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ABSTRACT

As the performance of computer systems stagnates due to the end of Moore’s Law,
there is a need for new models that can understand and optimize the execution
of general purpose code. While there is a growing body of work on using Graph
Neural Networks (GNNs) to learn static representations of source code, these
representations do not understand how code executes at runtime. In this work, we
propose a new approach using GNNs to learn fused representations of general
source code and its execution. Our approach defines a multi-task GNN over
low-level representations of source code and program state (i.e., assembly code
and dynamic memory states), converting complex source code constructs and data
structures into a simpler, more uniform format. We show that this leads to improved
performance over similar methods that do not use execution and it opens the door
to applying GNN models to new tasks that would not be feasible from static code
alone. As an illustration of this, we apply the new model to challenging dynamic
tasks (branch prediction and prefetching) from the SPEC CPU benchmark suite,
outperforming the state-of-the-art by 26% and 45% respectively. Moreover, we
use the learned fused graph embeddings to demonstrate transfer learning with high
performance on an indirectly related algorithm classification task.

1 INTRODUCTION

Over the last 50 years, hardware improvements have led to exponential increases in software per-
formance, driven by Moore’s Law. The end of this exponential scaling has enormous ramifications
for computing (Hennessy & Patterson, 2019) since the demand for compute has simultaneously
grown exponentially, relying on Moore’s Law to compensate (Ranganathan, 2017). As the onus of
performance optimization shifts to software, new models, representations, and methodologies for
program understanding are needed to drive research and development in computer architectures,
compilers, and to aid engineers in writing high performance code.

Deep learning has emerged as a powerful framework for solving difficult prediction problems
across many domains, including vision (Krizhevsky et al., 2012), speech (Hinton et al., 2012), and
text (Sutskever et al., 2014). Recent work has started to frame many canonical tasks in computer
architecture as analogous prediction problems, and have shown that deep learning has the potential to
outperform traditional heuristics (Hashemi et al., 2018). In this work, we focus on two representative
tasks: address prefetching (modeling data-flow during execution) (Jouppi, 1990; Wenisch et al., 2009;
Hashemi et al., 2018) and branch prediction (modeling control-flow during execution) (Jiménez & Lin,
2001; Seznec, 2011; Smith, 1981)1. Traditional models for solving these tasks memorize historical
access patterns and branch history to make predictions about the future. However, this approach
is inherently limited as there are simple cases where history-based methods cannot generalize

∗Work completed during an internship at Google.
1As Moore’s Law ends, prediction techniques in these fields have also stagnated. For example, the winner of

the most recent branch prediction championship increased precision by 3.7% (Dundas, 2016).
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(Section 4.6). Instead, we argue that these tasks (branch-prediction and prefetching) jointly model the
intermediate behavior of a program as it executes. During execution, there is a rich and informative
set of features in intermediate memory states that models can learn to drive both prediction tasks.
Additionally, since programs are highly structured objects, static program syntax can supplement
dynamic information with additional context about the program’s execution.

We combine these two sources of information by learning a representation of a program from both
its static syntax and its dynamic intermediate state during execution. This incorporates a new set
of previously unexplored features for prefetching and branch prediction, and we demonstrate that
these can be leveraged to obtain significant performance improvements. Inspired by recent work
on learning representations of code (Allamanis et al., 2017), our approach is distinguished by two
aspects. First, instead of using high level source code, we construct a new graph representation of
low-level assembly code and model it with a graph neural network. Assembly makes operations
like register reads, memory accesses, and branch statements explicit, naturally allowing us to model
multiple problems within a single, unified representation. Second, to model intermediate state, we
propose a novel snapshot mechanism that feeds limited memory states into the graph (Section 3.2).

We call our approach neural code fusion (NCF). This same representation can easily be leveraged for a
bevy of other low-level optimizations (including: indirect branch prediction, value prediction, memory
disambiguation) and opens up new possibilities for multi-task learning that were not previously
possible with traditional heuristics. NCF can also be used to generate useful representations of
programs for indirectly related downstream tasks, and we demonstrate this transfer learning approach
on an algorithm classification problem.

On the SPEC CPU2006 benchmarks (Sta, 2006), NCF outperforms the state-of-the-art in address
and branch prediction by a significant margin. Moreover, NCF is orthogonal to existing history-
based methods, and could easily combine them with our learned representations to potentially boost
accuracy further. To our knowledge, NCF is the first instance of a single model that can learn
simultaneously on dynamic control-flow and data-flow tasks, setting the stage for teaching neural
network models to better understand how programs execute.

In summary, this paper makes the following contributions:
• An extensible graph neural network based representation of code that fuses static code and

dynamic execution information into one graph.

• A binary representation for dynamic memory states that generalizes better than scalar or
categorical representations.

• The first unified representation for control-flow and data-flow during program execution.

• State-of-the-art performance in branch prediction (by 26%) and prefetching (by 45%).

• We show that NCF representations pre-trained on branch prediction are useful for transfer
learning, achieving competitive performance on an algorithm classification task.

2 BACKGROUND

In order to generate our fused representation (Figure 1), we combine three fundamental components.
The representation itself builds on Graph Neural Networks (GNNs). Instead of directly representing
source code, our static representation uses assembly code. To drive dynamic information through the
GNN, we use binary memory snapshots. We start with background on these three components.

2.1 GATED GRAPH NEURAL NETWORKS

A generic graph neural network structure G = (V,E) consist of a set of nodes V and K sets of
directed edges E = E1, . . . , EK where Ek ⊆ V × V is the set of directed edges of type k. Each
node v ∈ V is annotated with a initial node embedding denoted by xv ∈ RD and associated with a
node state vector htv ∈ RD for each step of propagation t = 1, . . . , T .

Our work builds on a specific GNN variant – Gated Graph Neural Networks (GGNNs) (Li et al., 2015).
GGNNs propagate information in the graph through message passing. At each step of propagation,
“messages” to each node v are computed as:

mt
kv =

∑
u:(u,v)∈Ek

f(htu; θk), (1)
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Figure 1: Overview of the fused static/dynamic graph representation.

where mt
kv is the zero vector if there are no edges of type k directed towards v. f is a linear layer

with parameters θk in this model, but can be an arbitrary function. To update the state vector of a
node v, all nonzero incoming messages are aggregated as:

m̃t
v = g({mt

kv | for k such that ∃u.(u, v) ∈ Ek}). (2)

Here g is an aggregation function, for which we use element-wise summation. Finally, the next state
vector is computed using a gated recurrent unit (GRU) (Chung et al., 2014):

ht+1
v = GRU(m̃t

v, h
t
v). (3)

The propagation is initialized with h1v = xv and repeated T times. The state vectors hTv are considered
as the final node embeddings. For each task, we mark a specific node v∗ as the “task node”. We feed
its final state vector hTv∗ to a linear output layer to make final predictions.

2.2 PROGRAM REPRESENTATIONS

Here we give a brief review of how compilers and processors represent source code and program
state, along with tools for extracting these representations from programs and their executions.

Dynamic Execution State. The dynamic state of a program is the set of values that change as a
program executes. This is defined by a fixed set of registers (referenced by names like %rdi and
%rax) and memory (which is much larger and indexed by an integer memory address). Values are
moved from memory to registers via load instructions and from registers to memory via store
instructions. Finally, the instruction pointer specifies which instruction should be executed next.

So, what is the correct subset of dynamic state to feed into a model? In principle it could include all
registers and memory. However, this can be difficult to work with (memory is very large) and it is
expensive to access arbitrary memory at test time. Instead, we restrict dynamic state to a snapshot
that only includes CPU general purpose registers and recently used memory states. These values are
cheaply obtainable in hardware through buffers that hold recently used data and in software through
dynamic instrumentation tools like Pin (see Tools section).

Assembly Code. Assembly code is compiled from source code and is specific to a particular
processor architecture (such as x86). It is a sequence of instructions, some of which operate on
register values, some of which move values between registers and memory (loads and stores),
and some of which conditionally branch or jump to other locations in the program. A common way of
organizing assembly code is in a control flow graph (CFG). Nodes of a CFG are basic blocks, which
are sequences of instructions without any control flow statements. Edges point from a source basic
block to a target basic block when it is possible for control to jump from the source bock to the target
block. For x86 direct branches, there are only two possible target blocks for a given source block,
which we can refer to as the true block and false block. A benefit of assembly code in our context
is that it is typically less stylish and tighter to program semantics. For example, programs that are
syntactically different but semantically equivalent tend to correspond to similar assembly (Figure 2).

While we only use assembly for static code, it is also possible to link assembly code to the source code
it was generated from to gain additional information about high-level constructs like data structures.
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For loop While loop Assembly Semantics
for(; i<10; i++) while (i<10) 4006c1: cmpl $0x9,-0x4(%rbp) # compare i and 9 (10-1)

{ { 4006c5: jg     4006c9 # jump out if i >= 10 
… i++; 4006cb: addl $0x1,-0x4(%rbp) # add 1 to i

} } 4006c7: jmp 4006c1 # loop back
4006c9: …

(a) Assembly example 1: for vs. while.

if-else Ternary Assembly Semantics
if (a<b) i= a<b ? a : b; 4004da: mov -0xc(%rbp),%eax # fetch a

i = a; 4004dd: cmp -0x8(%rbp),%eax # compare a and b

else 4004e0: jge 4004ea # jump to i = b if a >= b
i = b; 4004e2: mov -0xc(%rbp),%eax # fetch a

4004e5: mov %eax,-0x4(%rbp) # i = a
4004e8: jmp 4004f0 # jump out
4004ea: mov -0x8(%rbp),%eax # fetch b
4004ed: mov %eax,-0x4(%rbp) # i = b
4004f0: mov $0x1,%eax

(b) Assembly example 2: if-else vs. ternary.

Figure 2: Two examples where syntactically different but semantically equivalent source code is
compiled to the same assembly. Corresponding sections of source/assembly are colored the same.

Tasks. We test learned understanding of control-flow during execution using the branch prediction
task. Branch prediction traditionally uses heuristics to predict which target basic block will be entered
next. The instruction pointer determines which basic block is currently being executed, and the target
output is a boolean specifying either the true block or false block.

Branch prediction is a difficult problem with large performance implications for small relative im-
provements. Modern microprocessors execute hundreds of instructions speculatively, a mispredicted
branch means that the processor has to discard all work completed after that branch and re-execute.

Learned understanding of data-flow during execution is tested using the prefetching task. Prefetching
predicts the memory address that will be accessed in the next load operation. Since data access time
is the largest bottleneck in server applications, solving data prefetching has significant implications
for scaling computer architectures (Hashemi et al., 2018). Note that there is generally interleaving
of branching and memory instructions, so predicting the next memory access may depend on an
unknown branch decision, and vice versa.

Tools. Compilers convert source code into assembly code. We use gcc. Creating a usable snapshot
of the dynamic state of a program is nontrivial. Given the large size of memory, we need to focus on
memory locations that are relevant to the execution. These are obtained by monitoring the dynamic
target memory addresses of load instructions that are executed. To obtain these snapshots, we
instrument instructions during execution with a tool called Pin (Luk et al., 2005).

3 MODEL

We model the static assembly as a GNN (Section 3.1). Dynamic snapshots are used as features to
inform the GNN of the instruction-level dynamics during execution (Section 3.2), which we show
leads to model to learn the behavior of the application (Section 4).

3.1 GRAPH STRUCTURE

Figure 3 provides an example of our graph structure translating from 3 lines of assembly to a GNN.
The graph consists of three major types of nodes: instruction nodes (in white), variable nodes (in
yellow), and pseudo nodes (in grey).

Instruction nodes are created from instructions to serve as the backbone of the graph. Each instruction
can have variable nodes or pseudo nodes as child nodes.

Variable nodes represent variables that use dynamic values, including registers and constants.
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Instead of connecting instructions nodes directly to their child variable nodes, Pseudo nodes represent
the sub-operations inside an instruction. The value associated with a pseudo node is computed in a
bottom-up manner by recursively executing the sub-operations of its child nodes. For example, in
instruction 0 in Figure 3, a pseudo node is created to represent the source operand that loads data
from memory2, which contain a child constant 0x48 and a child register %rbx. There are a number
of different pseudo node types listed in the appendix.

PC0: mov $0x48(%rbx), %rdi
PC1: cmp (%rdi, %rax, 1), %rsi
PC2: jne PC0

ins 0

ins 2

ins 1

src

dest

$0x48

%rbx

%rdi

src

dest

offset

base

%rsi

%rdi

%rax

$0x1
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Figure 3: Graph structure on assembly code.

Three major types of edges are used to connect
nodes in the graph: control-flow edges, parent
edges and usage edges. Control-flow edges con-
nect an instruction node to all potential subse-
quent instruction nodes. For non-branch instruc-
tions, the control-flow edge from an instruction
node points to the next sequential instruction
node in the program. For branch instructions,
control-flow edges are used to connect to both
the next instruction and the branch target. Parent
edges are used to connect child variable nodes
or pseudo nodes to their parent instruction nodes
or pseudo nodes. Usage edges provide the graph
with data flow information, connecting variable
nodes with their last read or write. Given this
static structure, Section 3.2 describes how the
GNN is initialized and used.

3.2 FUSED STATIC/DYNAMIC
GATED GRAPH NEURAL NETWORKS

Node initialization. Unlike previous ap-
proaches to code analysis where node embed-
dings are initialized with the static text of source
code, we fuse the static graph with dynamic
snapshots by using dynamic state to initialize
nodes in the graph.

Each variable node and pseudo node is initial-
ized with a dynamic value from the memory
snapshot. These values are converted into initial
node embeddings via a learned embedding layer. We find that the numerical format of the dynamic
values are critical to allowing the model to understand the application. We consider three types of rep-
resentations for data values: categorical, scalar and binary. Our results (Section 4.6) show that binary
has an inherent ability to generalize more efficiently than categorical or scalar representations. The
intuition behind why binary generalizes so well is that the representation is inherently hierarchical,
which allows for stronger generalization to previously unseen bit patterns.

Lastly, instruction nodes are initialized with zero vectors as embeddings. Given the initial embeddings,
the GNN runs for a predefined number of propagation steps to obtain the final embeddings.

Defining tasks on the graph. Tasks are defined on nodes using masking. Similar to masking in
RNNs to handle variable sequence lengths, masking in GNNs handles different numbers of task
nodes. A node defined with a task has a mask value of 1 and the ones without a task are masked out
using 0 during both forward and backward propagation.

Branch-prediction is defined on the branch instruction node. Since each branch can either be taken or
not taken, this is a binary decision. The final node embeddings are fed into a linear layer to generate
a scalar output using a sigmoid activation and a cross entropy loss.

Prefetching is defined on the src pseudo node that represents a memory load operation. The task
is to predict the 64-bit target address of the next memory load from this node. A 64-bit output is
generated by feeding the final node embeddings of the task node to a different linear layer. In this

2In x86 assembly, parentheses represent addressing memory
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case, the output layer is 64-dimensional to correspond to a 64-bit address. The loss is the summation
of sigmoid cross entropy loss on all 64 bits.3

Scaling to large programs. For large-scale programs, it is unrealistic to utilize the static graph built
on the entire assembly file (the gcc benchmark has >500K instructions). As in (Li et al., 2015), to
handle large graphs, only nodes which are within 100 steps to the task node will affect the prediction.

4 EXPERIMENTS

4.1 DATA COLLECTION

Our model consists of two parts, the static assembly and dynamic snapshots. To collect static assembly
we use gcc to compile source code for each binary. This binary is then disassembled using the GNU
binary utilities to obtain the assembly code.

The dynamic snapshots are captured for conditional branch and memory load instructions using the
dynamic instrumentation tool Pin (Luk et al., 2005). We run the benchmarks with the reference
input set and use SimPoint (Hamerly et al., 2005) to generate a single representative sample of 100
million instructions for each benchmark. Our tool attaches to the running process, fast forwards to
the region of interest and outputs values of general registers and related memory addresses into a
file every time the target conditional branch instructions or memory load instructions are executed
by the instrumented application. We use SPECint 2006 to evaluate our proposal. This is a standard
benchmark suite commonly used to evaluate hardware and software system performance.

4.2 EXPERIMENTAL SETUP

We train the model on each benchmark independently. The first 70% of snapshots are used for
training, and the last 30% for evaluation. Hyperparameters are reported in the appendix.

4.3 METRICS

To evaluate branch prediction we follow computer architecture research and use mispredictions per
thousand instructions (MPKI) (Jiménez & Lin, 2001; Lee et al., 1997) as a metric. Prefetching is a
harder problem as the predictor needs to accurately predict all bits of a target memory address. A
prediction with even 1 bit off, especially in the high bits, is an error at often distant memory locations.
We evaluate prefetching using complete accuracy, defined as an accurate prediction in all bits.

4.4 MODEL COMPARISONS

We compare our model to three branch predictors. The first is a bimodal predictor that uses a 2-bit
saturating counter for each branch instruction to keep track of its branch history (Lee et al., 1997). The
second is a widely used, state-of-the-art perceptron branch predictor (Jiménez & Lin, 2001) that uses
the perceptron learning algorithm on long sequential binary taken/not-taken branch histories (Jiménez,
2016). As a more powerful baseline, we implement an offline non-linear multi-layer perceptron
(MLP). The MLP has two hidden layers and each layer is of the same size as the input layer. A
default SGD solver is used for optimization. The results are shown in Figure 4. We find that NCF
reduces MPKI by 26% and 22% compared to the perceptron and MLP respectively. Note that some
of the benchmarks (libquantum, perlbench) have zero MPKI.

Three baselines are used to evaluate our prefetching model in Figure 5. The first is a stride data
prefetcher (Chen & Baer, 1995) that is good at detecting regular patterns, such as array operations.
The second is a state-of-the-art address correlation (AC) prefetcher that handles irregular patterns
by learning temporal address correlation (Wenisch et al., 2009). LSTM-delta is a learning-based
prefetcher that captures correlation among deltas between addresses (Hashemi et al., 2018). Due to
our binary representation, NCF achieves nearly 100% coverage of all addresses, unlike the 50-80%
reported for the LSTM-prefetcher of (Hashemi et al., 2018). Figure 5 shows that NCF achieves
significantly higher performance than prior work by handling both regular and irregular patterns with
its binary representation. In both Figures 4 and 5, the applications are sorted from most-challenging
to least-challenging. We find that NCF particularly outperforms the traditional baselines on the most
challenging datasets. The traditional baselines in both branch prediction and prefetching leverage
long sequential features. Our NCF does not yet use sequential features or sequential snapshots, we
leave this for future work.

3Our framework supports multitasking in that it handles control-flow and data-flow tasks simultaneously.
However, in our ablation studies, we did not see significant evidence that these tasks currently help each other.
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Figure 4: Evaluation of the branch-prediction task (lower is better).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

mc
f

gc
c

hm
me
r
xa
lan ast

ar

om
ne
tp
p
bz
ip2

h2
64
ref

go
bm
k
sje
ng

lib
qu
an
tu
m

pe
rlb
en
ch

av
era
ge

Ac
cu
ra
cy

(h
ig
he
r
is
be
tt
er
) Stride

AC
LSTM-delta
NCF
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The effectiveness of the GNN depends on the input graph, and we perform ablation studies in the
appendix (Section B.1).

4.5 ALGORITHM CLASSIFICATION

To test if the model has learned about the behavior of the application, we test the NCF representation
on an algorithm classification dataset (Lili Mou, 2016). We randomly select a subset of 15 problems
from this dataset4 and generate inputs for each program. 50 programs are randomly selected from
each class. These are split into 30 for training, 10 for validation (tuning the linear SVM described
below) and 10 for testing.

We generate the graph for each program post-compilation and obtain memory snapshots via our
instrumentation tool. The representation is pre-trained on branch prediction and the resultant embed-
dings are averaged to serve as the final embedding of the program. A linear SVM is trained using the
pre-trained embeddings to output a predicted class.

This yields 96.0% test accuracy, where the state-of-the-art (Ben-Nun et al., 2018) achieves 95.3% on
the same subset. In contrast to Ben-Nun et al. (2018), which pre-trains an LSTM on over 50M lines
of LLVM IR, our embeddings are trained on 203k lines of assembly from the algorithm classification
dataset itself. This shows that branch prediction can be highly predictive of high-level program
attributes, suggesting that it may be fruitful to use dynamic information to solve other static tasks.

4.6 GENERALIZATION TEST ON REPRESENTATIONS

Lastly, we test the effectiveness of binary representations of memory state. There are three major
options for representing dynamic state: categorical, real-valued scalar, and binary. State-of-the-

4We use a subset because the programs had to be modified (by adding appropriate headers, fixing bugs) to
compile and run in order to retrieve the assembly code and dynamic states.
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art data prefetchers tend to use categorical representations. Recent advances in representing and
manipulating numbers for neural arithmetic logic units use scalar representations (Trask et al., 2018).
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Figure 6: Generalization ability of representations.
”Yes” means predictions on all branches of the loop
with a k value are correct.

We evaluate the generalization ability of these
representations using a simple loop. We replace
the constant 10 total iterations of the loop in
Figure 2(a) with a variable k. The control-flow
of the loop decides to stay in or jump out of
the loop by comparing variable i and k. The
branch will be not taken for the first k− 1 times
but will be taken at the kth time. Since tradi-
tional state-of-the-art branch predictors depend
on memorizing past branch history, they will
always mispredict the final branch (as it has al-
ways been taken). Our proposal is able to make
the correct prediction at the kth time.

The challenge for our model is that the value k
can change during program execution, and the
model needs to generalize to unseen values. We
use this example to test the three representations
and create a testing set using k values from 1 to 80. The training set only contains k values from 1 to
40 with a step size of 3 (1, 4, 7, ..., 37). We feed all three representations to MLP predictors that have
one hidden layer of the same size of each input representation (160 for categorical, 2 for scalar and
14 for binary). The results are shown in Figure 6.

The categorical representation can only correctly predict training samples, missing every two out of
three k values, where scalar and binary representations are both able to generalize across a continuous
range, filling the “holes” between training samples. The binary representation generalizes to a larger
range than a scalar representation, as long as the bits have been seen and toggled in the training set.
Since binary is inherently hierarchical (the range increases exponentially with the number of bits),
this advantage is greater in a real world 64-bit machine.

5 RELATED WORK

5.1 LEARNING FROM SOURCE CODE & EXECUTION BEHAVIOR

There is a significant body of work on learning for code, and we refer the reader to Allamanis et al.
(2018) for a survey. We focus on the most relevant methods here. Li et al. (2015) use GNNs to
represent the state of heap memory for a program verification application. Allamanis et al. (2017)
learn to represent source code with GNNs.

Similar to us, Ben-Nun et al. (2018); Mendis et al. (2018) learn representations of code from low-level
syntax, the LLVM intermediate representation (IR) or assmebly, but do not use dynamic information.
We use assembly code instead of IR to maintain a 1:1 mapping between dynamic state and the static
backbone of the graph (since instructions are atomic when executed). Prior work that builds graphs
purely based on static source code disregard the instruction-level dynamics that are created during
program execution, as a single static piece of code can execute in different ways depending on the
provided inputs.

Wang et al. (2017) embed the sequences of values that variables take on during the execution of a
program as a dynamic program embedding. The code is not otherwise used. The states are relatively
simple (variables can take on relatively few possible values) in contrast to our dynamic states that are
“from the wild.” Cummins et al. (2017) embeds code and optionally allows a flat vector of auxiliary
features that can depend on dynamic information. Abstract program execution can also be used as
a basis for learning program representations (DeFreez et al., 2018; Henkel et al., 2018). However,
neither uses concrete program state.

5.2 USING PROGRAM STATE TO GUIDE PROGRAM SYNTHESIS

There are several works that learn from program state to aid program synthesis (Balog et al., 2016;
Parisotto et al., 2016; Devlin et al., 2017; Zohar & Wolf, 2018; Chen et al., 2019; Vijayakumar
et al., 2018; Menon et al., 2013). In particular, Balog et al. (2016) use neural networks to learn a
mapping from list-of-integer-valued input-output examples to the set of primitives needed. All of
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these operate on programs in relatively simple Domain Specific Languages and are learning mappings
from program state to code, rather than learning joint embeddings of code and program state.

5.3 DYNAMIC PREDICTION TASKS

Branch prediction and prefetching are heavily studied in the computer architecture domain. High-
performance modern microprocessors commonly include perceptron (Jiménez & Lin, 2001) or
table-based branch predictors that memorize commonly taken paths through code (Seznec, 2011).

While there has been a significant amount of work around correlation prefetching in academia
(Wenisch et al., 2009; Charney & Reeves, 1995; Roth et al., 1998), modern processors only commonly
implement simple stream prefetchers (Chen & Baer, 1995; Jouppi, 1990; Gindele, 1977). Recent
work has related prefetching to natural language models and shown that LSTMs achieve high accuracy
(Hashemi et al., 2018). However, their categorical representation covers only a limited portion of the
access patterns while the binary representation described here is more general.

6 CONCLUSION

We develop a novel graph neural network that uses both static and dynamic features to learn a rich
representation for code. Since the representation is based on a relational network, it is easy to envision
extensions that include high-level source code into the model or to add new prediction tasks. Instead
of focusing on hardware-realizeable systems with real-time performance, our primary focus in this
paper is to develop representations that explore the limits of predictive accuracy for these problems
with extremely powerful models, so that the improvements can be be eventually be distilled. This is
common in machine learning research, where typically the limits of performance for a given approach
are reached, and then distilled into a performant system, e.g. (Van Den Oord et al., 2016; Oord et al.,
2017). However, benefits can still be derived by using the model to affect program behavior through
compilation hints (Chilimbi & Hirzel, 2002; Jagannathan & Wright, 1996; Wolf et al., 1996), making
this exploration immediately practical. We argue that fusing both static and dynamic features into one
representation is an exciting direction to enable further progress in neural program understanding.
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A HYPERPARAMETERS

The hyperparameters for all models are given in Table 1.

Table 1: Hyperparameters for models.

Fused GGNN

input feature size 64
hidden size 64

propagation steps 5
optimizer adam

learning rate 0.01

MLPs for generalization test
hidden size 2*input size
optimizer adam

L2 regularization 0.0001

SVM for algorithm classification loss square hinge
L2 regularization 0.01

baseline: Bimodal bits 2
Resources Unlimited

baseline: Perceptron history length 64
L2 regularization 0.0001

baseline: stride
Unlimited resources to store all strides

(delta between addresses) for each load,
predicting the most frequent stride

baseline: Address Correlation Unlimited resources to store every pairwise
correlation, predicting the most frequent pair

12



Published as a conference paper at ICLR 2020

B NODE SUB-TYPES

We describe the node sub-types in Table 2. Pseudo-nodes implement operations that are commonly
known as the addressing modes of the Instruction Set Architecture. Note that node sub-types are used
to derive initial node embeddings and for interpretability. They do not factor into the computation of
the graph neural network.

Table 2: Descriptions about sub node types.
Major node

type
Sub-type Description

Pseudo nodes

non-mem-
src

a source operand that does not involve memory load
operation, obtained directly from register(s) and/or constant(s)

mem-src a source operand that involves a memory load
operation, obtained from loading data from a memory location

non-mem-
tgt

a target operand that does not involve memory write operation,
writing directly to a register

mem-tgt a source operand that involves a memory write operation,
writing data to a memory location

base a base that is obtained directly from a variable node

ind-base an indirect base that is obtained from certain operations on the
child variable nodes, like multiplying a register by a constant

offset an offset value that is to be added to a base

Variable nodes reg a register, value is dynamically changed during execution
const a constant, value is specified in the assembly

B.1 ABLATION STUDY

The effectiveness of the GNN depends on the input graph. As pseudo nodes are a large component of
the static graph, we run additional experiments to understand their importance. In particular, we try
to only use the pseudo nodes src and tgt, which are directly connected to instruction nodes. Our data
shows that removing pseudo nodes other than src and tgt and connecting variable nodes directly to
src and tgt has little impact on branch prediction (an MPKI increase of 0.26), but has a large impact
on the data-flow accuracy (accuracy goes down by 12.1%).

Figure 7 shows the sensitivity of task performance to the number of propagation steps during training
for the GNN on omnetpp. We find that prefetching is more sensitive to propagation steps than branch
prediction, and requires 5-8 steps for peak accuracy. Due to the control flow of programs, we find
that 5-8 steps propagates information for 50-60 instruction nodes across the graph’s backbone for
omnetpp (up to 6000 nodes for perlbench).
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