‖2 ≤ G2

for every pruned model w̃t = mt(wt)�wt. The quality of this pruning is defined as the parameter
δt ∈ [0, 1] such that

δt := ‖wt − w̃t‖2
/
‖wt‖2 . (1)

Pruning without information loss corresponds to w̃t = wt, i.e., δt = 0, and in general δt ≤ 1.

Convergence on Convex functions. We first consider the case when f is in addition µ-strongly
convex, that is 〈∇f(v),w − v〉 ≤ f(w) − f(v) − µ

2 ‖w − v‖2, ∀w,v ∈ Rd. While it is clear
that this assumption does not apply to neural networks, it eases the presentation as strongly convex
functions have a unique (global) minimizer w? := arg minw∈Rd f(w).

Theorem 4.1. Let f be µ-strongly convex and learning rates given as γt = 4
µ(t+2) . Then for a

randomly chosen pruned model ũ of the iterates {w̃0, . . . , w̃T } of DPF, concretely ũ = w̃t with prob-
ability pt = 2(t+1)

(T+1)(T+2) , it holds that—in expectation over the stochasticity and the selection of ũ:

Ef(ũ)− f(w?) = O
(
G2

µT
+ LE

[
δt ‖wt‖2

])
. (2)

The rightmost term in (2) measures the average quality of the pruning. However, unless δt → 0 or
‖wt‖ → 0 for t→∞, the error term never completely vanishes, meaning that the method converges
only to a neighborhood of the optimal solution (this not only holds for the pruned model, but also for

3Our variable wt corresponds to x̃t in the notation of Karimireddy et al. (2019). Their error-fixed SGD
algorithm evaluates gradients at perturbed iterates xt := x̃t + et, which correspond precisely to w̃t = wt + et

in our notation. This shows the connection of these two methods.

4

Published as a conference paper at ICLR 2020

the jointly maintained dense model, as we will show in the appendix). This behavior is expected, as
the global optimal model w? might be dense and cannot be approximated well by a sparse model.

For one-shot methods that only prune the final (SGD) iterate wT at the end, we have instead:

Ef(w̃t)− f(w?) ≤ 2E (f(wT)− f(w?)) + LδTE ‖wT ‖2 = O
(
LG2

µ2T
+ LE

[
δT ‖wT ‖2

])
,

as we show in the appendix. First, we see from this expression that the estimate is very sensitive to δT
and wT , i.e. the quality of the pruning the final model. This could be better or worse than the average
of the pruning quality of all iterates. Moreover, one looses also a factor of the condition number Lµ in
the asymptotically decreasing term, compared to (2). This is due to the fact that standard convergence
analysis only achieves optimal rates for an average of the iterates (but not the last one). This shows a
slight theoretical advantage of DPF over rounding at the end.

Convergence on Non-Convex Functions to Stationary Points. Secondly, we consider the case
when f is a non-convex function and show convergence (to a neighborhood) of a stationary point.

Theorem 4.2. Let learning rate be given as γ = c√
T

, for c =
√

f(w0)−f(w?)
LG2 . Then for pruned

model ũ chosen uniformly at random from the iterates {w̃0, . . . , w̃T } of DPF, concretely ũ := w̃t

with probability pt = 1
T+1 , it holds—in expectation over the stochasticity and the selection of ũ:

E ‖∇f(ũ)‖2 = O

(√
L(f(w0)− f(w?))G√

T
+ L2E

[
δt ‖wt‖2

])
. (3)

Extension to Other Compression Schemes. So far we put our focus on simple mask pruning
schemes to achieve high model sparsity. However, the pruning scheme in Algorithm 1 could be
replaced by an arbitrary compressor C : Rd → Rd, i.e., w̃t = C(wt). Our analysis extends to
compressors as e.g. defined in (Karimireddy et al., 2019; Stich & Karimireddy, 2019), whose quality
is also measured in terms of the δt parameters as in (1). For example, if our objective was not to
obtain a sparse model, but to produce a quantized neural network where inference could be computed
faster on low-precision numbers, then we could define C as a quantized compressor. One variant of
this approach is implemented in the Binary Connect algorithm (BC) (Courbariaux et al., 2015) with
prominent results, see also (Li et al., 2017) for further insights and discussion.

5 EXPERIMENTS

We evaluated DPF together with its competitors on a wide range of neural architectures and sparsity
levels. DPF exhibits consistent and noticeable performance benefits over its competitors.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluated DPF on two image classification benchmarks: (1) CIFAR-10 (Krizhevsky
& Hinton, 2009) (50K/10K training/test samples with 10 classes), and (2) ImageNet (Russakovsky
et al., 2015) (1.28M/50K training/validation samples with 1000 classes). We adopted the standard
data augmentation and preprocessing scheme from He et al. (2016a); Huang et al. (2016); for further
details refer to Appendix A.2.

Models. Following the common experimental setting in related work on network pruning (Liu
et al., 2019; Gale et al., 2019; Dettmers & Zettlemoyer, 2019; Mostafa & Wang, 2019), our main
experiments focus on ResNet (He et al., 2016a) and WideResNet (Zagoruyko & Komodakis, 2016).
However, DPF can be effectively extended to other neural architectures, e.g., VGG (Simonyan &
Zisserman, 2015), DenseNet (Huang et al., 2017). We followed the common definition in He et al.
(2016a); Zagoruyko & Komodakis (2016) and used ResNet-a, WideResNet-a-b to represent neural
network with a layers and width factor b.

Baselines. We considered the state-of-the-art model compression methods presented in the table
below as our strongest competitors. We omit the comparison to other dynamic reparameterization
methods, as DSR can outperform DeepR (Bellec et al., 2018) and SET (Mocanu et al., 2018) by a
noticeable margin (Mostafa & Wang, 2019).
Implementation of DPF. Compared to other dynamic reparameterization methods (e.g. DSR and
SM) that introduced many extra hyperparameters, our method has trivial hyperparameter tuning

5

Published as a conference paper at ICLR 2020

Scheme Reference Pruning How the mask(s) are found
Lottery Ticket (LT) 2019, FDRC before training 10-30 successive rounds of (full training + pruning).
SNIP 2019, LAT By inspecting properties/sensitivity of the network.

One-shot + fine-tuning (One-shot P+FT) 2015, HPDT after training Saliency criterion (prunes smallest weights).

Incremental pruning + fine-tuning (Incremental) 2017, ZG incremental Saliency criterion. Sparsity is gradually incremented.

Dynamic Sparse Reparameterization (DSR) 2019, MW
dynamic

Prune–redistribute–regrowth cycle.
Sparse Momentum (SM) 2019, DZ Prune–redistribute–regrowth + mean momentum.
DPF ours Reparameterization via error feedback.

overhead. We perform pruning across all neural network layers (no layer-wise pruning) using
magnitude-based unstructured weight pruning (inherited from Han et al. (2015)). We found the best
preformance when updating the mask every 16 iterations (see also Table 11) and we keep this value
fixed for all experiments (independent of the architecture or task).

Unlike our competitors that may ignore some layers (e.g. the first convolution and downsampling
layers in DSR), we applied DPF (as well as the One-shot P+FT and Incremental baselines) to all
convolutional layers while keeping the last fully-connected layer4, biases and batch normalization
layers dense. Lastly, our algorithm gradually increases the sparsity st of the mask from 0 to the
desired sparsity using the same scheduling as in (Zhu & Gupta, 2017); see Appendix A.2.

Training schedules. For all competitors, we adapted their open-sourced code and applied a
consistent (and standard) training scheme over different methods to ensure a fair comparison.
Following the standard training setup for CIFAR-10, we trained ResNet-a for 300 epochs and
decayed the learning rate by 10 when accessing 50% and 75% of the total training samples (He et al.,
2016a; Huang et al., 2017); and we trained WideResNet-a-b as Zagoruyko & Komodakis (2016)
for 200 epochs and decayed the learning rate by 5 when accessing 30%, 60% and 80% of the total
training samples. For ImageNet training, we used the training scheme in (Goyal et al., 2017) for
90 epochs and decayed learning rate by 10 at 30, 60, 80 epochs. For all datasets and models, we used
mini-batch SGD with Nesterov momentum (factor 0.9) with fine-tuned learning rate for DPF. We
reused the tuned (or recommended) hyperparameters for our baselines (DSR and SM), and fine-tuned
the optimizer and learning rate for One-shot P+FT, Incremental and SNIP. The mini-batch size is
fixed to 128 for CIFAR-10 and 1024 for ImageNet regardless of datasets, models and methods.

5.2 EXPERIMENT RESULTS

CIFAR-10. Figure 3 shows a comparison of different methods for WideResNet-28-2. For low sparsity
level (e.g. 50%), DPF outperforms even the dense baseline, which is in line with regularization
properties of network pruning. Furthermore, DPF can prune the model up to a very high level (e.g.
99%), and still exhibit viable performance. This observation is also present in Table 1, where the
results of training different state-of-the-art DNN architectures with higher sparsities are depicted.
DPF shows reasonable performance even with extremely high sparsity level on large models (e.g.
WideResNet-28-8 with sparsity ratio 99.9%), while other methods either suffer from significant
quality loss or even fail to converge.

Because simple model pruning techniques sometimes show better performance than complex tech-
niques (Gale et al., 2019), we further consider these simple models in Table 2. While DPF outperforms
them in almost all settings, it faces difficulties pruning smaller models to extremely high sparsity
ratios (e.g. ResNet-20 with sparsity ratio 95%).This seems however to be an artifact of fine-tuning,
as DPF with extra fine-tuning convincingly outperforms all other methods regardless of the network
size. This comes to no surprise as schemes like One-shot P+FT and Incremental do not benefit from
extra fine-tuning, since it is already incorporated in their training procedure and they might become
stuck in local minima. On the other hand, dynamic pruning methods, and in particular DPF, work on
a different paradigm, and can still heavily benefit from fine-tuning.5

Figure 13 (in Appendix A.3.4) depicts another interesting property of DPF. When we search for a
subnetwork with a (small) predefined number of parameters for a fixed task, it is much better to run

4The last fully-connected layer normally makes up only a very small faction of the total MACs, e.g. 0.05%
for ResNet-50 on ImageNet and 0.0006% for WideResNet-28-2 on CIFAR-10.

5Besides that a large fraction of the mask elements already converge during training (see e.g. Figure 4 below),
not all mask elements converge. Thus DPF can still benefit from fine-tuning on the fixed sparsity mask.

6

Published as a conference paper at ICLR 2020

0.5 0.6 0.7 0.8 0.9 1.0
Target sparsity ratio

84

86

88

90

92

94

To
p-

1
te

st
 a

cc
ur

ac
y

Dense model
SM
DPF (ours)

DSR
SNIP

(a) Sparsity ratio v.s. top-1 test acc.

0.0 0.2 0.4 0.6 0.8
of params (M)

84

86

88

90

92

94

To
p-

1
te

st
 a

cc
ur

ac
y

Dense model
SM
DPF (ours)

DSR
SNIP

(b) # of params v.s. top-1 test acc.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
MAC 1e8

84

86

88

90

92

94

To
p-

1
te

st
 a

cc
ur

ac
y

Dense model
SM
DPF (ours)

DSR
SNIP

(c) MAC v.s. top-1 test acc.

Figure 3: Top-1 test accuracy of WideResNet-28-2 on CIFAR-10 for unstructured weight pruning. The original
model has 1.47M parameters with 216M MACs (Multiplier-ACcumulator). We varied the sparsity ratio from
50% to 99%. The complete numerical test accuracy values refer to Table 4 in Appendix A.3.1. The lower #
of params and MACs the model has, the higher sparsity ratio it uses. All results are averaged over three runs.
Note that different methods might consider different types of layers and thus the same pruning sparsity ratio
might result in the slight difference for both of # of params and MACs. The DSR cannot converge when using
the extreme high sparsity ratio (99%).

Table 1: Top-1 test accuracy of SOTA DNNs on CIFAR-10 for unstructured weight pruning. We considered
unstructured pruning and the ? indicates the method cannot converge. The results are averaged for three runs. The
results we presented for each model consider some reasonable pruning ratios (we prune more aggressively for
deeper and wider neural networks), and readers can refer to Table 4 (in Appendix A.3.1) for a complete overview.

Methods

Model Baseline on
dense model

SNIP
(L+, 2019)

SM
(DZ, 2019)

DSR
(MW, 2019) DPF Target Pr.

ratio
VGG16-D 93.74± 0.13 93.04± 0.26 93.59± 0.17 - 93.87± 0.15 95%

ResNet-20 92.48± 0.20

91.10± 0.22 91.98± 0.01 92.00± 0.19 92.42± 0.14 70%
90.53± 0.27 91.54± 0.16 91.78± 0.28 92.17± 0.21 80%
88.50± 0.13 89.76± 0.40 87.88± 0.04 90.88± 0.07 90%
84.91± 0.25 83.03± 0.74 ? 88.01± 0.30 95%

ResNet-32 93.83± 0.12
90.40± 0.26 91.54± 0.18 91.41± 0.23 92.42± 0.18 90%
87.23± 0.29 88.68± 0.22 84.12± 0.32 90.94± 0.35 95%

ResNet-56 94.51± 0.20
91.43± 0.34 92.73± 0.21 93.78± 0.20 93.95± 0.11 90%

? 90.96± 0.40 92.57± 0.09 92.74± 0.08 95%

WideResNet-28-2 95.01± 0.04
92.58± 0.22 93.41± 0.22 93.88± 0.08 94.36± 0.24 90%
90.80± 0.04 92.24± 0.14 92.74± 0.17 93.62± 0.05 95%
83.45± 0.38 85.36± 0.80 ? 88.92± 0.29 99%

WideResNet-28-4 95.69± 0.10
93.62± 0.17 94.45± 0.14 94.63± 0.08 95.38± 0.04 95%
92.06± 0.38 93.80± 0.24 93.92± 0.16 94.98± 0.08 97.5%
89.49± 0.20 92.18± 0.04 92.50± 0.07 93.86± 0.20 99%

WideResNet-28-8 96.06± 0.06

95.49± 0.21 95.67± 0.14 95.81± 0.10 96.08± 0.15 90%
94.92± 0.13 95.64± 0.07 95.55± 0.12 95.98± 0.10 95%
94.11± 0.19 95.31± 0.20 95.11± 0.07 95.84± 0.04 97.5%
92.04± 0.11 94.38± 0.12 94.10± 0.12 95.63± 0.16 99%
74.50± 2.23 ? 88.65± 0.36 91.76± 0.18 99.9%

DPF on a large model (e.g. WideResNet-28-8) than on a smaller one (e.g. WideResNet-28-2). That
is, DPF performs structural exploration more efficiently in larger parametric spaces.

Table 2: Top-1 test accuracy of SOTA DNNs on CIFAR-10 for unstructured weight pruning via some simple
pruning techniques. This table complements Table 1 and evaluates the performance of model compression under
One-shot P+FT and Incremental, as well as how extra fine-tuning (FT) impact the performance of Incremental
and our DPF. Note that One-shot P+FT prunes the dense model and uses extra fine-tuning itself. The Dense, In-
cremental and DPF train with the same number of epochs from scratch. The extra fine-tuning procedure considers
the model checkpoint at the end of the normal training, uses the same number of training epochs (60 epochs in our
case) with tuned optimizer and learning rate. Detailed hyperparameters tuning procedure refers to Appendix A.2.

Methods

Model Baseline on
dense model

One-shot + FT
(H+, 2015)

Incremental
(ZG, 2017) Incremental + FT DPF DPF + FT Target pr.

ratio

ResNet-20 92.48± 0.20
90.18± 0.12 90.55± 0.38 90.54± 0.25 90.88± 0.07 91.76± 0.12 90%
86.91± 0.16 89.21± 0.10 89.24± 0.28 88.01± 0.30 90.34± 0.31 95%

ResNet-32 93.83± 0.12
91.72± 0.15 91.69± 0.12 91.76± 0.14 92.42± 0.18 92.61± 0.11 90%
89.31± 0.18 90.86± 0.17 90.93± 0.18 90.94± 0.35 92.18± 0.14 95%

ResNet-56 94.51± 0.20
93.26± 0.06 93.14± 0.23 93.09± 0.16 93.95± 0.11 93.95± 0.17 90%
91.61± 0.07 92.14± 0.10 92.50± 0.25 92.74± 0.08 93.25± 0.15 95%

7

Published as a conference paper at ICLR 2020

ImageNet. We compared DPF to other dynamic reparameterization methods as well as the strong
Incremental baseline in Table 3. For both sparsity levels (80% and 90%), DPF shows a significant
improvement of top-1 test accuracy with fewer or equal number of parameters.

Table 3: Top-1 test accuracy of ResNet-50 on ImageNet for unstructured weight pruning. The # of parameters
for the full model is 25.56 M. We used the results of DSR from Mostafa & Wang (2019) as we use the same
(standard) training/data augmentation scheme for the same neural architecture. Note that different methods
prune different types of layers and result in the different # of parameters for the same target pruning ratio.
We also directly (and fairly) compare with the results of Incremental (Zhu & Gupta, 2017) reproduced and
fine-tuned by Gale et al. (2019), where they consider layer-wise sparsity ratio and fine-tune both the sparsity
warmup schedule and label-smoothing for better performance.

Top-1 accuracy Top-5 accuracy Pruning ratio

Method Dense Pruned Difference Dense Pruned Difference Target Reached remaining # of params

Incremental (ZG, 2017) 75.95 74.25 -1.70 92.91 91.84 -1.07 80% 73.5% 6.79 M
DSR (MW, 2019) 74.90 73.30 -1.60 92.40 92.40 0 80% 71.4% 7.30 M
SM (DZ, 2019) 75.95 74.59 -1.36 92.91 92.37 -0.54 80% 72.4% 7.06 M
DPF 75.95 75.48 -0.47 92.91 92.59 -0.32 80% 73.5% 6.79 M
Incremental (Gale et al., 2019) 76.69 75.58 -1.11 - - - 80% 79.9% 5.15 M
DPF 75.95 75.13 -0.82 92.91 92.52 -0.39 80% 79.9% 5.15 M

Incremental (ZG, 2017) 75.95 73.36 -2.59 92.91 91.27 -1.64 90% 82.6% 4.45 M
DSR (MW, 2019) 74.90 71.60 -3.30 92.40 90.50 -1.90 90% 80.0% 5.10 M
SM (DZ, 2019) 75.95 72.65 -3.30 92.91 91.26 -1.65 90% 82.0% 4.59 M
DPF 75.95 74.55 -1.44 92.91 92.13 -0.78 90% 82.6% 4.45 M

6 DISCUSSION

Besides the theoretical guarantees, a straightforward benefit of DPF over one-shot pruning in practice
is its fine-tuning free training process. Figure 12 in the appendix (Section A.3.3) demonstrates the
trivial computational overhead (considering the dynamic reparameterization cost) of involving DPF
to train the model from scratch. Small number of hyperparameters compared to other dynamic
reparameterization methods (e.g. DSR and SM) is another advantage of DPF and Figure 11 further
studies how different setups of DPF impact the final performance. Notice also that for DPF, inference
is done only at sparse models, an aspect that could be leveraged for more efficient computations.

Empirical difference between one-shot pruning and DPF. From the Figure 2 one can see that
DPF tends to oscillate among several local minima, whereas one-shot pruning, even with fine tuning,
converges to a single solution, which is not necessarily close to the optimum. We believe that the
wider exploration of DPF helps to find a better local minima (which can be even further improved by
fine-tuning, as shown in Table 2). We empirically analyzed how drastically the mask changes between
each reparameterization step, and how likely it is for some pruned weight to become non-zero in
the later stages of training. Figure 4 shows at what stage of the training each element of the final
mask becomes fixed. For each epoch, we report how many mask elements were flipped starting from
this epoch. As an example, we see that for sparsity ratio 95%, after epoch 157 (i.e. for 43 epochs
left), only 5% of the mask elements were changing. This suggests that, except for a small percentage
of weights that keep oscillating, the mask has converged early in the training. In the final epochs,
the algorithm keeps improving accuracy, but the masks are only being fine-tuned. A similar mask
convergence behavior can be found in Appendix (Figure 7) for training ResNet-20 on CIFAR-10.

0 25 50 75 100 125 150 175 200

Epoch

0

25

50

75

100

%
 o

f p
ar

am
s

no
t c

on
ve

rg
ed

0.5
0.6
0.7
0.8

0.9
0.95
0.99

120 160 200
0%

10%

20%
Zoom in, epochs 120 200

Figure 4: Convergence of the pruning mask mt of DPF for different target sparsity levels (see legend). The
y-axis represent the percentage of mask elements that still change after a certain epoch (x-axis). The illustrated
example are from WideResNet-28-2 on CIFAR-10. We decayed the learning rate at 60,120,160 epochs.

8

Published as a conference paper at ICLR 2020

DPF does not find a lottery ticket. The LT hypothesis (Frankle & Carbin, 2019) conjectures that
for every desired sparsity level there exists a sparse submodel that can be trained to the same or better
performance as the dense model. In Figure 5 we show that the mask found by DPF is not a LT,
i.e., training the obtained sparse model from scratch does not recover the same performance. The
(expensive) procedure proposed in Frankle & Carbin (2019); Frankle et al. (2019) finds different
masks and achieves the same performance as DPF for mild sparsity levels, but DPF is much better
for extremely sparse models (99% sparsity).

0.50 0.60 0.70 0.80 0.90 0.95 0.99
Target sparsity ratio

86

88

90

92

94

To
p-

1
te

st
 a

cc
ur

ac
y

DPF
re-train w/ original init (mask from DPF)
re-train w/o original init (mask from DPF)
Lottery ticket training

5x
6x
7x

9x

12x

15x

22x

lo
tte

ry
 ti

ck
et

 e
xt

ra
 fu

ll
tra

in
in

g
ro

un
ds

Figure 5: Top-1 test accuracy for different target sparsity levels (on WideResNet-28-2 with CIFAR-10, un-
structured pruning). DPF reaches comparable accuracy than the LT training method (and better for 99% target
sparsity), but involves much less computation (right y-axis, green). Training the sparse models found by DPF
from scratch does not reach the same performance (hence our sparse models are not lottery tickets).

Extension to structured pruning. The current state-of-the-art dynamic reparameterization methods
only consider unstructured weight pruning. Structured filter pruning6 is either ignored (Bellec et al.,
2018; Mocanu et al., 2018; Dettmers & Zettlemoyer, 2019) or shown to be challenging (Mostafa
& Wang, 2019) even for the CIFAR dataset. In Figure 6 below we presented some preliminary
results on CIFAR-10 to show that our DPF can also be applied to structured filter pruning schemes.
DPF outperforms the current filter-norm based state-of-the-art method for structured pruning (e.g.
SFP (He et al., 2018)) by a noticeable margin. Figure 16 in Appendix A.4.3 displays the transition
procedure of the sparsity pattern (of different layers) for WideResNet-28-2 with different sparsity
levels. DPF can be seen as a particular neural architecture search method, as it gradually learns
to prune entire layers under the guidance of the feedback signal.

We followed the common experimental setup as mentioned in Section 5 with `2 norm based filter
selection criteria for structured pruning extension on CIFAR-10. We do believe a better filter selection
scheme (Ye et al., 2018; He et al., 2019; Lym et al., 2019) could further improve the results but we
leave this exploration for the future work.

0.4 0.6 0.8 1.0 1.2 1.4
MAC 1e8

86

88

90

92

94

To
p-

1
te

st
 a

cc
ur

ac
y

Dense
DPF

SFP

(a) WideResNet-28-2.

1 2 3 4 5
MAC 1e8

92

93

94

95

To
p-

1
te

st
 a

cc
ur

ac
y

Dense
DPF

SFP

(b) WideResNet-28-4.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
MAC 1e9

94.0

94.5

95.0

95.5

96.0

To
p-

1
te

st
 a

cc
ur

ac
y

Dense
DPF

SFP

(c) WideResNet-28-8.

Figure 6: MAC v.s. top-1 test accuracy, for training WideResNet-28 (with different width) on CIFAR-10. The
reported results are averaged over three runs. The WideResNet-28-2 has 216M MACs, WideResNet-28-4 has
848M MACs and WideResNet-28-8 has 3366M MACs. Other detailed information refers to the Appendix A.4.1,
e.g., the # of params v.s. top-1 test accuracy in Figure 14, and the numerical test accuracy score in Table 6.

6Lym et al. (2019) consider structured filter pruning and reconfigure the large (but sparse) model to small
(but dense) model during the training for better training efficiency. Note that they perform model update on a
gradually reduced model space, and it is completely different from the dynamic reparameterization methods (e.g.
DSR, SM and our scheme) that perform reparameterization under original (full) model space.

9

Published as a conference paper at ICLR 2020

ACKNOWLEDGEMENTS

We acknowledge funding from SNSF grant 200021_175796, as well as a Google Focused Research
Award.

REFERENCES

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. In ICLR - International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=BJ_wN01C-.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Miguel A Carreira-Perpinán and Yerlan Idelbayev. “learning-compression” algorithms for neural net
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
8532–8541, 2018.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In NeurIPS - Advances in Neural Information
Processing Systems, pp. 3123–3131, 2015.

Xiaoliang Dai, Hongxu Yin, and Niraj Jha. Nest: A neural network synthesis tool based on a
grow-and-prune paradigm. IEEE Transactions on Computers, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR09, 2009.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In ICLR - International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJl-b3RcF7.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In NeurIPS - Advances in Neural
Information Processing Systems, pp. 3581–3590, 2017.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
ImageNet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient DNNs. In
NeurIPS - Advances in Neural Information Processing Systems, pp. 1379–1387, 2016.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS - Advances in Neural Information Processing Systems, pp.
1135–1143, 2015.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Shijian Tang, Erich Elsen, Bryan Catanzaro, John
Tran, and William J Dally. DSD: regularizing deep neural networks with dense-sparse-dense
training flow. In ICLR - International Conference on Learning Representations, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016a.

10

https://openreview.net/forum?id=BJ_wN01C-
https://openreview.net/forum?id=rJl-b3RcF7

Published as a conference paper at ICLR 2020

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, pp. 630–645. Springer, 2016b.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In International Joint Conference on Artificial Intelligence
(IJCAI), pp. 2234–2240, 2018.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European Conference on Computer Vision, pp. 646–661. Springer, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708, 2017.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes SignSGD and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261, 2019.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Simon Lacoste-Julien, Mark W. Schmidt, and Francis R. Bach. A simpler approach to obtaining
an O(1/t) convergence rate for the projected stochastic subgradient method. arXiv preprint
arXiv:1212.2002, 2012.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In NeurIPS - Advances in
Neural Information Processing Systems, pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. SNIP: Single-shot network pruning
based on connection sensitivity. In ICLR - International Conference on Learning Representations,
2019.

Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. Training
quantized nets: A deeper understanding. In NeurIPS - Advances in Neural Information Processing
Systems, pp. 5811–5821, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In ICLR - International Conference on Learning Representations, 2019.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l_0 regularization. In ICLR - International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=H1Y8hhg0b.

Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Mattan Erez, and Sujay Shanghavi.
Prunetrain: Gradual structured pruning from scratch for faster neural network training. In Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis (SC),
2019.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1):2383, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In ICML - International Conference on Machine Learning, pp. 2498–2507. JMLR. org,
2017.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In ICML - International Conference on Machine Learning,
2019.

11

https://openreview.net/forum?id=H1Y8hhg0b

Published as a conference paper at ICLR 2020

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. In NeurIPS - Advances in Neural Information Processing
Systems, pp. 107–115, 1989.

Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring sparsity in recurrent
neural networks. In ICLR - International Conference on Learning Representations, 2017.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured bayesian
pruning via log-normal multiplicative noise. In NeurIPS - Advances in Neural Information
Processing Systems, pp. 6775–6784, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR - International Conference on Learning Representations, 2015.

Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pp. 138–145, 2017.

Sebastian U. Stich and Sai P. Karimireddy. The error-feedback framework: Better rates for SGD with
delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350, 2019. URL
https://arxiv.org/abs/1909.05350.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with mem-
ory. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), NeurIPS - Advances in Neural Information Processing Systems, pp.
4447–4458. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7697-sparsified-sgd-with-memory.pdf.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the smaller-norm-less-informative as-
sumption in channel pruning of convolution layers. In ICLR - International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=HJ94fqApW.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Understand-
ing straight-through estimator in training activation quantized neural nets. In ICLR - International
Conference on Learning Representations, 2019.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks. In NeurIPS - Advances in
Neural Information Processing Systems, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

12

https://arxiv.org/abs/1909.05350
http://papers.nips.cc/paper/7697-sparsified-sgd-with-memory.pdf
http://papers.nips.cc/paper/7697-sparsified-sgd-with-memory.pdf
https://openreview.net/forum?id=HJ94fqApW

Published as a conference paper at ICLR 2020

A APPENDIX

A.1 ALGORITHM

Algorithm 1 The detailed training procedure of DPF.

input: uncompressed model weights w ∈ Rd, pruned weights: w̃, mask: m ∈ {0, 1}d; reparametrization
period: p; training iterations: T .

1: for t = 0, . . . , T do
2: if p | t then . trigger mask update, per default every p = 16 iterations
3: compute mask m←mt(wt) . by arbitrary pruning scheme (e.g. unstructured magnitude pruning)
4: end if
5: w̃t ←m�wt . apply (precomputed) mask
6: compute (mini-batch) gradient g(w̃) . forward/backward pass with pruned weights w̃t

7: wt+1 ← gradient update g(w̃) to wt . via arbitrary optimizer (e.g. SGD with momentum)
8: end for

output: wT and w̃T

We trigger the mask update every p = 16 iterations (see also Figure 11) and we keep this parameter
fixed throughout all experiments, independent of architecture or task.

We perform pruning across all neural network layers (no layer-wise pruning) using magnitude-based
unstructured weight pruning (inherited from Han et al. (2015)). Pruning is applied to all convolutional
layers while keeping the last fully-connected layer, biases and batch normalization layers dense.

We gradually increases the sparsity st of the mask from 0 to the desired sparsity using the same
scheduling as in Zhu & Gupta (2017); see Appendix A.2 below.

A.2 IMPLEMENTATION DETAILS

We implemented our DPF in PyTorch (Paszke et al., 2017). All experiments were run on NVIDIA
Tesla V100 GPUs. Sparse tensors in our implementation are respresented as the dense tenors
multiplied by the corresponding binary masks.

Datasets We evaluate all methods on the following standard image classification tasks:

• Image classification for CIFAR-10 (Krizhevsky & Hinton, 2009). Dataset consists of a
training set of 50K and a test set of 10K color images of 32× 32 pixels, as well as 10 target
classes. We adopt the standard data augmentation and preprocessing scheme (He et al.,
2016a; Huang et al., 2016).

• Image classification for ImageNet (Russakovsky et al., 2015). The ILSVRC 2012 classi-
fication dataset consists of 1.28 million images for training, and 50K for validation, with
1K target classes. We use ImageNet-1k (Deng et al., 2009) and adopt the same data pre-
processing and augmentation scheme as in He et al. (2016a;b); Simonyan & Zisserman
(2015).

Gradual Pruning Scheme For Incremental baseline, we tuned their automated gradual pruning
scheme st = sf + (si − sf)

(
1− t−t0

n∆t

)3
to gradually adjust the pruning sparsity ratio st for t ∈

{t0, . . . , t0 + n∆t}. That is, in our setup, we increased from an initial sparsity ratio si = 0 to the
desired target model sparsity ratio sf over the epoch (n) when performing the second learning rate
decay, from the training epoch t0 = 0 and with pruning frequency ∆t = 1 epoch. In our experiments,
we used this gradual pruning scheme over different methods, except One-shot P+FT, SNIP, and the
methods (DSR, SM) that have their own fine-tuned gradual pruning scheme.

Hyper-parameters tuning procedure We grid-searched the optimal learning rate, starting from
the range of {0.05, 0.10, 0.15, 0.20}. More precisely, we will evaluate a linear-spaced grid of learning
rates. If the best performance was ever at one of the extremes of the grid, we would try new grid
points so that the best performance was contained in the middle of the parameters.

13

Published as a conference paper at ICLR 2020

We trained most of the methods by using mini-batch SGD with Nesterov momentum. For baselines
involving fine-tuning procedure (e.g. Table 2), we grid-searched the optimal results by tuning the
optimizers (i.e. mini-batch SGD with Nesterov momentum, or Adam) and the learning rates.

The optimal hyper-parameters for DPF The mini-batch size is fixed to 128 for CIFAR-10 and
1024 for ImageNet regardless of datasets and models.

For CIFAR-10, we trained ResNet-a and VGG for 300 epochs and decayed the learning rate by
10 when accessing 50% and 75% of the total training samples (He et al., 2016a; Huang et al.,
2017); and we trained WideResNet-a-b as Zagoruyko & Komodakis (2016) for 200 epochs and
decayed the learning rate by 5 when accessing 30%, 60% and 80% of the total training samples. The
optimal learning rate for ResNet-a, WideResNet-a-b and VGG are 0.2, 0.1 and 0.2 respectively; the
corresponding weight decays are 1e−4, 5e−4 and 1e−4 respectively.

For ImageNet training, we used the training scheme in Goyal et al. (2017) for 90 epochs, where we
gradually warmup the learning rate from 0.1 to 0.4 and decayed learning rate by 10 at 30; 60; 80
epochs. The used weight decay is 1e−4.

A.3 ADDITIONAL RESULTS FOR UNSTRUCTURED PRUNING

A.3.1 COMPLETE RESULTS OF UNSTRUCTURED PRUNING ON CIFAR-10

Table 4 details the numerical results for training SOTA DNNs on CIFAR-10. Some results of it
reconstruct the Table 1 and Figure 3.

Table 4: Top-1 test accuracy for training (compressed) SOTA DNNs on CIFAR-10 from scratch. We considered
unstructured pruning and the ? indicates the method cannot converge. The results are averaged for three runs.

Methods

Model Baseline on
dense model

SNIP
(L+, 2019)

SM
(DZ, 2019)

DSR
(MW, 2019) DPF Target Pr.

ratio
VGG16-D 93.74± 0.13 93.04± 0.26 93.59± 0.17 - 93.87± 0.15 95%

ResNet-20 92.48± 0.20 91.10± 0.22 91.98± 0.01 92.00± 0.19 92.42± 0.14 70%
ResNet-20 92.48± 0.20 90.53± 0.27 91.54± 0.16 91.78± 0.28 92.17± 0.21 80%
ResNet-20 92.48± 0.20 88.50± 0.13 89.76± 0.40 87.88± 0.04 90.88± 0.07 90%
ResNet-20 92.48± 0.20 84.91± 0.25 83.03± 0.74 ? 88.01± 0.30 95%

ResNet-32 93.83± 0.12 90.40± 0.26 91.54± 0.18 91.41± 0.23 92.42± 0.18 90%
ResNet-32 93.83± 0.12 87.23± 0.29 88.68± 0.22 84.12± 0.32 90.94± 0.35 95%

ResNet-56 94.51± 0.20 91.43± 0.34 92.73± 0.21 93.78± 0.20 93.95± 0.11 90%
ResNet-56 94.51± 0.20 ? 90.96± 0.40 92.57± 0.09 92.74± 0.08 95%

WideResNet-28-2 95.01± 0.04 94.67± 0.23 94.73± 0.16 94.80± 0.14 95.11± 0.06 50%
WideResNet-28-2 95.01± 0.04 94.47± 0.19 94.65± 0.16 94.98± 0.07 94.90± 0.06 60%
WideResNet-28-2 95.01± 0.04 94.29± 0.22 94.46± 0.11 94.80± 0.15 94.86± 0.13 70%
WideResNet-28-2 95.01± 0.04 93.56± 0.14 94.17± 0.12 94.57± 0.13 94.76± 0.18 80%
WideResNet-28-2 95.01± 0.04 92.58± 0.22 93.41± 0.22 93.88± 0.08 94.36± 0.24 90%
WideResNet-28-2 95.01± 0.04 90.80± 0.04 92.24± 0.14 92.74± 0.17 93.62± 0.05 95%
WideResNet-28-2 95.01± 0.04 83.45± 0.38 85.36± 0.80 ? 88.92± 0.29 99%

WideResNet-28-4 95.69± 0.10 95.42± 0.05 95.57± 0.08 95.67± 0.07 95.58± 0.21 70%
WideResNet-28-4 95.69± 0.10 95.24± 0.07 95.27± 0.02 95.49± 0.04 95.60± 0.08 80%
WideResNet-28-4 95.69± 0.10 94.56± 0.11 95.01± 0.05 95.30± 0.12 95.65± 0.14 90%
WideResNet-28-4 95.69± 0.10 93.62± 0.17 94.45± 0.14 94.63± 0.08 95.38± 0.04 95%
WideResNet-28-4 95.69± 0.10 92.06± 0.38 93.80± 0.24 93.92± 0.16 94.98± 0.08 97.5%
WideResNet-28-4 95.69± 0.10 89.49± 0.20 92.18± 0.04 92.50± 0.07 93.86± 0.20 99%

WideResNet-28-8 96.06± 0.06 95.81± 0.05 95.92± 0.12 96.06± 0.09 - 70%
WideResNet-28-8 96.06± 0.06 95.86± 0.10 95.97± 0.05 96.05± 0.12 - 80%
WideResNet-28-8 96.06± 0.06 95.49± 0.21 95.67± 0.14 95.81± 0.10 96.08± 0.15 90%
WideResNet-28-8 96.06± 0.06 94.92± 0.13 95.64± 0.07 95.55± 0.12 95.98± 0.10 95%
WideResNet-28-8 96.06± 0.06 94.11± 0.19 95.31± 0.20 95.11± 0.07 95.84± 0.04 97.5%
WideResNet-28-8 96.06± 0.06 92.04± 0.11 94.38± 0.12 94.10± 0.12 95.63± 0.16 99%
WideResNet-28-8 96.06± 0.06 74.50± 2.23 ? 88.65± 0.36 91.76± 0.18 99.9%

A.3.2 UNDERSTANDING THE TRAINING DYNAMICS AND LOTTERY TICKET EFFECT

Figure 7 and Figure 8 complements Figure 4, and details the training dynamics (e.g. the converge of
δ and masks) of DPF from the other aspect. Figure 9 compares the training dynamics between DPF

14

Published as a conference paper at ICLR 2020

and Incremental (Zhu & Gupta, 2017), demonstrating the fact that our scheme enables a drastical
reparameterization over the dense parameter space for better generalization performance.

0 50 100 150 200 250 300

Epoch

0

25

50

75

100

%
 o

f p
ar

am
s

no
t c

on
ve

rg
ed

0.7
0.8

0.9
0.95

200 250 300
0%

10%

20%
Zoom in, epochs 200 300

Figure 7: Convergence of the pruning mask mt of DPF for different target sparsity levels (see legend). The
y-axis represent the percentage of mask elements that still change after a certain epoch (x-axis). The illustrated
example are from ResNet-20 on CIFAR-10. We decayed the learning rate at 150 and 225 epochs.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

De
lta

 (
)

0.5
0.6
0.7
0.8

0.9
0.95
0.99

(a) δ v.s. epoch.

0 25 50 75 100 125 150 175 200
Epoch

0.00

0.01

0.02

0.03

0.04

M
as

k
fli

p
ra

tio

0.5
0.6
0.7
0.8

0.9
0.95
0.99

(b) Mask flip ratio v.s. epoch.

0 25 50 75 100 125 150 175 200

Epoch

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Io
U

0.5
0.6
0.7
0.8

0.9
0.95
0.99

(c) IoU v.s. epoch.

Figure 8: Training dynamics of DPF (WideResNet-28-2 on CIFAR-10) for unstructured pruning with different
sparsity ratios. IoU stands for Intersection over Union for the non-masked elements of two consecutive masks;
the smaller value the more fraction of the masks will flip.

0 50 100 150 200

Epoch

0%

25%

50%

75%

100%

m
as

k
no

t c
on

ve
rg

ed

DPF

0 50 100 150 200

Epoch

0%

25%

50%

75%

100%
Incremental

0.5
0.6
0.7

0.8
0.9
0.95

0 50 100 150 200

Epoch

0%

10%

20%

30%

40%

DPF - Incremental

Figure 9: Convergence of the pruning mask mt of DPF V.S. Incremental (Zhu & Gupta, 2017) for different
target sparsity levels (see legend). The y-axis represent the percentage of mask elements that still change
after a certain epoch (x-axis). The illustrated example are from WideResNet-28-2 on CIFAR-10. We decayed
the learning rate at 60; 120; 160 epochs. These two schemes use the same gradual warmup schedule (and
hyper-parameters) for the pruning ratio during the training.

Figure 10 in addition to the Figure 5 (in the main text) further studies the lottery ticket hypothesis under
different training budgets (same epochs or same total flops). The results of DPF also demonstrate the
importance of training-time structural exploration as well as the corresponding implicit regularization
effects. Note that we do not want to question the importance of the weight initialization or the
existence of the lottery ticket. Instead, our DPF can provide an alternative training scheme to
compress the model to an extremely high compression ratio without sacrificing the test accuracy,
where most of the existing methods still meet severe quality loss (including Frankle & Carbin (2019);
Liu et al. (2019); Frankle et al. (2019)).

A.3.3 COMPUTATIONAL OVERHEAD AND THE IMPACT OF HYPER-PARAMETERS

In Figure 11, we evaluated the top-1 test accuracy of a compressed model trained by DPF under dif-
ferent setups, e.g., different reparameterization period p, different sparsity ratios, different mini-batch

15

Published as a conference paper at ICLR 2020

0.50 0.60 0.70 0.80 0.90 0.95 0.99
Sparsity ratio

86

88

90

92

94
To

p-
1

te
st

 a
cc

ur
ac

y

DPF
re-train w/ original init (mask from DPF)
re-train w/o original init (mask from DPF)

(a) Retraining with same epoch.

0.50 0.60 0.70 0.80
Sparsity ratio

93.0

93.5

94.0

94.5

95.0

To
p-

1
te

st
 a

cc
ur

ac
y

DPF
re-train w/ original init (mask from DPF)
re-train w/o original init (mask from DPF)

(b) Retraining with same flops.

Figure 10: Investigate the effect of lottery ticket for model compression (unstructured weight pruning for
WideResNet28-2 on CIFAR-10). It complements the observations in Figure 5 by retraining the model for the
same amount of computation budget (i.e. flops).

sizes, as well as whether layer-wise pruning or not. We can witness that the optimal reparameter-
ization (i.e p = 16) is quite consistent over different sparsity ratios and different mini-batch sizes,
and we used it in all our experiments. The global-wise unstructured weight pruning (instead of
layer-wise weight pruning) allows our DPF more flexible to perform dynamic parameter reallocation,
and thus can provide better results especially for more aggressive pruning sparsity ratios. However,
we also need to note that, for the same number of compressed parameters (layerwise or globalwise
unstructured weight pruning), using global-wise pruning leads to a slight increase in the amount of
MACs, as illustrated Table 5.

0.5 0.6 0.7 0.8 0.9 0.95
Sparsity

1
2

4
8

16
32

64R
ep

ar
am

et
er

iz
at

io
n

fre
qu

en
cy -0.05 -0.04 -0.16 -0.26 -0.03 -0.42

-0.04 -0.17 -0.01 -0.08 -0.09 -0.51

0.00 -0.05 -0.18 -0.18 -0.20 -0.45

-0.08 -0.04 -0.08 -0.18 -0.10 -0.02

-0.09 0.00 -0.04 0.00 0.00 0.00

-0.15 -0.14 0.00 -0.11 -0.15 -0.44

-0.06 -0.12 -0.02 -0.11 -0.30 -1.03
1.0

0.8

0.6

0.4

0.2

0.0

(a) Reparameterization period vs.
sparsity ratio. The heatmap value is
the test accuracy minus the best accu-
racy of the corresponding sparsity. We
use mini-batch size 128 w/o layerwise
reparameterization.

128 256 512 1024
Batch size

1
2

4
8

16
32R

ep
ar

am
et

er
iz

at
io

n
fre

qu
en

cy 91.95 92.01 92.04 91.74

92.13 92.06 91.97 91.81

92.03 91.95 92.02 91.76

92.03 92.12 92.03 91.88

92.21 92.32 91.98 91.90

92.10 92.13 92.05 91.62
91.75

91.90

92.05

92.20

(b) Reparameterization period vs.
mini-batch size. The heatmap dis-
plays the test accuracy. We use spar-
sify ratio 0.80.

0.5 0.6 0.7 0.8 0.9 0.95
Sparsity

Fa
ls

e
Tr

ue
La

ye
rw

is
e

re
pa

ra
m

et
er

iz
at

io
n

92.51 92.62 92.41 92.21 90.96 88.21

92.54 92.45 92.11 91.63 89.71 83.35

84

86

88

90

92

(c) Reparameterization scheme
(whether layerwise) vs. sparsity
ratio. The heatmap displays the
test accuracy. We use mini-batch
size 128 w/ reparameterization
period p = 16.

Figure 11: Investigate how the reparameterization period/scheme and mini-batch size impact the generalization
performance (test top-1 accuracy), for dynamically training (and reparameterizing) a compressed model from
scratch (ResNet-20 with CIFAR-10).

Table 5: Investigate how the reparameterization scheme (layer-wise or not) impact the MACs (for the same
number of compressed parameters), for using DPF on ResNet-20 with CIFAR-10.

Target sparsity 50% 60% 70% 80% 90% 95%

w/o layerwise reparameterization 22.80M 19.13M 15.18M 11.12M 6.54M 4.02M
w/ layerwise reparameterization 20.99M 16.91M 12.83M 8.75M 4.67M 2.63M

Figure 12 demonstrates the trivial computational overhead of involving DPF to gradually train a
compressed model (ResNet-50) from scratch (on ImageNet). Note that we evaluated the introduced
reparameterization cost for dynamic pruning, which is independent of (potential) significant system
speedup brought by the extreme high model sparsity. Even though our work did not estimate the
practical speedup, we do believe we can have a similar training efficiency as the values reported
in Dettmers & Zettlemoyer (2019).

16

Published as a conference paper at ICLR 2020

0 20000 40000 60000 80000 100000 120000
Time (s)

2

4

6

8

Tr
ai

ni
ng

 lo
ss

Dense
DPF

0 20000 40000 60000 80000 100000 120000
Time (s)

0

20

40

60

Te
st

 to
p-

1

Dense
DPF

Figure 12: The learning curve of our DPF (with unstructured magnitude pruning) and the standard mini-batch
SGD for training ResNet50 on ImageNet. Our proposed DPF has trivial computational overhead. We trained
ResNet50 on 4 NVIDIA V100 GPUs with 1024 mini-batch size. The target sparsity ratio is 80%.

A.3.4 IMPLICIT NEURAL ARCHITECTURE SEARCH

DPF can provide effective training-time structural exploration or even implicit neural network search.
Figure 13 below demonstrates that for the same pruned model size (i.e. any point in the x-axis), we
can always perform “architecture search” to get a better (in terms of generalization) pruned model,
from a larger network (e.g. WideResNet-28-8) rather than the one searched from a relatively small
network (e.g. WideResNet-28-4).

0.0 0.5 1.0 1.5 2.0
of params (M)

90

92

94

96

To
p-

1
te

st
 a

cc
ur

ac
y

WideResNet28-2
WideResNet28-4
WideResNet28-8

Figure 13: Test top-1 accuracy vs. the compressed model size, for training WideResNet-28 (with different
widths) on CIFAR-10. The compressed model is searched from WideResNet-28 (fixed depth) with different
width (number of filters per layer).

A.4 ADDITIONAL RESULTS FOR STRUCTURED PRUNING

A.4.1 GENERALIZATION PERFORMANCE FOR CIFAR-10

Figure 14 complements the results of structured pruning in the main text (Figure 6), and Table 6
details the numerical results presented in both of Figure 6 and Figure 14.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
of params (M)

86

88

90

92

94

To
p-

1
te

st
 a

cc
ur

ac
y

Dense
DPF

SFP

(a) WideResNet28-2.

1.0 1.5 2.0 2.5 3.0 3.5
of params (M)

92

93

94

95

To
p-

1
te

st
 a

cc
ur

ac
y

Dense
DPF

SFP

(b) WideResNet28-4.

4 6 8 10 12 14
of params (M)

94.0

94.5

95.0

95.5

96.0

To
p-

1
te

st
 a

cc
ur

ac
y

Dense
DPF

SFP

(c) WideResNet28-8.

Figure 14: # of params v.s. top-1 test accuracy, for training WideResNet28 (with different width) on CIFAR-10.
Structured filter-wise pruning is used here. The reported results are averaged over three runs.

17

Published as a conference paper at ICLR 2020

Table 6: Performance evaluation of DPF (and other baseline methods) for training (Wide)ResNet variants on
CIFAR-10. We use the norm-based criteria for filter selection (as in SFP (He et al., 2018)) to estimate the output
channel-wise pruning threshold. We follow the gradual pruning warmup scheme (as in Zhu & Gupta (2017))
from 0 epoch to the epoch when performing the second learning rate decay. Note that SFP prunes filters within
the layer by a given ratio while our DPF prunes filters across layers. Due to the difference between filters for
different layers, the # of parameters pruned by DPF might slight different from the one pruned by SFP. The
pruning ratio refers to either prune filters within the layer or across the layers.

Methods

Model Baseline on
dense model

SFP
(H+, 2018) DPF Target Pr.

ratio
ResNet-20 92.48± 0.20 92.18± 0.31 92.54± 0.07 10%
ResNet-20 92.48± 0.20 91.12± 0.20 91.90± 0.06 20%
ResNet-20 92.48± 0.20 90.32± 0.25 91.07± 0.40 30%
ResNet-20 92.48± 0.20 89.60± 0.46 90.28± 0.26 40%

ResNet-32 93.52± 0.13 92.07± 0.22 92.18± 0.16 30%
ResNet-32 93.52± 0.13 91.14± 0.45 91.50± 0.21 40%

ResNet-56 94.51± 0.20 93.99± 0.27 94.53± 0.13 30%
ResNet-56 94.51± 0.20 93.57± 0.16 94.03± 0.38 40%

WideResNet-28-2 95.01± 0.04 94.02± 0.24 94.52± 0.08 40%
WideResNet-28-2 95.01± 0.04 93.34± 0.14 94.11± 0.12 50%
WideResNet-28-2 95.01± 0.04 92.07± 0.09 93.74± 0.25 60%
WideResNet-28-2 95.01± 0.04 90.66± 0.62 92.89± 0.16 70%
WideResNet-28-2 95.01± 0.04 86.00± 1.09 90.53± 0.17 80%

WideResNet-28-4 95.69± 0.10 95.15± 0.11 95.50± 0.05 40%
WideResNet-28-4 95.69± 0.10 94.86± 0.10 95.43± 0.16 50%
WideResNet-28-4 95.69± 0.10 94.47± 0.10 95.20± 0.05 60%
WideResNet-28-4 95.69± 0.10 93.37± 0.18 94.67± 0.08 70%
WideResNet-28-4 95.69± 0.10 91.88± 0.59 93.79± 0.09 80%

WideResNet-28-8 96.06± 0.06 95.62± 0.04 96.06± 0.12 40%
WideResNet-28-8 96.06± 0.06 95.59± 0.09 96.03± 0.02 50%
WideResNet-28-8 96.06± 0.06 95.40± 0.14 95.88± 0.16 60%
WideResNet-28-8 96.06± 0.06 94.99± 0.22 95.71± 0.16 70%
WideResNet-28-8 96.06± 0.06 94.22± 0.21 95.15± 0.03 80%

A.4.2 UNDERSTANDING THE LOTTERY TICKET EFFECT

Similar to the observations in Section 6 (for unstructured pruning), Figure 15 instead considers
structured pruning and again we found DPF does not find a lottery ticket. The superior generalization
performance of DPF cannot be explained by the found mask or the weight initialization scheme.

0.40 0.50 0.60 0.70 0.80
Sparsity ratio

91

92

93

94

To
p-

1
te

st
 a

cc
ur

ac
y

DPF
re-train w/ original init (mask from DPF)
re-train w/o original init (mask from DPF)

Figure 15: Investigate the effect of lottery ticket for model compression (WideResNet28-2 with CIFAR-10) for
structured pruning. We retrained the model with the mask from the model trained by DPF, by using the same
epoch budget.

A.4.3 MODEL SPARSITY VISUALIZATION

Figure 16 below visualizes the model sparsity transition patterns for different model sparsity levels
under the structured pruning. We can witness that due to the presence of residual connection, DPF
gradually learns to prune the entire residual blocks.

18

Published as a conference paper at ICLR 2020

con
v1

.weig
ht

blo
ck1

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck1

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck2

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck3

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
2.w

eig
ht

line
ar.

weig
ht

Layer names

29

211

213

215

217

of

 p
ar

am
s

Weights footprint: Sparse vs. Dense (element-wise)
NNZ (dense)
NNZ (sparse)

(a) Structured pruning with 40% sparsity.

con
v1

.weig
ht

blo
ck1

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck1

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck2

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck3

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
2.w

eig
ht

line
ar.

weig
ht

Layer names

28

210

212

214

216

of

 p
ar

am
s

Weights footprint: Sparse vs. Dense (element-wise)
NNZ (dense)
NNZ (sparse)

(b) Structured pruning with 50% sparsity.

con
v1

.weig
ht

blo
ck1

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck1

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck2

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck3

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
2.w

eig
ht

line
ar.

weig
ht

Layer names

26

28

210

212

214

216

of

 p
ar

am
s

Weights footprint: Sparse vs. Dense (element-wise)
NNZ (dense)
NNZ (sparse)

(c) Structured pruning with 60% sparsity.

con
v1

.weig
ht

blo
ck1

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck1

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck2

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck3

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
2.w

eig
ht

line
ar.

weig
ht

Layer names

27

29

211

213

215

217

of
 p

ar
am

s
Weights footprint: Sparse vs. Dense (element-wise)

NNZ (dense)
NNZ (sparse)

(d) Structured pruning with 70% sparsity.

con
v1

.weig
ht

blo
ck1

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck1

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck1

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck2

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck2

.la
ye

r.3
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.0
.co

nv
_do

wnsa
mple

.weig
ht

blo
ck3

.la
ye

r.1
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.1
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.2
.co

nv
2.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
1.w

eig
ht

blo
ck3

.la
ye

r.3
.co

nv
2.w

eig
ht

line
ar.

weig
ht

Layer names

28

210

212

214

216

of

 p
ar

am
s

Weights footprint: Sparse vs. Dense (element-wise)
NNZ (dense)
NNZ (sparse)

(e) Structured pruning with 80% sparsity.

Figure 16: The element-wise sparsity of each layer for WideResNet28-2 (trained on CIFAR-10 via DPF), under
different structured pruning sparsity ratios. DPF for model compression (with structured pruning) performs
implicit as a neural architecture search.

19

Published as a conference paper at ICLR 2020

B MISSING PROOFS

In this section we present the proofs for the claims in Section 4.

First, we give the proof for the stongly convex case. Here we follow Lacoste-Julien et al. (2012) for
the general structure, combined with estimates from the error-feedback framework (Stich et al., 2018;
Stich & Karimireddy, 2019) to control the pruning errors.

Proof of Theorem 4.1. By definition of (DPF), wt+1 = wt − γtg(w̃t), hence,

E
[
‖wt+1 −w?‖2 | wt

]
= ‖wt −w?‖2 − 2γt 〈wt −w?,Eg(w̃t)〉+ γ2

t E ‖g(w̃t)‖2

≤ ‖wt −w?‖2 − 2γt 〈wt −w?,∇f(w̃t)〉+ γ2
tG

2

= ‖wt −w?‖2 − 2γt 〈w̃t −w?,∇f(w̃t)〉+ γ2
tG

2

+ 2γt 〈w̃t −wt,∇f(w̃t)〉 .
By strong convexity,

−2 〈w̃t −w?,∇f(w̃t)〉 ≤ −µ ‖w̃t −w?‖2 − 2 (f(w̃t)− f(w?)) ,

and with ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 further

−‖w̃t −w?‖2 ≤ −1

2
‖wt −w?‖2 + ‖wt − w̃t‖2

and with 〈a,b〉 ≤ 1
2α ‖a‖

2
+ α

2 ‖b‖
2 for a,b ∈ Rd and α > 0,

2 〈w̃t −wt,∇f(w̃t)〉 ≤ 2L ‖w̃t −wt‖2 +
1

2L
‖∇f(w̃t)‖2

= 2L ‖w̃t −wt‖2 +
1

2L
‖∇f(w̃t)−∇f(w?)‖2

≤ 2L ‖w̃t −wt‖2 + f(w̃t)− f(w?) ,

where the last inequality is a consequence of L-smoothness. Combining all these inequalities yields

E
[
‖wt+1 −w?‖2 | wt

]
≤
(

1− µγt
2

)
‖wt −w?‖2 − γt (f(w̃t)− f(w?)) + γ2

tG
2

+ γt(2L+ µ) ‖w̃t −wt‖2

≤
(

1− µγt
2

)
‖wt −w?‖2 − γt (f(w̃t)− f(w?)) + γ2

tG
2

+ 3γtL ‖w̃t −wt‖2 .
as µ ≤ L. Hence, by rearranging and multiplying with a weight λt > 0:

λtE (f(w̃t)− f(w?)) ≤ λt(1− µγt/2)

γt
E ‖wt −w?‖2 − λt

γt
E ‖wt+1 −w?‖2 + γtλtG

2

+ 3λtLE ‖w̃t −wt‖2 .
By plugging in the learning rate, γt = 4

µ(t+2) and setting λt = (t+ 1) we obtain

λtE (f(w̃t)− f(w?)) ≤ µ

4

[
t(t+ 1)E ‖wt −w?‖2 − (t+ 1)(t+ 2)E ‖wt+1 −w?‖2

]
+

4(t+ 1)

µ(t+ 2)
G2 + 3(t+ 1)LE ‖w̃t −wt‖2 .

By summing from t = 0 to t = T these λt-weighted inequalities, we obtain a telescoping sum:
T∑
t=0

λtE (f(w̃t)− f(w?)) ≤ µ

4

[
0− (T + 1)(T + 2)E ‖wt+1 −w?‖2

]
+

4(T + 1)

µ
G2

+ 3L

T∑
t=0

λtE ‖w̃t −wt‖2

≤ 4(T + 1)

µ
G2 + 3L

T∑
t=0

λtE ‖w̃t −wt‖2 .

20

Published as a conference paper at ICLR 2020

Hence, for ΛT :=
∑T
t=0 λt = (T+1)(T+2)

2 ,

1

ΛT

T∑
t=0

λtE (f(w̃t)− f(w?)) ≤ 4(T + 1)

µΛT
G2 +

3L

ΛT

T∑
t=0

λtE ‖w̃t −wt‖2

= O

(
G2

µT
+

L

ΛT

T∑
t=0

λtE ‖w̃t −wt‖2
)
.

Finally, using ‖w̃t −wt‖2 = δt ‖wt‖2 by (1), shows the theorem.

Before giving the proof of Theorem 4.2, we first give a justification for the remark just below
Theorem 4.1 on the one-shot pruning of the final iterate.

We have by L-smoothness and 〈a,b〉 ≤ 1
2α ‖a‖

2
+ α

2 ‖b‖
2 for a,b ∈ Rd and α > 0 for any iterate

wt:

f(w̃t)− f(w?) ≤ f(wt)− f(w?) + 〈∇f(wt), w̃t −wt〉+
L

2
‖w̃t −wt‖2

≤ f(wt)− f(w?) +
1

2L
‖∇f(wt)‖2 + L ‖w̃t −wt‖2

≤ 2(f(wt)− f(w?)) + δtL ‖wt‖2 . (4)

Furthermore, again by L-smoothness,

f(wT)− f(w?) ≤ L

2
‖wT −w?‖2 = O

(
LG2

µ2T

)
as standard SGD analysis gives the estimate E ‖wT −w?‖2 = O

(
G2

µ2T

)
, see e.g. Lacoste-Julien

et al. (2012). Combining these two estimates (with wt = wT) shows the claim.

Furthermore, we also claimed that also the dense model converges to a neighborhood of optimal
solution. This follows by L-smoothness and (4): For any fixed model wt we have the estimate (4),
hence for a randomly chosen (dense) model u (from the same distribution as the sparse model in
Theorem 4.1) we have

Ef(u)− f(w?)
(4)
≤ 2E [f(ũ)− f(w?)] + LE

[
δt ‖wt‖2

]
(Thm 4.1)

= O
(
G2

µT
+ LE

[
δt ‖wt‖2

])
.

Lastly, we give the proof of Theorem 4.2, following Karimireddy et al. (2019).

Proof of Theorem 4.2. By smoothness, and 〈a,b〉 ≤ 1
2 ‖a‖

2
+ 1

2 ‖b‖
2 for a,b ∈ Rd,

E [f(wt+1) | wt] ≤ f(wt)− γ 〈∇f(wt),Eg(w̃t)〉+ γ2L

2
E ‖g(w̃t)‖2

≤ f(wt)− γ 〈∇f(wt),∇f(w̃t)〉+ γ2LG
2

2

= f(wt)− γ 〈∇f(w̃t),∇f(w̃t)〉+ γ2LG
2

2
+ γ 〈∇f(w̃t)−∇f(wt),∇f(w̃t)〉

≤ f(wt)− γ ‖∇f(w̃t)‖2 + γ2LG
2

2

+
γ

2
‖∇f(w̃t)−∇f(wt)‖2 +

γ

2
‖∇f(w̃t)‖2

≤ f(wt)−
γ

2
‖∇f(w̃t)‖2 + γ2LG

2

2
+
γL2

2
‖wt − w̃t‖2 ,

and by rearranging

E ‖∇f(w̃t)‖2 ≤
2

γ
[Ef(wt)− Ef(wt+1)] + γLG2 + L2E ‖wt − w̃t‖2 .

21

Published as a conference paper at ICLR 2020

Summing these inequalities from t = 0 to t = T gives

1

T + 1

T∑
t=0

E ‖∇f(w̃t)‖2 ≤
2

γ(T + 1)

T∑
t=0

(E [f(wt)]− E [f(wt+1)]) + γLG2

+
L2

T + 1

T∑
t=0

E ‖wt − w̃t‖2

≤ 2 (f(w0)− f(w?))

γ(T + 1)
+ LγG2 +

L2

T + 1

T∑
t=0

E ‖et‖2 .

Finally, using ‖w̃t −wt‖2 = δt ‖wt‖2 by (1), and plugging in the stepsize γ that minimizes the
right hand side shows the claim.

22

	Introduction
	Related work
	Method
	Convergence Analysis
	Experiments
	Experimental setup
	Experiment Results

	Discussion
	Appendix
	Algorithm
	Implementation Details
	Additional Results for Unstructured Pruning
	Complete Results of Unstructured Pruning on CIFAR-10
	Understanding the Training Dynamics and Lottery Ticket Effect
	Computational Overhead and the Impact of Hyper-parameters
	Implicit Neural Architecture Search

	Additional Results for Structured Pruning
	Generalization performance for CIFAR-10
	Understanding the Lottery Ticket Effect
	Model Sparsity Visualization

	Missing Proofs

