
Under review as a conference paper at ICLR 2019

NOVEL POSITIONAL ENCODINGS TO ENABLE TREE-
STRUCTURED TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

With interest in program synthesis and similarly flavored problems rapidly in-
creasing, neural models optimized for tree-domain problems are of great value. In
the sequence domain, transformers can learn relationships across arbitrary pairs
of positions with less bias than recurrent models. Under the intuition that a sim-
ilar property would be beneficial in the tree domain, we propose a method to ex-
tend transformers to tree-structured inputs and/or outputs. Our approach abstracts
transformer’s default sinusoidal positional encodings, allowing us to substitute in
a novel custom positional encoding scheme that represents node positions within
a tree. We evaluated our model in tree-to-tree program translation and sequence-
to-tree semantic parsing settings, achieving superior performance over the vanilla
transformer model on several tasks.

1 INTRODUCTION

1.1 SEQUENCE MODELING

Neural networks have been successfully applied to an increasing range of tasks, including speech
recognition and machine translation. These domains crucially depend on techniques for modeling
streams of audio and text, represented as dynamically sized sequences of tokens. Researchers have
historically handled such data primarily with recurrent techniques, which encode sequences into
fixed-length representations. The sequence-to-sequence LSTM model (Sutskever et al. (2014)) is a
particularly notable example in recent times.

Recurrent architectures have some disadvantages. From a generalization perspective, recurrent cells
face the challenge of learning relationships between tokens many time steps apart. Attention mech-
anisms are now commonly employed to mitigate this issue, driving new state-of-the-art results in
difficult tasks such as machine translation (Wu et al. (2016)). From an efficiency standpoint, re-
currence does not lend itself to parallelism, often rendering recurrent models expensive to train.
Recurrent models are also difficult to interpret, employing an obtuse series of neural layers between
time steps that render relationships modeled within the data unclear.

The transformer (Vaswani et al. (2017)) is a stateless sequence-to-sequence architecture motivated
by these issues, constructed by forgoing recurrence altogether in favor of extensive attention. This
design allows information to flow over unbounded distances during training and inference, with-
out the need for complex gates and gradient clipping. This type of long distance flow, driven by
learned attention transforms over positional encoding, provides a powerful computational mecha-
nism. Transformers also lend themselves to easier interpretation, as their attention layers can at least
reveal information about learned relationships between elements of a sequence.

1.2 HIERARCHICAL MODELING

Recent work has begun to apply neural networks to programming tasks (Allamanis et al. (2018)). In
recent years, programming language analysis techniques have begun to exploit statistical techniques
commonly used on large natural language corpora (Hindle et al. (2012)). These can be used to
identify idioms in software, enable searching for code clones, searching code by natural language,
or even translating from one programming language to another.

1



Under review as a conference paper at ICLR 2019

Representing programs is an interesting challenge. One option is to view them as a one dimensional
sequence of tokens and use techniques common in the natural language programming literature.
However, these programs are intentionally endowed with hierarchical structure, even graph-like
relations. Using purely sequence-oriented methods may result in losing valuable information about
this structure.

Expanding past sequential modeling, a common approach is to pass information through neighbors
in the graph, in a manner that is reminiscent of message passing in graphical models (Li et al.
(2016)). To ensure that information can fully propagate across the graph, this message-passing must
be applied multiple times, bounded by the diameter of the graph. While this allows us to exploit
hierarchical structure, ideally we would like to do so while capturing the efficient information flow
and other benefits of transformer models.

In this work, we generalize transformers to embed tree representations. Our work introduces novel
positional encodings for tree-structured data. Using these encodings, we can apply transformers to
tree-structured domains, allowing information to percolate fully across the graph in a single layer.
This can potentially extend the transformer to settings ranging from natural language parse trees to
program abstract syntax trees. We evaluate our tree-transformers on programming language trans-
lation (e.g., translating JavaScript to CoffeeScript) (Chen et al. (2018)) and semantic parsing (e.g.
extracting a database query from a natural language request Dahl et al. (1994)) tasks, demonstrating
improved performance over sequential transformers.

2 BAG-OF-POSITIONS INTERPRETATION

The order of a sequence is rich in information, and order-agnostic (bag-of-words) models are lim-
ited in power by their inability to use this information. The most common way to capture order is
through recurrence; recurrent models inherently consider the order of an input sequence by process-
ing its elements sequentially. In the absence of recurrence, we require additional information about
the input sequence’s order in some other form. Transformer models provide this additional infor-
mation in the form of positional encodings. Each position in the input sequence is associated with a
vector, which is added to the embedding of the token at that position. This allows the transformer to
learn positional relationships between tokens as well as relationships between token embedding and
positional encoding space.

While adding in positional encodings addresses the power limitations of bag-of-words representa-
tions, it fundamentally does so by upgrading the bag of words to a bag of annotated words. Indeed,
the transformer’s core attention mechanism is order-agnostic, treating keys as a bag. The calcula-
tions performed on any given element of a sequence are entirely independent of the order of the rest
of that sequence in that layer; this leaves most of the work of exploiting positional information to
the positional encodings and autoregressive property.

Now, a bag of words annotated with positions can be equivalently thought of as a bag of positions
annotated with words. From this perspective, we see that it is not at all necessary that our input
“sequence” of positions have any direct correspondence with the sequence of associated “indices,”
i.e. an evenly distributed number line. The original transformer’s positional encodings do form
this correspondence for the purposes of sequence modeling, but we can consider more arbitrary
positional encodings to represent more arbitrary structures within positional space, as long as the
relationships between points in positional space have some useful semantic meaning. In particular,
we can use this idea to extend the transformer to the tree domain.

3 TREE POSITIONAL ENCODINGS

Now we construct our positional encoding scheme for trees. The transformer’s original positional
encodings has two key properties we would ideally like to preserve. First, every position has a unique
positional encoding, so that attention to any given position can be sharply defined. Second, any
relationship between two positions can be modeled by an affine transform between their positional
encodings. This allows the transformer to efficiently learn relationships between positions within its
embedding layers. In the context of sequences, the relationship between two positions is simply the
distance k that separates them. For trees though, the relation between two nodes is a path: a series

2



Under review as a conference paper at ICLR 2019

Figure 1: Examples of how to compute positional encodings for nodes in a regular tree. The se-
quence of branch choices b is used to determine a sequence of transforms Db1 , Db2 , . . . to apply to
the root node’s positional encoding. U is complementarily defined such that applying it to any of
these nodes results in that node’s parent (e.g. r = Ux = U2y = U3z). The specific transforms
Di, U are defined in Equations 1 and 2.

of steps up or down along tree branches. Our positional encoding scheme should try to associate
each such path with a unique linear transform in a consistent way.

From a given node in an n-ary tree, there are (n + 1) potential length-1 paths: a branch down to
each of n children, and a branch up to the parent. We will denote the branches down to children
as D1,...,n and the branch up to parent as U . We can then denote any longer path as a composition
of these D’s and U ’s, which act as operators. For example, if we wish to denote a node x’s grand-
parent’s second child, we can write D2U

2x. Every path can be broken down into a composition of
these (n + 1) operators, so we need only focus on their relationships. We want to associate each
operator U,D1,...,n with a unique affine transform; for convenience, we will also refer to their affine
transforms as U,D1,...,n respectively, and to x’s positional encoding as simply x.

The fundamental relationship between these operators is that traveling up a branch negates traveling
down any branch. Our constraint then is:

UDi = I ∀i ∈ {1, . . . , n}

The positional encoding scheme we propose adheres to this constraint for all trees up to a specified
depth, and still works well in practice for even deeper trees. We will first explain the parameter-free
form of our positional encoding scheme for simplicity. Our scheme takes two hyperparameters:
n, the degree of our tree, assumed to be regular; and k, the maximum tree depth for which our
constraint is preserved. Each positional encoding has dimension n ·k, and each transform U,D1,...,n

preserves this dimensionality. We assign the root a zero vector, and define every other node by its
path from the root vector. We denote this path as b1, . . . , bL, where bi is the branch choice at the ith
layer and L is the layer at which the node resides. Then, for any node x, we compute its positional
encoding:

x = DbLDbL−1
. . . D10

Now we describe the affine transform of Di. We represent a move down along x’s ith branch by
concatenating a one-hot n-vector with hot bit i (eni ) to the left side of x, and truncating x on the right
to preserve dimensionality. We define U complementarily. In other words,

Dix = eni ;x[: −n] (1)
Ux = x[n :];0n (2)

where ; represents concatenation, and [n :] and [: −n] represent truncatation by n elements on the
left and right side, respectively (as per Python notation).

These D,U satisfy our constraint whenever L ≤ k. Note that for trees with depth greater than k,
UDi is not necessarily the identity. Traveling down more than k layers will cause this scheme to

3



Under review as a conference paper at ICLR 2019

Figure 2: Nearest neighbor heatmap of parameter-free tree encoding scheme. We number the nodes
in the tree according to a breadth-first left-to-right traversal of a balanced binary tree: position 0
is the root, 1 is the first child of root, 2 is the second child of root, 3 is the first child of the first
child of root, and so on. In each case, we consider the row position as a “query” and each column
position as a potential “value”. The attention score of solely the positional encoding after softmax
is represented as a heatmap scaling from black (0.0) through red and yellow to white (1.0).

Figure 3: Nearest neighbor heatmaps of parameterized tree encodings with example values of p. As
shown in Figure 2, many of the lower-level positions in the tree are quite similar in the absence of a
decay factor. For example, position 5 (Root,D2,D1) is most similar to itself (score of 0.44), but quite
similar to position 6 (Root,D2,D2) and position 3 (Root,D1,D1) with scores of 0.16. An appropriate
level of decay allows each position to be uniquely identified as in (a); too much decay provides little
additional information as in (b).

(a) Decay factor p = 0.9 (b) Decay factor p = 0.7

“forget” nodes more than k layers up, which cannot be inverted. In practice, we make the simplifying
assumption that this loss of information is insignificant for sufficiently large k.

The parameter-free positional encoding scheme as proposed so far, while fulfilling the uniqueness
property and approximately the linear composition property, lacks richness. It is analogous to a
simplified sequential positional encoding scheme that simply defines the positional encoding at in-
dex i to be the number i. The transformer instead opted for a rich stack of sinusoids of different
frequencies to attend to a much wider variety of relationships. In a similar vein, we propose adding
a parametrizable component to diversify our encodings.

Our encoding consists of a sequence of one-hot chunks, each representing a different layer of the
tree. One will note that we can weigh these one-hot chunks with any geometric series without
disrupting the affine property:

x′ = x� (1n;pn;p
2
n; . . . )

x′ here meets the same properties as x. Here, p is a parameter and pn is a n-vector of p’s. As Figure
3 shows, different values for p result in radically different attention biases. Analogous to the stack
of sinusoidal encodings, we propose a stacking multiple tree encodings, each equipped with its own
p to be learned. To prevent the encodings’ norms from exploding, we apply tanh to p to bound it
between -1 and 1, and multply the encodings by a factor of

√
1− p2 to approximately normalize

it. We then scale it further by a factor of
√
dmodel/2 to achieve norms more similar to the original

transformer’s positional encoding scheme.

4



Under review as a conference paper at ICLR 2019

Figure 4: Common traversals and mixtures thereof can be represented as linear transforms. Using
the position encoding described in this paper, finding the parent, left child, or right child of a given
node can be represented as linear transforms U , D1, and D2. Complex traversals can be represented
also as linear transforms by composing these operations. The attention heatmaps below demonstrate
the similarity of tree positional encodings applied to different points in the tree when the “query”
has been transformed before dot product with the value.

(a) Parent: P (b) Siblings: D1U+D2U
2

(c) Aunts: (D1+D2)U
2

2
(d) Cousins: (D1+D2)

2U2

4

4 DECODER

To accommodate a new positional encoding scheme, we need to slightly modify the decoder. The
original transformer’s decoder concatenates a start token to the beginning of the sequence without
modifying the positional encodings. This results in misalignment between autoregressed outputs and
positional encodings, e.g. the encoding for the second position is summed with the embedding of the
first output. This is not an issue in the sequential case; the positional encodings are self-similar, so
this “misalignment” is a linear transform away from the “correct” alignment. However, no traversal
through a tree’s nodes have this self-similarity property, so proper alignment here is critical.

We use a zero vector for the start token’s positional encoding, and use the appropriate positional
encoding for each autoregressed output. Our decoder must dynamically compute the new positional
encoding whenever it produces a token. The decoder must keep track of the partial tree structure that
it constructs, to correctly traverse to the next position based on history. In order to build this partial
tree structure, the decoder must be aware of how many children each node must have. To this end,
we construct our vocabularies such that each symbol is annotated with a number of children. When
symbols have a varying number of children, they are added multiple times to the vocabulary, each
with a different annotation. Given this information, the decoder can flexibly construct trees using
any tree traversal algorithm, as long as it is applied consistently. In our experiments, we explored
both depth-first and breadth-first traversals for decoding.

5 EXPERIMENTS AND RESULTS

For our evaluation, we consider both tree-to-tree and sequence-to-tree tasks. Both categories test
our model’s ability to decode tree-structured data; the sequence-to-tree task additionally tests our
model’s ability to translate between different positional encoding schemes. Our tree-to-tree evau-
lation centers around program translation tasks, while our sequence-to-tree evaluation focuses on
semantic parsing.

As our model expects regular trees, we preprocess all tree data by converting trees to left-child-
right-sibling representations, which are binary trees. This enforces n = 2 for our model. We use a
maximum tree depth k = 32 for all experiments. 1 Unless listed otherwise, we performed all of our
experiments with Adam (Kingma & Ba (2015)), a batch size of 128, a dropout rate of 0.1 (Srivastava
et al. (2014)), and gradient clipping for norms above 10.0.

1 Although binarizing trees may not always be necessary, both programming language and natural language
trees of ten have constructs with unbounded numbers of children (e.g. statement blocks). For years, natural
language parsing efforts have converted n-ary grammars into binary forms to enable efficient algorithms and
estimation (Klein & Manning (2003)). We explored left-child-right-sibling representations primarily to be
consistent with past work (Chen et al. (2018)); it would be interesting to measure the impact of alternate
binarization strategies (or omitting binarization altogether) when using tree transformers.

5



Under review as a conference paper at ICLR 2019

SYN-S SYN-L
Tree-transformer, depth-first search 99.98 98.77
Tree-transformer, breadth-first search 99.86 95.93
Seq-transformer, parse trees 99.69 94.43
Seq-transformer, raw programs 99.99 99.46
Tree2tree LSTM (Chen et al. (2018)) 99.76 97.50
Seq2seq LSTM (Chen et al. (2018)) 98.38 12.19

Table 1: Program accuracy data for synthetic tasks. The tree-transformer has clear advantages over
the sequence-transformer for larger tasks, indicating that the custom positional encodings may be
providing useful structural information.

5.1 TREE-TO-TREE: PROGRAM TRANSLATION

For tree-to-tree evaluation, we focused on three sets of program translation tasks from the literature
to test our model against. The first set of tasks is For2Lam, a synthetic translation dataset between
an invented imperative and functional language. The dataset is split into two tasks: one for small
programs and one for large programs. The second set of tasks involves translating between generated
CoffeeScript and JavaScript code. The data is similarly broken, here both by program length and
vocabulary. More details about the data sets can be found at (Chen et al. (2018)). We report all
results in terms of whole program accuracy.

5.1.1 SYNTHETIC TRANSLATION TASKS

For the synthetic translation tasks, we trained both our tree-transformers and classic sequence-
transformers for baseline experimentation. We trained four models for each task: a sequence-
transformer that operates on raw programs; a sequence-transformer that operates on parse tree rep-
resentations; a tree-transformer with breadth-first traversal; and a tree-transformer with depth-first
traversal. Both models were trained with four layers and dmodel = 256. The sequence-transformer
was trained with dff = 1024 and a positional encoding dimension that matched dmodel, in line with
the hyperparameters used in the original transformer. The tree-transformer, however, was given a
larger positional encoding size of 2048 in exchange for a smaller dff of 512. This was to emphasize
the role of our tree positional encodings, which are inherently bulkier than the sequential positional
encodings, while maintaining a similar parameter count.

The results for the synthetic tasks can be found in Table 1. Both forms of transformer, as well as
all other baseline methods listed, get very close to solving the small program dataset. The results
on the large program are of more interest: both tree-transformer models perform significantly better
than the sequence-transformers, suggesting that the positional encodings help considerably for larger
trees. The depth-first search variant outperforms breadth-first search in both cases. We conjecture
that depth-first search may be a more favorable traversal method in general; it tends to construct
more subtrees similar to each other earlier in the process. Interestingly, the tree-transformer over
tree-structured data performed slightly worse than the sequence-transformer over raw program rep-
resentations. The sequence-transformer may benefit from the overall short length of programs in
these datasets.

5.1.2 COFFEESCRIPT-JAVASCRIPT TRANSLATION

Given the results on the synthetic tasks, we focused on training depth-first traversal tree-transformers
for this task. The data is partitioned four ways, into two sets of vocabulary (‘A’ and ‘B’) and two
categories of program length (short and long). We use the same hyperparameters as in the synthetic
tasks, and once again compare our results with the tree2tree and seq2seq models. For memory-
related reasons, a batch size of 64 was used instead for the tasks with longer program lengths.

The results for CoffeeScript-Javascript translation can be found in Table 2. The tree-transformer
obtains state-of-the-art results on over half the datasets, while still producing competitive results on
the other datasets. This results demonstrate that the advantages of the tree-transformer’s design are
more prominent with large data. While its performance tends to be weaker on the simpler short-
sequence tasks, the tree-transformer gains up to 20 percentage point improvements over the state

6



Under review as a conference paper at ICLR 2019

Tree-Tform Tree2tree Seq2seq
CJ-A-short 96.51 99.57 92.73
JC-A-short 97.71 87.75 86.31
CJ-B-short 97.80 99.75 98.05
JC-B-short 97.39 86.37 85.94
CJ-A-long 96.64 97.15 21.04
JC-A-long 98.82 78.59 77.30
CJ-B-long 97.20 95.60 42.08
JC-B-long 97.21 75.62 74.51

Table 2: Program accuracy data for CoffeeScript-JavaScript translation tasks. Here, the tree-
transformer is compared to Chen et al.’s tree-to-tree model (Chen et al. (2018)) which have pre-
viously produced state-of-the-art results. The tree-transformer has improved results on over half the
datasets, and particularly shows improved performance on larger datasets.

Seq2Tree Tform Seq2Seq Tform Literature
JOBS 84.3 85.0 90.7 (Liang et al. (2011))
GEO 84.6 81.1 89.0 (Kwiatkowski et al. (2013))
ATIS 86.4 84.4 84.6 (Dong & Lapata (2016))
IFTTT, C 52.0 46.0 89.7 (Dong & Lapata (2016))
IFTTT, C+F 48.0 38.0 78.4 (Dong & Lapata (2016))
IFTTT, F1 68.0 65.7 73.5 (Dong & Lapata (2016))

Table 3: Metrics for semantic parsing tasks. The sequence-to-tree transformer outperforms the
baseline transformer on most tasks. This demonstrates that the induced bias of explicit tree structure
outweighs the additional hurdle of converting between positional encoding schemes. Transformer
architectures in general, however, do not yet compete with state-of-the-art results.

of the art on the most difficult tasks here. Overall, these results are promising for applying tree-
transformers to larger-scale tree-to-tree scenarios.

5.2 SEQUENCE-TO-TREE: SEMANTIC PARSING

For sequence-to-tree evaluation, we focused on several semantic parsing tasks to benchmark exist.
These tasks present natural language queries, with the task of converting them into tree-structured
code snippets for a given API. The four datasets we consider are JOBS (Califf & Mooney (1999)),
a job listing database retrieval task; GEO (Tang & Mooney (2001)), a geography database retrieval
task; ATIS (Dahl et al. (1994)), a flight booking task; and IFTTT (Quirk et al. (2015)), a task for
constructing programs with simple trigger-action forms. Our most important results are for ATIS and
IFTTT as they provide ample data. JOBS and GEO provide far less data, each featuring under 1000
training examples, so their results are less reliable. Nevertheless, we provide them for completeness
due to their popularity in the literature.

Our metrics are chosen to properly compare our model against the literature. For JOBS, GEO, and
ATIS, we provide whole program accuracy as our key metric. For IFTTT, whole program accuracy is
a less common metric due to the task’s difficulty. Instead we report the same metrics recommended
in (Quirk et al. (2015)), namely accuracy over channels; accuracy over both channels and functions;
and balanced F1 score. We preprocess all datasets to match (Dong & Lapata (2016)): namely,
we filter all tokens that appear less than five times in IFTTT, and we filter all source-side tokens
that appear less than twice in JOBS, GEO, and ATIS. For all datasets, we use a sequence-to-tree
transformer with dmodel = 256, dff = 1024, and dpos = 2048.

The results for our semantic parsing experiments can be found in Table 3. Here, we compare our
metrics against the best in the literature as surveyed by (Dong & Lapata (2016)). We see that on
almost every metric, our model outperforms the sequence-to-sequence transformer by several per-
centage points. In particular, our model shows improvement on the larger datasets; it only falters on
JOBS, where it performs slightly worse than the baseline transformer. It may be possible to improve
our results on this smaller dataset through a cross-validated hyperparameter search, though we do

7



Under review as a conference paper at ICLR 2019

not explore that here. Enforcing hierarchical structure upon the transformer appears to be worth the
additional challenge of converting between positional encodings. However, both the sequence-to-
sequence and sequence-to-tree transformers perform worse than state-of-the-art recurrent methods
such as Dong and Lapata’s sequence-to-tree model (Dong & Lapata (2016)). This may be due to
the advantages of explicitly sharing an embedding space between sequences and trees, as opposed
to having to learn a positional encoding conversion scheme.

6 RELATED WORK

Although ours is the first effort in applying Transformer models to hierarchically shaped data, there
has been a range of prior work in tree-structured extensions of recurrent architectures. Soon after the
recent resurgence of recurrent neural networks over linear sequences, researchers began to consider
extensions of these models that accommodate structures more complex than linear chains. Initial
efforts focused on input tree structures, where the shape of the input tree is fixed in advance. Tree-
LSTMs demonstrated benefits in tasks such as sentence similarity, sentiment analysis (Tai et al.
(2015)), and information extraction (Miwa & Bansal (2016)). With a few changes, these models can
be extended to cover graph-like structures as well (Peng et al. (2017)).

Sequence-to-sequence models without explicit tree modeling have been applied to tree generation
using only a simple linearization of the tree structure (Vinyals et al. (2015); Eriguchi et al. (2017);
Aharoni & Goldberg (2017)). Later work has proposed generation methods that are more sensitive to
tree structures and well-formedness constraints (Dong & Lapata (2016); Alvarez-Melis & Jaakkola
(2017)), leading to new-state-of-the-art results.

Rather than explicitly modeling hierarchically structured data, some recent work imposes hyperbolic
geometry on the activations of neural networks (Gulcehre et al. (2018)). Defining attention in terms
of hyperbolic operations allows modeling of latent hierarchical structures. In contrast, our work
focuses on the case of explicit hierarchical structure.

One particularly relevant transformer variant explicitly captures relative position, rather than relying
on sinusoidal models to indirectly model distances (Shaw et al. (2018)). It is a clear precursor to
modeling labeled, directed graphs, though the approach detailed in the paper is limited to relative
linear positions.

7 CONCLUSION

We have proposed a novel scheme of custom positional encodings to extend transformers to tree-
domain tasks. By leveraging the strengths of the transformer, we have achieved an efficiently par-
allelizable model that can consider relationships between arbitrary pairs of tree nodes in a single
step. Our experiments have shown that our model can often outperform sequence-transformers in
tree-oriented tasks. We intend to experiment with employing the model on other tree-domain tasks
of interest as future work.

By abstracting the transformer’s positional encodings, we have established the potential for gener-
alized transformers to consider other nonlinear structures, given proper implementations. As future
work, we are interested in exploring alternative implementations for other domains, in particular
graph-structured data as motivated by structured knowledge tasks.

Finally, in this paper we have only considered binary trees: in particular, binary tree representations
of trees not originally structured as such. Arbitrary tree representations have their own advantages
and complications; we would like to explore training on them directly.

REFERENCES

Roee Aharoni and Yoav Goldberg. Towards string-to-tree neural machine translation. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 132–140, Vancouver, Canada, July 2017. Association for Computational Linguistics.
URL http://aclweb.org/anthology/P17-2021.

8

http://aclweb.org/anthology/P17-2021


Under review as a conference paper at ICLR 2019

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018.

D. Alvarez-Melis and T. Jaakkola. Tree structured decoding with doubly recurrent neural networks.
In International Conference on Learning Representations (ICLR), 2017.

Mary Elaine Califf and Raymond J. Mooney. Relational learning of pattern-match rules for in-
formation extraction. In Proceedings of the Sixteenth National Conference on Artificial In-
telligence and the Eleventh Innovative Applications of Artificial Intelligence Conference Inno-
vative Applications of Artificial Intelligence, AAAI ’99/IAAI ’99, pp. 328–334, Menlo Park,
CA, USA, 1999. American Association for Artificial Intelligence. ISBN 0-262-51106-1. URL
http://dl.acm.org/citation.cfm?id=315149.315318.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation. In
International Conference on Learning Representations, 2018.

Deborah A. Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-Smith, David
Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth Shriberg. Expanding the scope of the
ATIS task: the ATIS-3 corpus. In Proceedings of the Workshop on Human Language Technology,
pp. 43–48, Plainsboro, New Jersey, 1994.

Li Dong and Mirella Lapata. Language to logical form with neural attention. In Association for
Computational Linguistics, 2016.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun Cho. Learning to parse and translate im-
proves neural machine translation. In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers), pp. 72–78, Vancouver,
Canada, July 2017. Association for Computational Linguistics. URL http://aclweb.org/
anthology/P17-2012.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Freitas.
Hyperbolic attention networks, 2018.

Abram Hindle, Earl Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the naturalness
of software. In International Conference on Software Engineering, 2012.

Diederik Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st
Annual Meeting on Association for Computational Linguistics - Volume 1, ACL ’03, pp. 423–430,
Stroudsburg, PA, USA, 2003. Association for Computational Linguistics. doi: 10.3115/1075096.
1075150. URL https://doi.org/10.3115/1075096.1075150.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pp. 1545–1556. Association for Computational Linguistics, 2013.
URL http://aclweb.org/anthology/D13-1161.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations, 2016.

Percy Liang, Michael I. Jordan, and Dan Klein. Learning dependency-based compositional se-
mantics. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, pp. 590–599, Stroudsburg,
PA, USA, 2011. Association for Computational Linguistics. ISBN 978-1-932432-87-9. URL
http://dl.acm.org/citation.cfm?id=2002472.2002547.

Makoto Miwa and Mohit Bansal. End-to-end relation extraction using lstms on sequences and tree
structures. In Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 1105–1116, Berlin, Germany, August 2016. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P16-1105.

9

http://dl.acm.org/citation.cfm?id=315149.315318
http://aclweb.org/anthology/P17-2012
http://aclweb.org/anthology/P17-2012
https://doi.org/10.3115/1075096.1075150
http://aclweb.org/anthology/D13-1161
http://dl.acm.org/citation.cfm?id=2002472.2002547
http://www.aclweb.org/anthology/P16-1105


Under review as a conference paper at ICLR 2019

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, and Wen-tau Yih. Cross-sentence
n-ary relation extraction with graph lstms. Transactions of the Association for Computational
Linguistics, 5:101–115, 2017. ISSN 2307-387X. URL https://transacl.org/ojs/
index.php/tacl/article/view/1028.

Chris Quirk, Raymond Mooney, and Michel Galley. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL-15), pp. 878–888, Beijing, China, July 2015. URL http:
//www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127514.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
464–468, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N18-2074.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp.
3104–3112. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. In Association for Computational Lin-
guistics, 2015.

Lappoon R. Tang and Raymond J. Mooney. Using multiple clause constructors in inductive logic
programming for semantic parsing. In Proceedings of the 12th European Conference on Machine
Learning, EMCL ’01, pp. 466–477, London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-
42536-5. URL http://dl.acm.org/citation.cfm?id=645328.650015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Oriol Vinyals, Ł ukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hin-
ton. Grammar as a foreign language. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems 28,
pp. 2773–2781. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5635-grammar-as-a-foreign-language.pdf.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, ukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation, 2016.

10

https://transacl.org/ojs/index.php/tacl/article/view/1028
https://transacl.org/ojs/index.php/tacl/article/view/1028
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127514
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127514
http://www.aclweb.org/anthology/N18-2074
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://dl.acm.org/citation.cfm?id=645328.650015
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf

	Introduction
	Sequence modeling
	Hierarchical modeling

	Bag-of-positions interpretation
	Tree positional encodings
	Decoder
	Experiments and results
	Tree-to-tree: program translation
	Synthetic translation tasks
	CoffeeScript-JavaScript translation

	Sequence-to-tree: semantic parsing

	Related work
	Conclusion

