
Under review as a conference paper at ICLR 2020

DISTRIBUTED TRAINING ACROSS THE WORLD

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional synchronous distributed training is performed inside a cluster since it
requires high bandwidth and low latency network (e.g. 25Gb Ethernet or Infini-
band). However, in many application scenarios, training data are often distributed
across many geographic locations, where physical distance is long and latency is
high. Traditional synchronous distributed training cannot scale well under such
limited network conditions. In this work, we aim to scale distributed learning un-
der high-latency network. To achieve this, we propose Delayed and Temporally
Sparse (DTS) update that enables synchronous training to tolerate extreme network
conditions without compromising accuracy. We benchmark our algorithms on
servers deployed across three continents in the world: London (Europe), Tokyo
(Asia), Oregon (North America) and Ohio (North America). Under such challeng-
ing settings, DTS achieves 90× speedup over traditional methods without loss of
accuracy on ImageNet.

1 INTRODUCTION

Deep neural networks have demonstrated much success in solving large-scale machine learning
problems (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016). However, training
deep neural networks may take days or even weeks to converge. In order to enable training in a
reasonable time, distributed training is an important technique and gains increasing attention (Li
et al., 2014; Dean et al., 2012; Recht et al., 2011; Goyal et al., 2017; Jia et al., 2018). To maintain a
good scalability, a low latency and high bandwidth network is essential for most modern distributed
systems. Existing frameworks (Chen et al., 2015; Xing et al., 2015; Moritz et al., 2015; Abadi et al.,
2015; Akiba et al., 2017; Paszke et al., 2017; Sergeev & Del Balso, 2018) all require high-end network
infrastructure such as 25Gbps Ethernet or Infiniband where bandwidth is as large as 10 to 100 Gbps
and latency is as small as 1 us.

16x4 = 64 cards, batch size 32

latency(ms) speed SSGD DTS ECD-PSGD ASGD FedAvg
0 151 0.79 0.7935 0.7994

1 141 0.73 0.7907 0.7829

5 130 0.68 0.7878 0.7677

10 119 0.62 0.7816 0.7607

50 62.2 0.32 0.7866 0.70 0.68 0.7441

100 34.2 0.18 0.7853 0.7370

500 7.46 0.04 0.7812 0.5179

1000 3.73 0.02 0.7721 0.3764

Sc
al

ab
ili

ty

0.00

0.23

0.45

0.68

0.90

Network Latency (ms)
0 1 5 10 50 100 500 1000

SSGD DTS ECD-PSGD
ASGD FedAvg

16x4 = 64 cards, batch size 32-1

latency(ms) speed SSGD DTS ECD-PSGD
0 151 0.79 0.7935

1 141 0.73 0.7907

5 130 0.68 0.7878

10 119 0.62 0.7816

50 62.2 0.32 0.7866 0.70

100 34.2 0.18 0.7853

500 7.46 0.04 0.7812

1000 3.73 0.02 0.7721

Sc
al

ab
ili

ty

0.00

0.23

0.45

0.68

0.90

Network Latency (ms)
0 1 5 10 50 100 500 1000

SSGD

Figure 1: DTS maintains a good scala-
bility when network latency increases,
while the performance of conventional
algorithms degrades quickly.

Bandwidth is easy to increase (e.g. stacking hardware) but
latency is hard to improve (physical limits). For example,
if we have two servers located at Shanghai and Boston
respectively, even at the speed of light and direct air dis-
tance, it still takes 78ms∗ to send and receive a packet. In
real world scenario, the latency can be only worse (around
700ms) because indirect routing between internet service
providers (ISP) and queuing delay in switches. Such high
latency cause severe scalability† issue for distributed train-
ing. As shown in Fig. 1, traditional distributed training
algorithm scales poorly under such large latency.

In many scenarios, the training data involves privacy-
sensitive information, such as personal medical his-
tory (Jochems et al., 2016; 2017) and keyboard input his-
tory (McMahan et al., 2016; Konen et al., 2016; Bonawitz
et al., 2019), thus cannot be centralized to a data center
due to security and legacy concerns (GDPR, 2016). When datasets are distributed across many

∗11, 725km × 2/(3× 108m/s) = 78.16ms. Information collected from Google Maps.
†If a system can achieve M times speedup on N machines, the scalability is defined as M/N .

1

Under review as a conference paper at ICLR 2020

London

TokyoCalifornia
Ohio

277m

 63Mbps
17Mbp
183ms

140ms
23Mbp35ms

13Mbp

Table 1-1-1

Latency Bandwidth Scalability

Inside 3 25600 819.2

Across 158750 29 8.192

1

1,000

1,000,000

Latency (us) Bandwidth (Mbps) Scalability (1024 GPUs)

Across the world Inside a cluster

London

TokyoOregon
Ohio

102ms

210ms
97ms

70ms

Table 1-1

Latency Scalability

Across the world 3 2274

Inside a cluster 479000 23.32

Latency Speed

23

479,000

2,274

3

Inside a cluster Across the world

159,666x longer 98x worse

µs

µs

img/s

img/s

Figure 2: Network conditions across different continents (Left) and the comparison between connec-
tions inside a cluster (Right). Different from training inside a data center, long-distance distributed
training suffers from high latency, which proposes a severe challenge to scale across the world.

locations across public clouds, private clusters and even edge devices, it is impossible to setup a low
latency network under long-distance connections and thereby hurts the scalability of training.

In this work, we enable scalable distributed training across different geographical locations with
long distance and high latency network connection. We propose Delayed Update to tolerate latency
by putting off the synchronization barrier to a later iteration; we also propose Temporally Sparse
Update to amortize the latency and alleviate congestion by reducing the synchronization frequency.
To ensure no loss of accuracy, we design a novel error compensation to overcome the staleness for
both vanilla and momentum SGD. We focus on the widely adopted synchronous update using data
parallelism. As shown in Fig. 1, DTS can maintain high scalability even when latency is as high as
1000ms. This result is also better than existing state of art technologies such as ECD-PSGD (results
copied directly from their original paper (Tang et al., 2018a))

We benchmark our DTS under a challenging settings: training a deep neural network on four AWS
P3 instances located in different continents of the world (Fig. 2). The measured latency is as large
as 277ms (compared to internal latency 2us). In this case, the naive distributed synchronous SGD
(SSGD) can only achieve a poor scalability of 0.008. It means in this setting, distributed training with
100 servers is even slower than single machine (0.8 v.s. 1.0). Meanwhile DTS achieves scalability of
0.72 without compromising the accuracy. In conclusion, our contributions are listed below:

• We propose delayed update to tolerate the latency and temporally sparse update to amortize
the latency. While preserving the accuracy, delayed update tolerates up to 6 seconds latency
and temporally sparse update reduced the traffic congestion by 20×.
• We theoretically justify the convergence rate of our proposed algorithms. We show that both

algorithms can be as fast original SGD while scaling well under high latency.
• With servers and data distributed in four different countries across the world, we can train

ResNet-50 on ImageNet with scalability. To our best knowledge, DTS is the first work that
can achieve scalable synchronous distributed training under such high latency.

2 RELATED WORK

Distributed Learning becomes ever more important as the sizes of both datasets and models increase.
Many studies have been made to explore the efficiency, both at the algorithm level (Li et al., 2014;
Dean et al., 2012; Recht et al., 2011; Goyal et al., 2017; Jia et al., 2018) and at the framework
level (Chen et al., 2015; Akiba et al., 2017; Abadi et al., 2015; Paszke et al., 2017; Sergeev &
Del Balso, 2018). In most of distributed algorithms, each node performs computation and exchange
updates through network. A key component to improve scalability is to reduce the communication-to-
computation ratio. The communication cost is determined by latency and bandwidth. Conventional
studies focus on reducing bandwidth requirements as the latency of internal traffic is usually low.

Gradient quantization / compression has been proposed to reduce the data to be transferred. One-
bit gradient gradient (Seide et al., 2014) achieves 10× speedup using 20 GPUs on text-to-speech task.
QSGD (Alistarh et al., 2016) and Terngrad (Wen et al., 2017) further improves the trade-off between
accuracy and gradient precision. But the theoretical limit of the quantization cannot go beyond 32. To
overcome the limitation, gradient sparsification using predefined static threshold (Strom, 2015; Aji &

2

Under review as a conference paper at ICLR 2020

Heafield, 2017) and dynamic compression ratio (Chen et al., 2018) demonstrate that 99% gradients
can be pruned with negligible degradation on model performance. (Sattler et al., 2018) combines
both quantization and compression to push the ratio to a new level. DGC (Lin et al., 2017) and
DoubleSequeeze (Tang et al., 2019) explore how to compensate the error to preserve the accuracy
better. The convergence of quantization and compression is also discussed in (Tang et al., 2019; Jiang
& Agrawal, 2018; Alistarh et al., 2018). However, latency remains an issue, especially when servers
are not in the same physical location.

Learning on decentralized data has become increasingly popular recently as the growing awareness
of data privacy (GDPR, 2016). For example, Federated Learning (Google, 2017) aim to jointly train
a model without centralizing the data and have been used to train models for medical treatments
across multiple hospitals (Jochems et al., 2016), analyze patient survival situations from various coun-
tries (Jochems et al., 2017) and build predictive keyboards to improve typing experience (McMahan
et al., 2016; Google, 2017; Bonawitz et al., 2019). However, existing federated learning works do not
scale well under high latency network. An orthogonal exploration is Decentralized Training where
only partial synchronization is performed in each update, such as AD-PSGD (Lian et al., 2017) and
D2 (Tang et al., 2018b). None of them has been evaluated on large learning tasks yet.

Asynchronous SGD (ASGD) is derived from (Tsitsiklis et al., 1986) and has advantages in unstable
latency and fault tolerance. Different from synchronous SGD (SSGD), ASGD relaxes synchronization
by allowing training on inconsistent models and powers many successful applications such as
HOGWILD! (Recht et al., 2011), BUCKWILD! (De Sa et al., 2015) and dist-belief (Dean et al.,
2012). However, most of them are implemented through parameter server (Dean et al., 2012; Chilimbi
et al., 2014; Li et al., 2014) and leads to problems like communication congestion and resource
congestion when scaling up. Moreover, training on inconsistent models leads to different behaviors
compared to training on a single device. Though there are studies discussing the convergences (Recht
et al., 2011; De Sa et al., 2015) and showing that ASGD converges as good as SSGD (Lian et al.,
2015), synchronous SGD (SSGD) is usually preferred in practice (Goyal et al., 2017; Sun et al., 2019)
because it has consistent behaviors when increasing the number of machines and therefore is easy to
develop and deploy.

3 APPROACH

To motivate this section, we first review the mechanism of synchronous distributed training: at each
step, each node will first compute gradients locally, then they wait for the collective operation to
transmit gradients to each other to calculate the average. They use the averaged gradient to update the
weight and continue to the next step. As shown in right of Fig. 3a, when the communication increases
, the whole training process would be drastically slowed down.

To address the problem, our proposed algorithm contains two parts: delayed update (Fig. 3b) and
temporally sparse update (Fig. 3c). With the delayed update, instead of waiting for average gradients
to come back, it puts off the synchronization barrier to steps later to tolerate the latency. With the
temporally sparse update, the synchronization frequency is reduced to amortize latency.

Throughout the paper, we use the following notions:

• γ: learning rate.
• t: iteration steps that the synchronization bar-

rier is delayed.
• p: iteration steps between temporally sparse

update intervals.
• u(i,j): momentum at iteration i on worker j.

• u′(i,j): error compensated momentum at itera-
tion i on worker j.

• w(i,j): model weights at iteration i
on worker j.

• w′(i,j): error compensated weights at
iteration i on worker j.

• ∇w(i,j): local gradients at iteration
i on worker j.

• ∇w(i): global averaged gradients at
iteration i.

3.1 DELAYED UPDATE
In modern implementations of vanilla SSGD, the transmission is partially pipelined with back-
propogration: Synchronizing gradients of nth layer can be performed simultaneously with back-
propagating (n − 1)th layer. However, it is not enough to cover communication since latency on

3

Under review as a conference paper at ICLR 2020

Environment Agent
Channel  
Pruning

Policy gradient
Deep-Q Network

Actor Critic

Actions:
sparsity for each layer

Observations / Reward:
 accuracy, FLOPs…

Hardware

Latency

Xxx xxx

1
1

2
2

3
3

4
4

1 2 3 4

T1

T1

T3

T3
1

T2

T2
2 3

T4

T4
4

T1

T1

T3

T3

T2

T2
1 2

T4

T4
3

T1

T1

T2

T2

T3

T3

1
2

T4

T4

3
4

:Computation :Synchronization Barrier :Locally update :Send gradients to other

(a) Synchronous distributed learning.

Environment Agent
Channel  
Pruning

Policy gradient
Deep-Q Network

Actor Critic

Actions:
sparsity for each layer

Observations / Reward:
 accuracy, FLOPs…

Hardware

Latency

Xxx xxx

1
1

2
2

3
3

4
4

1 2 3 4

T1

T1

T3

T3
1

T2

T2
2 3

T4

T4
4

T1

T1

T3

T3

T2

T2
1 2

T4

T4
3

T1

T1

T2

T2

T3

T3

1
2

T4

T4

3
4

:Computation :Synchronization Barrier :Locally update :Send gradients to other

(b) Synchronous distributed learning with delayed update.

Environment Agent
Channel  
Pruning

Policy gradient
Deep-Q Network

Actor Critic

Actions:
sparsity for each layer

Observations / Reward:
 accuracy, FLOPs…

Hardware

Latency

Xxx xxx

1
1

2
2

3
3

4
4

1 2 3 4

T1

T1

T3

T3
1

T2

T2
2 3

T4

T4
4

T1

T1

T3

T3

T2

T2
1 2

T4

T4
3

T1

T1

T2

T2

T3

T3

1
2

T4

T4

3
4

:Computation :Synchronization Barrier :Locally update :Send gradients to other

(c) Synchronous distributed learning with temporally sparse update.

Figure 3: The visualization of our proposed techniques (Left) and the execution pipeline (Right).
Yellow lines and blocks indicate communication, while green ones indicate computation. Delayed
update covers communication by computation and requires the same number of synchronization.
Temporally sparse reduces the synchronization frequency and improve the amortized latency.

long-distance connection is usually larger (≥ 100ms) than propagating a layer (≈ 11ms). To relax
the limitation, we design delayed update to put off the the synchronization barrier by n steps as shown
in Fig. 3b. To ensure minimal loss on accuracy, we modify the gradient update formula with error
compensations.

To understand, we start with vanilla SGD: Consider a worker with index j, the weights at timestamp
n during distributed training are derived via

w(n,j) = w(n−1,j) − γ∇w(n−1) = w(0,j) − γ
n−1∑
i=0

∇w(i) (1)

where ∇w(n−1) is the averaged gradients calculated by gathering all local gradients ∇w(n−1,j). In
SSGD, the synchronization has to finish before (n+ 1)th forwarding. In delayed update, we delay
the barrier to (n+ t)th iteration and because of the delay, ∇w(n−1) is not received at timestamp n.
We use local gradients to update instead.

w(n,j) = w(n−1,j) − γ∇w(n−1,j) (2)

Meanwhile, stale gradients ∇w(n−t) arrive. At timestamp n − t, we performed the gradient step
using local gradients∇w(n−t,j), which should be the global averaged∇w(n−t) in SSGD. We correct
the mismatch caused by replacing ∇w(n−t,j) with ∇w(n−t). From Eq. 1, it adds a compensation
term, which is the difference of two gradients.

w′(n,j) = w(n−1,j) − γ∇w(n−1,j)︸ ︷︷ ︸
local gradients

−γ(∇w(n−t) −∇w(n−t,j)︸ ︷︷ ︸
error compensation

)

= w(n,j) − γ(∇w(n−t) −∇w(n−t,j))

(3)

Next, we consider momentum SGD. With momentum m, the weight at timestamp n is updated by

u(n,j) = mu(n−1,j) +∇w(n,j) w(n,j) = w(n−1,j) − γu(n−1,j) (4)

4

Under review as a conference paper at ICLR 2020

We rewrite the cumulative form to general form

u(n,j) =

n∑
i=0

mi∇w(n−i,j)

=

n∑
i=0

mn−i∇w(i,j)

(5)

w(n,j) = w(0,j) − γ
n−1∑
i=0

u(i,j)

= w(0,j) − γ
n−1∑
i=0

i∑
k=0

mi−k∇w(k,j)

= w(0,j) − γ
n−1∑
i=0

n−1−i∑
k=0

mk∇w(i,j)

(6)

Then, we can derive the compensated momentum

u′(n,j) = mu(n−1,j) +∇w(n−1,j) +mt(∇w(n−t) −∇w(n−t,j))

= u(n,j) +mt(∇w(n−t) −∇w(n−t,j))
(7)

and weights similarly

w′(n,j) = w(n−1,j) − γu(n−1,j) − γ
t−1∑
k=0

mk(∇w(n−t) −∇w(n−t,j))

= w(n,j) − γ
t−1∑
k=0

mk(∇w(n−t) −∇w(n−t,j))

(8)

In original synchronous stochastic gradient descent (SSGD), every worker receives averaged gradients
from n− 1 at timestamp n. This requires collective operation (e.g. Allreduce) to execute quickly;
otherwise, it will slow down the training process. In delayed update, the barrier of the collective
operation is moved from timestamp n to n+ t− 1. It means as long as the gradients are transmitted
within t× Tcompute, the training is not blocked. To put some real numbers, assume we are training
ResNet-50 on Nvidia Tesla V100, each step takes around 300ms. If we delay the update by 20 steps,
even with latency as large as 6 seconds, the communication still can be fully covered by computations.
We attach the proof of convergence in Appendix A.2.1 and show this is as fast as SSGD.

3.2 TEMPORALLY SPARSE UPDATE

Delayed update provides a good solution to tolerate latency. However, there still remains two issues
and network congestion is the first one. In the original SSGD, only one transmission is performed
during one iteration. But when using delayed update, there can be up to t transmissions at the same
time. Without a special hacking to low-level network driver, gradients sent earlier may arrive later,
which is not what we want. The second one is latency variance. In real world network, especially for
those long-distance connections, the latency varies in a large range. Even though the average latency
is small, some accidentally high latency can slow the system.

To address, we adapt temporally sparse update to reduce the communication frequency and design
corresponding error compensation to guarantee the accuracy. As demonstrated in Fig. 3c, temporally
sparse update only synchronizes for every p steps. For those steps where synchronization is not
performed, each worker updates its model with local gradients. For those steps where synchronization
is performed, each worker calculates error compensations based averaged information. As a result,
the networking congestion is alleviated and the networking latency is amortized across multiple local
update steps.

For vanilla SGD, like the delayed update, we can derive the compensation term for temporally sparse
update from Eq. 1, which is the difference between accumulated gradients. Note the compensation in
temporally sparse update only applies when n (mod p) ≡ 0.

w′(n,j) = w(n,j) − γ(
n−1∑
i=n−p

∇w(i) −
n−1∑
i=n−p

∇w(i,j)) (9)

5

Under review as a conference paper at ICLR 2020

Bandwidth Non-computing time
Synchronous SGD 2||w||/Ttraining Tcommunicate − Toverlap
Delayed Update (t) 2||w||/Ttraining max(0, Tcommunicate − Toverlap − t× Tcompute)

Temporal Sparsity (p) 4||w||/(p× Ttraining) (Tcommunicate − Toverlap)/p
Delayed Update (t) +
Temporal Sparsity (p)

4||w||/(p× Ttraining) max(0, (Tcommunicate − Toverlap − t× Tcompute))/p

Table 1: The networking requirements for different training strategies.

For SGD with momentum acceleration, based on accumulated gradients is not enough to compensate
both∇w(n,j) and u(n,j). We need to transmit an extra term to correct the momentum:

u′(n,j) = u(n,j) + (

n−1∑
i=n−p

mn−i∇w(i) −
n−1∑
i=n−p

mn−i∇w(i,j))

w′(n,j) = w(n,j) − γ(
n−1∑
i=n−p

n−1−i∑
k=0

mk∇w(i) −
n−1∑
i=n−p

n−1−i∑
k=0

mk∇w(i,j))

= w(n,j) − γ(
n−1∑
i=n−p

i∑
k=n−p

mi−k∇w(k) −
n−1∑
i=n−p

i∑
k=n−p

mi−k∇w(k,j))

(10)

Let S(i,j) =
∑i
k=n−pm

i−k∇w(k,j). Note S(i+1,j) = mS(i,j) + ∇w(i+1,j) and S(n−p+1,j) =
∇w(n−p,j), the formula can be written as:

u′(n,j) = u(n,j) + (S(n) − S(n,j))

w′(n,j) = w(n,j) − γ(
n−1∑
i=n−p

S(i) −
n−1∑
i=n−p

S(i,j))
(11)

Note temporally sparse update is different from gradient accumulation (forward and backward
N times, accumulate the gradients and optimizer steps only 1 time). Gradient accumulation is
equivalent to increasing the batch size and requires to adjust learning rate and the parameters of batch
normalization to ensure smooth convergence. Temporally sparsity updates model every iteration and
compensate error every N steps. It does not require any changes to the hyper-parameters. We prove
the convergence of temporally sparse update in Appendix A.2.2 and demonstrate that it enjoys the
same convergence rate as SSGD.

3.3 DELAYED AND TEMPORALLY SPARSE UPDATE

The delayed technique and temporally sparse update can be combined together. The compensation
formulas for vanilla SGD is

w′(n,j) = w(n,j) − γ(
n−t−1∑
i=n−t−p

∇w(i) −
n−t−1∑
i=n−t−p

∇w(i,j)) (12)

and for momentum SGD is

u′(n,j) = u(n,j) +mt(Sn−t − S(n−t,j))

w′(n,j) = w(n,j) − γmt(

n−t−1∑
i=n−t−p

Si −
n−t−1∑
i=n−t−p

S(i,j))
(13)

Original ring allreduce transfers 2||w|| packets (Thakur et al., 2005). Though temporally sparse
update doubles data transferred, the temporal sparsity t is always larger than 2. As a consequence,
combing two methods can further improve scalability under challenging networking (Tab. 1).

6

Under review as a conference paper at ICLR 2020

D, T, D + T
Training curve

| Scalability v.s. latency (same
machine)

| Scalability v.s. machine (same
latency)

16x4 = 64 cards, batch size 32

latency(ms
)

speed Original delay=4 delay=8 delay=12 delay=16 delay=20

0 151 0.79 0.7981 0.7935 0.7935 0.7978 0.7935

1 141 0.73 0.7917 0.7907 0.7907 0.7907 0.7907

5 130 0.68 0.7878 0.7892 0.7892 0.7892 0.7878

10 119 0.62 0.7815 0.7816 0.7816 0.7816 0.7816

50 62.2 0.32 0.7793 0.7866 0.7866 0.7866 0.7866

100 34.2 0.18 0.7726 0.7853 0.7853 0.7853 0.7853

500 7.46 0.04 0.73 0.7812 0.7812 0.7812 0.7812

1000 3.73 0.02 0.53 0.7321 0.7790 0.7789 0.7721

5000 1 0.01 0.03 0.45 0.4510 0.5355 0.7321

Sc
al

ab
ili

ty

0.0

0.2

0.5

0.7

0.9

Network latency (ms)
0 1 5 10 50 100 500 1000 5000

Original delay=8
delay=12 delay=20

16x4 = 64 cards, batch size 32-1

latency(ms) original Temporal
Sparsity=4 Temporal=8 Temporal=12 Temporal=16 Temporal=20

0 0.7994 0.8053 0.8399 0.8319 0.8639

1 0.7829 0.8054 0.8277 0.8310 0.8523

5 0.7677 0.8090 0.8216 0.8194 0.8436

10 0.7607 0.7994 0.8085 0.8183 0.8328

15 0.7573 0.7895 0.8120 0.8168 0.8286

20 0.7529 0.7876 0.8112 0.8172 0.8263

25 0.7533 0.7826 0.8108 0.8063 0.8261

50 0.7441 0.7820 0.8081 0.8085 0.8189

100 0.7370 0.7806 0.7841 0.8072 0.8127

150 0.6883 0.7561 0.7750 0.8026 0.8129

200 0.6729 0.7330 0.7739 0.7966 0.8043

250 0.6371 0.7261 0.7769 0.7588 0.7924

500 0.5179 0.6460 0.7135 0.7333 0.7529

1000 0.3764 0.5132 0.5959 0.6364 0.6581

1500 0.2905 0.4330 0.5049 0.5711 0.6157

2000 0.2390 0.3696 0.4607 0.5115 0.5548

2500 0.2011 0.3234 0.4080 0.4610 0.5098

5000 0.111 0.2123 0.2656 0.3143 0.3604

Sc
al

ab
ili

ty

0

0.225

0.45

0.675

0.9

Network Latency (ms)
0 1000 2000 3000 4000 5000 6000

Temporal=8 Temporal=12 Temporal Sparsity=4
Temporal=16 Temporal=20

0

0.2

0.4

0.6

0.8

latency=1000ms-1

Nodes ideal L=0 d=4, t=4 delay=8,
temporal=

delay=12,
t=8

delay=20,
t=12

4 4 7 8 8 8 8

8 8 14 15 15 16 16

16 16 27 30 30 31 31

32 32 55 58 59 61 63

64 64 110 91 116 121 123

latency=1000ms-1-1

Nodes Nodes D=4, T=4 (200ms) D=20, T=12
(200ms) SSGD (0ms) SSGD (200ms) Ideal

0 0 0 0 0

4 1 0.8 0.8 0.8 1 1

8 2 1.5 1.5 1.6 0.016 2

16 4 3 3 3.1 0.030 4

32 8 5.8 5.9 6.1 0.066 8

64 16 9.1 11.6 12.1 0.128 16

Sc
al

ab
ili

ty

0

4

8

12

16

Number of servers

0 4 8 12 16

D=4, T=4 (200ms) D=20, T=12 (200ms)
SSGD (0ms) SSGD (200ms)
Ideal

16x4 = 64 cards, batch size 32-1-1

latency(ms) Original Temporal
Sparsity=4

Temporal
Sparsity=8

Temporal
Sparsity=12

Temporal
Sparsity=16

Temporal
Sparsity=20

0 0.79 0.7994 0.8053 0.8399 0.8319 0.8639

1 0.76 0.7829 0.8054 0.8277 0.8310 0.8523

5 0.68 0.7677 0.8090 0.8216 0.8194 0.8436

10 0.62 0.7607 0.7994 0.8085 0.8183 0.8328

50 0.32 0.7441 0.7820 0.8081 0.8085 0.8189

100 0.18 0.7370 0.7806 0.7841 0.8072 0.8127

500 0.04 0.5179 0.6460 0.7135 0.7333 0.7529

1000 0.02 0.3764 0.5132 0.5959 0.6364 0.6581

5000 0.01 0.111 0.2123 0.2656 0.3143 0.3604

Table 2

with load balance balanced without load
balance

unbalanced

0.9 6.24667472793229 0.9 5.53935234827364

0.85 5.23536863440588 0.85 4.56400742115028

0.8 4.41746119970927 0.8 3.73158046807281

0.7 3.15048025613661 0.7 2.71773154115264

0.6 2.42040902382458 0.6 2.15947329919532

0.5 1.95871011772735 0.5 1.79981186635543

0.4 1.64360026725208 0.4 1.54608167357505

0.3 1.41571093846344 0.3 1.36450079239303

0.2 1.28799022663243 0.2 1.28212446485078

0 1.00005807538185 0 1.00005807538185

Table 2-1

L2 regularization
w/o retrain

Accuracy Loss w/
o Retrain [L2 reg.]

L1 regularization
w/o retrain

L1 regularization
w/ retrain

L2 regularization
w/ retrain

L2 regularization
w/ iterative prune
and retrain

0 0 0 0 0 0 0 0 0 0.875 0.0006

0.46 0.3351 -0.0002 0.3351 0 0.3351 0.000139 0.3351 0 0.888888888888889 0.0003

0.72 0.4991 -0.0011 0.4991 -0.0008 0.4991 0.0000389999999999002 0.4991 0.0004 0.9 -0.0008

1.05 0.6657 -0.0092 0.6657 -0.0027 0.6657 -0.00126100000000007 0.6657 0.0018 0.916666666666667 -0.0033

1.27 0.7494 -0.0216 0.7494 -0.0064 0.7494 -0.00216100000000008 0.7494 0.0015 0.928571428571429 -0.006

1.44 0.8 -0.0407 0.8 -0.0125 0.8 -0.0035 0.8 0.0003 0.9375 -0.0104

1.58 0.8335 -0.0739 0.8335 -0.021 0.8335 -0.0057 0.8335 -0.0017 0.94705 -0.0199

1.7 0.8569 -0.119 0.8569 -0.0298 0.8569 -0.00806099999999998 0.8569 -0.00458100000000006 0.95736 -0.042

1.81 0.8749 -0.1875 0.8749 -0.0443 0.8749 -0.010661 0.8749 -0.0081810000000001 0.963 -0.06

2.0 0.899 -0.3617 0.899 -0.0896 0.899 -0.018 0.899 -0.0158

2.27 0.9299 -0.6365 0.9299 -0.3292 0.9299 -0.0413 0.9299 -0.0388

2.78 0.95 -0.7916 0.95 -0.7552 0.95 -0.115561 0.95 -0.088381

A
cc

ur
ac

y
Lo

ss

-4.5%
-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%
0.5%

Parametes Pruned Away

40% 50% 60% 70% 80% 90% 100%

L2 regularization w/o retrain L1 regularization w/o retrain
L1 regularization w/ retrain L2 regularization w/ retrain
L2 regularization w/ iterative prune and retrain

Sc
al

ab
ili

ty

0.0

0.2

0.5

0.7

0.9

Network latency (ms)
0 1 5 10 50 100 500 1000 5000

Original Temporal Sparsity=4 Temporal Sparsity=8
Temporal Sparsity=12 Temporal Sparsity=16 Temporal Sparsity=20

Delay=4
delay=16

(a) The learning curve with different delay steps and scalability under various latency.

D, T, D + T
Training curve

| Scalability v.s. latency (same
machine)

| Scalability v.s. machine (same
latency)

16x4 = 64 cards, batch size 32

latency(ms
)

speed Original delay=4 delay=8 delay=12 delay=16 delay=20

0 151 0.79 0.7981 0.7935 0.7935 0.7978 0.7935

1 141 0.73 0.7917 0.7907 0.7907 0.7907 0.7907

5 130 0.68 0.7878 0.7892 0.7892 0.7892 0.7878

10 119 0.62 0.7815 0.7816 0.7816 0.7816 0.7816

50 62.2 0.32 0.7793 0.7866 0.7866 0.7866 0.7866

100 34.2 0.18 0.7726 0.7853 0.7853 0.7853 0.7853

500 7.46 0.04 0.73 0.7812 0.7812 0.7812 0.7812

1000 3.73 0.02 0.53 0.7321 0.7790 0.7789 0.7721

5000 1 0.01 0.03 0.45 0.4510 0.5355 0.7321

Sc
al

ab
ili

ty

0.0

0.2

0.5

0.7

0.9

Network latency (ms)
0 1 5 10 50 100 500 1000 5000

Original delay=4 delay=8
delay=12 delay=16 delay=20

16x4 = 64 cards, batch size 32-1

latency(ms) original Temporal
Sparsity=4 Temporal=8 Temporal=12 Temporal=16 Temporal=20

0 0.7994 0.8053 0.8399 0.8319 0.8639

1 0.7829 0.8054 0.8277 0.8310 0.8523

5 0.7677 0.8090 0.8216 0.8194 0.8436

10 0.7607 0.7994 0.8085 0.8183 0.8328

15 0.7573 0.7895 0.8120 0.8168 0.8286

20 0.7529 0.7876 0.8112 0.8172 0.8263

25 0.7533 0.7826 0.8108 0.8063 0.8261

50 0.7441 0.7820 0.8081 0.8085 0.8189

100 0.7370 0.7806 0.7841 0.8072 0.8127

150 0.6883 0.7561 0.7750 0.8026 0.8129

200 0.6729 0.7330 0.7739 0.7966 0.8043

250 0.6371 0.7261 0.7769 0.7588 0.7924

500 0.5179 0.6460 0.7135 0.7333 0.7529

1000 0.3764 0.5132 0.5959 0.6364 0.6581

1500 0.2905 0.4330 0.5049 0.5711 0.6157

2000 0.2390 0.3696 0.4607 0.5115 0.5548

2500 0.2011 0.3234 0.4080 0.4610 0.5098

5000 0.111 0.2123 0.2656 0.3143 0.3604

Sc
al

ab
ili

ty

0

0.225

0.45

0.675

0.9

Network Latency (ms)
0 1000 2000 3000 4000 5000 6000

Temporal=8 Temporal=12 Temporal Sparsity=4
Temporal=16 Temporal=20

0

0.2

0.4

0.6

0.8

latency=1000ms-1

Nodes ideal L=0 d=4, t=4 delay=8,
temporal=

delay=12,
t=8

delay=20,
t=12

4 4 7 8 8 8 8

8 8 14 15 15 16 16

16 16 27 30 30 31 31

32 32 55 58 59 61 63

64 64 110 91 116 121 123

latency=1000ms-1-1

Nodes Nodes D=4, T=4 (200ms) D=20, T=12
(200ms) SSGD (0ms) SSGD (200ms) Ideal

0 0 0 0 0

4 1 0.8 0.8 0.8 1 1

8 2 1.5 1.5 1.6 0.016 2

16 4 3 3 3.1 0.030 4

32 8 5.8 5.9 6.1 0.066 8

64 16 9.1 11.6 12.1 0.128 16

Sc
al

ab
ili

ty

0

4

8

12

16

Number of servers

0 4 8 12 16

D=4, T=4 (200ms) D=20, T=12 (200ms)
SSGD (0ms) SSGD (200ms)
Ideal

16x4 = 64 cards, batch size 32-1-1

latency(ms) Original Temporal
Sparsity=4

Temporal
Sparsity=8

Temporal
Sparsity=12

Temporal
Sparsity=16

Temporal
Sparsity=20

0 0.79 0.7994 0.8053 0.8399 0.8319 0.8639

1 0.76 0.7829 0.8054 0.8277 0.8310 0.8523

5 0.68 0.7677 0.8090 0.8216 0.8194 0.8436

10 0.62 0.7607 0.7994 0.8085 0.8183 0.8328

50 0.32 0.7441 0.7820 0.8081 0.8085 0.8189

100 0.18 0.7370 0.7806 0.7841 0.8072 0.8127

500 0.04 0.5179 0.6460 0.7135 0.7333 0.7529

1000 0.02 0.3764 0.5132 0.5959 0.6364 0.6581

5000 0.01 0.111 0.2123 0.2656 0.3143 0.3604

Table 2

with load balance balanced without load
balance

unbalanced

0.9 6.24667472793229 0.9 5.53935234827364

0.85 5.23536863440588 0.85 4.56400742115028

0.8 4.41746119970927 0.8 3.73158046807281

0.7 3.15048025613661 0.7 2.71773154115264

0.6 2.42040902382458 0.6 2.15947329919532

0.5 1.95871011772735 0.5 1.79981186635543

0.4 1.64360026725208 0.4 1.54608167357505

0.3 1.41571093846344 0.3 1.36450079239303

0.2 1.28799022663243 0.2 1.28212446485078

0 1.00005807538185 0 1.00005807538185

Table 2-1

L2 regularization
w/o retrain

Accuracy Loss w/
o Retrain [L2 reg.]

L1 regularization
w/o retrain

L1 regularization
w/ retrain

L2 regularization
w/ retrain

L2 regularization
w/ iterative prune
and retrain

0 0 0 0 0 0 0 0 0 0.875 0.0006

0.46 0.3351 -0.0002 0.3351 0 0.3351 0.000139 0.3351 0 0.888888888888889 0.0003

0.72 0.4991 -0.0011 0.4991 -0.0008 0.4991 0.0000389999999999002 0.4991 0.0004 0.9 -0.0008

1.05 0.6657 -0.0092 0.6657 -0.0027 0.6657 -0.00126100000000007 0.6657 0.0018 0.916666666666667 -0.0033

1.27 0.7494 -0.0216 0.7494 -0.0064 0.7494 -0.00216100000000008 0.7494 0.0015 0.928571428571429 -0.006

1.44 0.8 -0.0407 0.8 -0.0125 0.8 -0.0035 0.8 0.0003 0.9375 -0.0104

1.58 0.8335 -0.0739 0.8335 -0.021 0.8335 -0.0057 0.8335 -0.0017 0.94705 -0.0199

1.7 0.8569 -0.119 0.8569 -0.0298 0.8569 -0.00806099999999998 0.8569 -0.00458100000000006 0.95736 -0.042

1.81 0.8749 -0.1875 0.8749 -0.0443 0.8749 -0.010661 0.8749 -0.0081810000000001 0.963 -0.06

2.0 0.899 -0.3617 0.899 -0.0896 0.899 -0.018 0.899 -0.0158

2.27 0.9299 -0.6365 0.9299 -0.3292 0.9299 -0.0413 0.9299 -0.0388

2.78 0.95 -0.7916 0.95 -0.7552 0.95 -0.115561 0.95 -0.088381

A
cc

ur
ac

y
Lo

ss

-4.5%
-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%
0.5%

Parametes Pruned Away

40% 50% 60% 70% 80% 90% 100%

L2 regularization w/o retrain L1 regularization w/o retrain
L1 regularization w/ retrain L2 regularization w/ retrain
L2 regularization w/ iterative prune and retrain

Sc
al

ab
ili

ty

0.0

0.2

0.5

0.7

0.9

Network latency (ms)
0 1 5 10 50 100 500 1000 5000

temporal sparsity=4
temporal sparsity=16

temporal sparsity=8
temporal sparsity=20

Original
temporal Sparsity=12

(b) The learning curve with different temporal sparsity and scalability under various latency.
Figure 4: Compare the top-1 accuracy and scalability on ImageNet training.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

We evaluate our DTS on image classification task. We studies ResNet-50 (He et al., 2016) on
ImageNet (Deng et al., 2009). ImageNet contains 1.2 million training images and 50,000 vali-
dation images in 1000 classes. We train ImageNet model with momentum SGD using warmup
strategy (Goyal et al., 2017) and cosine anneal learning rate decay (Loshchilov & Hutter, 2016)
with 120 epochs. Standard data augmentations random crop and flip are adapted. We set the initial
learning rate 0.0125 for which grows linearly w.r.t number of GPUs. For a fair comparison, the
training settings are set the same among all experiments.

When performing ablation studies under different latency, we synthesis the network condition using
netem‡. When training across the world, the limited network is benchmarked using qperf §. We
implement DST in PyTorch framework (Paszke et al., 2017) and adapt Horovod (Sergeev & Del Balso,
2018) as the distributed training backend. To make results reproducible, we conduct our experiment
on 16 standard Amazon p.large EC2 instances with eight Nvidia Tesla V100 on each and will release
the codebase when less anonymous.

4.2 RESULTS OF DELAYED UPDATE

Fig. 4a shows the performance and scalability for delayed update with different latency. We start
from delay steps 4 and gradually increase it. The learning curve shows that with our proposed
error compensation delayed update demonstrates robust convergence and comparable performance
compared vanilla SSGD, even when delay interval is as large as 20.

‡https://wiki.linuxfoundation.org/networking/netem
§https://linux.die.net/man/1/qperf

7

https://wiki.linuxfoundation.org/networking/netem
https://linux.die.net/man/1/qperf

Under review as a conference paper at ICLR 2020

Top-1%
Original SGD 76.63

D=4, T=4, C=1% 76.15
D=8, T=8, C=1% 76.32
D=12, T=8, C=1% 76.18

D=20, T=12, C=1% 75.81

(a) Delayed updates preserves the accuracy while tolerate
a large latency. D, T, C indicate delayed update, temporal
sparsity and gradient compression ratio respectively. The
results are evaluated on ImageNet dataset.

D, T, D + T
Training curve

| Scalability v.s. latency (same
machine)

| Scalability v.s. machine (same
latency)

16x4 = 64 cards, batch size 32

latency(ms
)

speed Original delay=4 delay=8 delay=12 delay=16 delay=20

0 151 0.79 0.7981 0.7935 0.7935 0.7978 0.7935

1 141 0.73 0.7917 0.7907 0.7907 0.7907 0.7907

5 130 0.68 0.7878 0.7892 0.7892 0.7892 0.7878

10 119 0.62 0.7815 0.7816 0.7816 0.7816 0.7816

50 62.2 0.32 0.7793 0.7866 0.7866 0.7866 0.7866

100 34.2 0.18 0.7726 0.7853 0.7853 0.7853 0.7853

500 7.46 0.04 0.73 0.7812 0.7812 0.7812 0.7812

1000 3.73 0.02 0.53 0.7321 0.7790 0.7789 0.7721

5000 1 0.01 0.03 0.45 0.4510 0.5355 0.7321

Sc
al

ab
ili

ty

0.0

0.2

0.5

0.7

0.9

Network latency (ms)
0 1 5 10 50 100 500 1000 5000

Original delay=4 delay=8
delay=12 delay=16 delay=20

16x4 = 64 cards, batch size 32-1

latency(ms) original Temporal
Sparsity=4 Temporal=8 Temporal=12 Temporal=16 Temporal=20

0 0.7994 0.8053 0.8399 0.8319 0.8639

1 0.7829 0.8054 0.8277 0.8310 0.8523

5 0.7677 0.8090 0.8216 0.8194 0.8436

10 0.7607 0.7994 0.8085 0.8183 0.8328

15 0.7573 0.7895 0.8120 0.8168 0.8286

20 0.7529 0.7876 0.8112 0.8172 0.8263

25 0.7533 0.7826 0.8108 0.8063 0.8261

50 0.7441 0.7820 0.8081 0.8085 0.8189

100 0.7370 0.7806 0.7841 0.8072 0.8127

150 0.6883 0.7561 0.7750 0.8026 0.8129

200 0.6729 0.7330 0.7739 0.7966 0.8043

250 0.6371 0.7261 0.7769 0.7588 0.7924

500 0.5179 0.6460 0.7135 0.7333 0.7529

1000 0.3764 0.5132 0.5959 0.6364 0.6581

1500 0.2905 0.4330 0.5049 0.5711 0.6157

2000 0.2390 0.3696 0.4607 0.5115 0.5548

2500 0.2011 0.3234 0.4080 0.4610 0.5098

5000 0.111 0.2123 0.2656 0.3143 0.3604

Sc
al

ab
ili

ty

0

0.225

0.45

0.675

0.9

Network Latency (ms)
0 1000 2000 3000 4000 5000 6000

Temporal=8 Temporal=12 Temporal Sparsity=4
Temporal=16 Temporal=20

0

0.2

0.4

0.6

0.8

latency=1000ms-1

Nodes ideal L=0 d=4, t=4 delay=8,
temporal=

delay=12,
t=8

delay=20,
t=12

4 4 7 8 8 8 8

8 8 14 15 15 16 16

16 16 27 30 30 31 31

32 32 55 58 59 61 63

64 64 110 91 116 121 123

latency=1000ms-1-1

Nodes Nodes D=4, T=4 (200ms) D=20, T=12
(200ms) SSGD (0ms) SSGD (200ms) Ideal

0 0 0 0 0

4 1 0.8 0.8 0.8 1 1

8 2 1.5 1.5 1.6 0.016 2

16 4 3 3 3.1 0.030 4

32 8 5.8 5.9 6.1 0.066 8

64 16 9.1 11.6 12.1 0.128 16

0

4

8

12

16

Number of servers

0 4 8 12 16

D=4, T=4 (200ms) D=20, T=12 (200ms)
SSGD (0ms) SSGD (200ms)
Ideal

16x4 = 64 cards, batch size 32-1-1

latency(ms) Original Temporal
Sparsity=4

Temporal
Sparsity=8

Temporal
Sparsity=12

Temporal
Sparsity=16

Temporal
Sparsity=20

0 0.79 0.7994 0.8053 0.8399 0.8319 0.8639

1 0.76 0.7829 0.8054 0.8277 0.8310 0.8523

5 0.68 0.7677 0.8090 0.8216 0.8194 0.8436

10 0.62 0.7607 0.7994 0.8085 0.8183 0.8328

50 0.32 0.7441 0.7820 0.8081 0.8085 0.8189

100 0.18 0.7370 0.7806 0.7841 0.8072 0.8127

500 0.04 0.5179 0.6460 0.7135 0.7333 0.7529

1000 0.02 0.3764 0.5132 0.5959 0.6364 0.6581

5000 0.01 0.111 0.2123 0.2656 0.3143 0.3604

Table 2

with load balance balanced without load
balance

unbalanced

0.9 6.24667472793229 0.9 5.53935234827364

0.85 5.23536863440588 0.85 4.56400742115028

0.8 4.41746119970927 0.8 3.73158046807281

0.7 3.15048025613661 0.7 2.71773154115264

0.6 2.42040902382458 0.6 2.15947329919532

0.5 1.95871011772735 0.5 1.79981186635543

0.4 1.64360026725208 0.4 1.54608167357505

0.3 1.41571093846344 0.3 1.36450079239303

0.2 1.28799022663243 0.2 1.28212446485078

0 1.00005807538185 0 1.00005807538185

Table 2-1

L2 regularization
w/o retrain

Accuracy Loss w/
o Retrain [L2 reg.]

L1 regularization
w/o retrain

L1 regularization
w/ retrain

L2 regularization
w/ retrain

L2 regularization
w/ iterative prune
and retrain

0 0 0 0 0 0 0 0 0 0.875 0.0006

0.46 0.3351 -0.0002 0.3351 0 0.3351 0.000139 0.3351 0 0.888888888888889 0.0003

0.72 0.4991 -0.0011 0.4991 -0.0008 0.4991 0.0000389999999999002 0.4991 0.0004 0.9 -0.0008

1.05 0.6657 -0.0092 0.6657 -0.0027 0.6657 -0.00126100000000007 0.6657 0.0018 0.916666666666667 -0.0033

1.27 0.7494 -0.0216 0.7494 -0.0064 0.7494 -0.00216100000000008 0.7494 0.0015 0.928571428571429 -0.006

1.44 0.8 -0.0407 0.8 -0.0125 0.8 -0.0035 0.8 0.0003 0.9375 -0.0104

1.58 0.8335 -0.0739 0.8335 -0.021 0.8335 -0.0057 0.8335 -0.0017 0.94705 -0.0199

1.7 0.8569 -0.119 0.8569 -0.0298 0.8569 -0.00806099999999998 0.8569 -0.00458100000000006 0.95736 -0.042

1.81 0.8749 -0.1875 0.8749 -0.0443 0.8749 -0.010661 0.8749 -0.0081810000000001 0.963 -0.06

2.0 0.899 -0.3617 0.899 -0.0896 0.899 -0.018 0.899 -0.0158

2.27 0.9299 -0.6365 0.9299 -0.3292 0.9299 -0.0413 0.9299 -0.0388

2.78 0.95 -0.7916 0.95 -0.7552 0.95 -0.115561 0.95 -0.088381

A
cc

ur
ac

y
Lo

ss

-4.5%
-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%
0.5%

Parametes Pruned Away

40% 50% 60% 70% 80% 90% 100%

L2 regularization w/o retrain L1 regularization w/o retrain
L1 regularization w/ retrain L2 regularization w/ retrain
L2 regularization w/ iterative prune and retrain

Sc
al

ab
ili

ty

0.0

0.2

0.5

0.7

0.9

Network latency (ms)
0 1 5 10 50 100 500 1000 5000

Original Temporal Sparsity=4 Temporal Sparsity=8
Temporal Sparsity=12 Temporal Sparsity=16 Temporal Sparsity=20

Sp
ee

du
p

(b) Better speedup and scalability with DTS.
Measured on servers across the world.

Table 2: DTS demonstrates good scalability and accuracy on world-wide high latency training.

In original SSGD and modern deep learning frameworks, though the transmission is partially pipelined
with backpropogration: Synchronizing gradients of nth layer can be performed simultaneously with
back-propagating (n− 1)th layer, it is not enough to fully cover communication since latency on long
distance connection is usually larger (≥ 100ms) than propagating a layer (11ms). By delaying the
synchronization, delayed update provides much more spare time for transmission and thus scales
better. As shown in Fig. 4a, the larger the delayed interval is, the better tolerance towards latency.
The scalability keeps stable until maximum tolerance is exceeded.

4.3 RESULTS OF TEMPORALLY SPARSE UPDATE

The connection of real-world network has many bothering issues such as unstable latency and conges-
tion on routers. Temporally sparse is introduced to amortize these via reducing the synchronization
frequency. The results are shown in Fig. 4b(Left): we start with temporal sparsity 4 and increase to
20. With proposed compensation, the temporally sparse update has a negligible loss on accuracy.
Fig. 4(Right) exhibits how temporally sparse training scales under different network latency. The
scalability degrades slower than because temporally sparse update amortizes the latency.

4.4 DISTRIBUTED TRAINING ACROSS THE WORLD

With two powerful techniques, we are close to our original target of distributed training across world.
To evaluate DTS, we deploy located at four different locations across the world: Tokyo(Japan),
London (U.K), Oregon (U.S.A) and Ohio(U.S.A). The latency information is shown in Fig.2. The
real latency across the ring allreduce is about 479ms through Ethernet. On V100 GPU, ResNet-50
takes around 300ms to forward and backward. Therefore delayed update with steps more than 4 is
already enough to tolerate such a network. In terms of latency variance and network congestion, we
integrate temporally sparse update to alleviate which drastically reduces the bandwidth requirement
by t times. However, there is still a bottleneck on bandwidth for cross-continent connections (e.g.
Tokyo to London). Though theoretically bandwidth is achievable by switching to better internet
service providers, AWS does not provide such an option. As an economical alternative, we adapt deep
gradient compression (Lin et al., 2017) to work through. As shown in Tab. 2a, DTS has little effect on
training accuracy. Meanwhile, DTS demonstrates strong scalability (0.72) under high latency (200ms
between workers) and this performance is close to what conventional algorithms achieved inside a
data center (speedup ratio 0.78 and 1us latency).

5 CONCLUSION

In this paper, we propose two novel delayed update and temporally sparse update methods to scale
synchronous distributed training on servers located at different continents across the world. We
demonstrate that delayed synchronization and temporally sparse update are both accuracy preserving
while tolerate poor network conditions. We believe that our work will open future avenues for a wide
range of decentralized learning applications.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. arXiv
preprint arXiv:1704.05021, 2017.

Takuya Akiba, Keisuke Fukuda, and Shuji Suzuki. ChainerMN: Scalable Distributed Deep Learning
Framework. In Proceedings of Workshop on ML Systems in The Thirty-first Annual Conference
on Neural Information Processing Systems (NIPS), 2017. URL http://learningsys.org/
nips17/assets/papers/paper_25.pdf.

Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Randomized quantization for
communication-optimal stochastic gradient descent. arXiv preprint arXiv:1610.02132, 2016.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. In Advances in Neural Information
Processing Systems, pp. 5973–5983, 2018.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The
Journal of Machine Learning Research, 18(1):8194–8244, 2017.

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In
International conference on machine learning, pp. 699–707, 2016.

Alberto Bietti and Julien Mairal. Stochastic optimization with variance reduction for infinite datasets
with finite sum structure. In Advances in Neural Information Processing Systems, pp. 1623–1633,
2017.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and Kailash Gopalakrish-
nan. Adacomp: Adaptive residual gradient compression for data-parallel distributed training. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. In OSDI, volume 14, pp. 571–582,
2014.

Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified
analysis of hogwild-style algorithms. In Advances in neural information processing systems, pp.
2674–2682, 2015.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231, 2012.

Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization for deep
learning. arXiv preprint arXiv:1812.04529, 2018.

9

http://tensorflow.org/
http://learningsys.org/nips17/assets/papers/paper_25.pdf
http://learningsys.org/nips17/assets/papers/paper_25.pdf

Under review as a conference paper at ICLR 2020

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pp. 1646–1654, 2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Roy Frostig, Rong Ge, Sham M Kakade, and Aaron Sidford. Competing with the empirical risk
minimizer in a single pass. In Conference on learning theory, pp. 728–763, 2015.

GDPR. The eu general data protection regulation (gdpr). 2016.

Google. Towards federated learning at scale: System design. 2017. URL https://ai.
googleblog.com/2017/04/federated-learning-collaborative.html.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang Xie,
Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep learning training system with
mixed-precision: Training imagenet in four minutes. arXiv preprint arXiv:1807.11205, 2018.

Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep learning with
sparse and quantized communication. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31,
pp. 2525–2536. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7519-a-linear-speedup-analysis-of-distributed-deep-learning-with-sparse-and-quantized-communication.
pdf.

Arthur Jochems, Timo M Deist, Johan Van Soest, Michael Eble, Paul Bulens, Philippe Coucke, Wim
Dries, Philippe Lambin, and Andre Dekker. Distributed learning: developing a predictive model
based on data from multiple hospitals without data leaving the hospital–a real life proof of concept.
Radiotherapy and Oncology, 121(3):459–467, 2016.

Arthur Jochems, Timo M Deist, Issam El Naqa, Marc Kessler, Chuck Mayo, Jackson Reeves, Shruti
Jolly, Martha Matuszak, Randall Ten Haken, Johan van Soest, et al. Developing and validating
a survival prediction model for nsclc patients through distributed learning across 3 countries.
International Journal of Radiation Oncology* Biology* Physics, 99(2):344–352, 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pp. 315–323, 2013.

Jakub Konen, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. In NIPS
Workshop on Private Multi-Party Machine Learning, 2016. URL https://arxiv.org/abs/
1610.05492.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Jason D Lee, Qihang Lin, Tengyu Ma, and Tianbao Yang. Distributed stochastic variance reduced gra-
dient methods and a lower bound for communication complexity. arXiv preprint arXiv:1507.07595,
2015.

Lihua Lei and Michael I Jordan. Less than a single pass: Stochastically controlled stochastic gradient
method. arXiv preprint arXiv:1609.03261, 2016.

10

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
http://papers.nips.cc/paper/7519-a-linear-speedup-analysis-of-distributed-deep-learning-with-sparse-and-quantized-communication.pdf
http://papers.nips.cc/paper/7519-a-linear-speedup-analysis-of-distributed-deep-learning-with-sparse-and-quantized-communication.pdf
http://papers.nips.cc/paper/7519-a-linear-speedup-analysis-of-distributed-deep-learning-with-sparse-and-quantized-communication.pdf
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492

Under review as a conference paper at ICLR 2020

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter
server. In 11th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
14), pp. 583–598, 2014.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. In Advances in Neural Information Processing Systems, pp. 2737–2745,
2015.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. arXiv preprint arXiv:1710.06952, 2017.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization.
In Advances in neural information processing systems, pp. 3384–3392, 2015.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887,
2017.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Julien Mairal. Incremental majorization-minimization optimization with application to large-scale
machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan. Sparknet: Training deep networks
in spark. arXiv preprint arXiv:1511.06051, 2015.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in neural information processing systems,
pp. 693–701, 2011.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International conference on machine learning, pp.
314–323, 2016.

Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Sparse binary com-
pression: Towards distributed deep learning with minimal communication. CoRR, abs/1805.08768,
2018. URL http://arxiv.org/abs/1805.08768.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of
the International Speech Communication Association, 2014.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799, 2018.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. arXiv preprint arXiv:1309.2375, 2013a.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013b.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

11

http://arxiv.org/abs/1805.08768

Under review as a conference paper at ICLR 2020

Nikko Strom. Scalable distributed dnn training using commodity gpu cloud computing. In Sixteenth
Annual Conference of the International Speech Communication Association, 2015.

Peng Sun, Wansen Feng, Ruobing Han, Shengen Yan, and Yonggang Wen. Optimizing network
performance for distributed dnn training on gpu clusters: Imagenet/alexnet training in 1.5 minutes.
arXiv preprint arXiv:1902.06855, 2019.

Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression for
decentralized training. In Advances in Neural Information Processing Systems, pp. 7652–7662,
2018a.

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentralized training over
decentralized data. CoRR, abs/1803.07068, 2018b. URL http://arxiv.org/abs/1803.
07068.

Hanlin Tang, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic gradient
descent with double-pass error-compensated compression. In International Conference on Machine
Learning, 2019.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication
operations in mpich. The International Journal of High Performance Computing Applications, 19
(1):49–66, 2005.

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous deterministic
and stochastic gradient optimization algorithms. IEEE transactions on automatic control, 31(9):
803–812, 1986.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in neural
information processing systems, pp. 1509–1519, 2017.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao
Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed machine learning
on big data. IEEE Transactions on Big Data, 1(2):49–67, 2015.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2019.

12

http://arxiv.org/abs/1803.07068
http://arxiv.org/abs/1803.07068

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 CONNECTION TO VARIANCE REDUCTION APPROACH

A lot of recent work has been devoted to the study of variance reduction techniques in convex
optimization, including (Johnson & Zhang, 2013; Shalev-Shwartz & Zhang, 2013b; Xiao & Zhang,
2014; Schmidt et al., 2017; Defazio et al., 2014; Mairal, 2015). The vanilla SVRG algorithm has the
update

wn = wn−1 − η
[
∇fi(wn−1) +∇f(w̃)−∇fi(w̃)

]
, (14)

where w̃ is a snapshot reference point updated every constant iteration. These methods are able to
achieve linear convergence rates for smooth strongly-convex optimization problems, which signif-
icantly improve the sub-linear rate of vanilla SGD. Extension to multiple setting are investigated,
including acceleration (Shalev-Shwartz & Zhang, 2013a; Lin et al., 2015; Allen-Zhu, 2017), stream-
ing (Frostig et al., 2015; Lei & Jordan, 2016), synchronous distributed setting (Lee et al., 2015),
data augmentation (Bietti & Mairal, 2017). Extension of variance reduction approaches to general
non-convex problems has also been studied in (Allen-Zhu & Hazan, 2016; Reddi et al., 2016). Despite
these theoretical progress, variance reduction technique does not appear to be helpful for training
deep neural network (Defazio & Bottou, 2018).

Our proposed method could be viewed as a delayed variant of SVRG in the decentralized setting.
The update (15) in our method mimic the update of vanilla SVRG (14), with the difference that
the average gradient is obtained across machine base on local parameters. This variance reduction
technique empirically stabilized the asynchronous gradients and handle the staleness, which is able
to achieve state-of-the-art performance in modern deep learning setting. Moreover, we obtain close
linear speed up with respect to the number of machine, which is the essential goal of distributed
optimization.

A.2 THEORETICAL JUSTIFICATION

Our proof closely follows the analysis in (Yu et al., 2019). We consider the following non-convex
optimization problem

min
w
f(w) =

1

J

J∑
j=1

fj(w),

where J denotes the number of workers. Moreover, each fj = Eζj [Fj(w, ζj)]. In the empirical
minimization setting, ζj corresponds to a mini-batch sampling strategy and fj could again be
expressed as a finite sum fj = 1

Kj

∑
fkj . Throughout this paper, we assume the optimization

satisfies the following assumptions.
Assumption 1 (L-smooth). Each function fj(x) is L-smooth, i.e. for all x, y ∈ Rd and i ∈ [1, J],

||∇fj(x)−∇fj(y)|| ≤ L||x− y||.

Assumption 2 (Bounded gradients and variances). There exists a positive constant G and σ such
that

Eζj ||∇Fj(w; ζi)||2 ≤ G2,∀w,∀j
Eζj ||∇Fj(w; ζj)−∇fj(w)||2 ≤ σ2,∀w,∀j

We prove that our algorithms have the convergence rate

O(
1√
JN

) +O(
c2J

N
)

where J is the number of workers, N is iterations and c is staleness in our algorithm (t for delayed
steps and d for temporal sparsity). With proper settings, our algorithms are as fast as original SSGD
O(1/

√
JN). The detailed proof follows below.

13

Under review as a conference paper at ICLR 2020

A.2.1 PROOF OF THE CONVERGENCE OF DELAYED UPDATE ALGORITHM

Delayed Update Algorithm

1. Initialize w0 and initialize each worker with w0,j = w0 for j ∈ [1, J].

2. For iteration n = 0, 1, · · ·

On each local worker j, sample a stochastic gradient∇w(n−1,j) and update:
◦ If n < t, update with standard SGD rule:

w(n,j) = w(n−1,j) − γ∇w(n−1,j)

◦ Else:

w(n,j) = w(n−1,j) − γ(∇w(n−1,j) +∇wn−t −∇w(n−t,j)) (15)

where

∇wn−t =
1

J

J∑
j=1

∇w(n−t,j)

3. Output∇w(n) =
1
J

∑J
j=1 w(n,j)

Notably, the delayed update formula can rewritten as

w(n,j) = w0 − γ
n−t∑
i=0

∇wi︸ ︷︷ ︸
invariant of j

−γ
n−1∑

i=n−t+1

∇w(i,j), (Delayed)

where the first quantity is commonly shared among all the workers and the second term corresponds
to local updates.

Lemma A.1. Let (w(i,j)) be the sequence generated on the j-th worker according to Delayed Update
Algorithm, then for any j0 ∈ [1, J]

E
[
‖∇w(n) − w(n,j0)‖

2
]
≤ 4γ2t2G2

Proof. From the delayed update formula Delayed, we have,

E
[
‖∇w(n) − w(n,j0)‖

2
]

= γ2E


∥∥∥∥∥∥ 1J

J∑
j=1

n−1∑
i=n−t+1

∇w(i,j) −
n−1∑

i=n−t+1

∇w(i,j0)

∥∥∥∥∥∥
2


≤ 2γ2E


∥∥∥∥∥∥ 1J

J∑
j=1

n−1∑
i=n−t+1

∇w(i,j)

∥∥∥∥∥∥
2
+ E

[
‖

n−1∑
i=n−t+1

∇w(i,j0)‖
2

]

≤ 2γ2t

J

J∑
j=1

n−1∑
i=n−t+1

E
[∥∥∇w(i,j)

∥∥2]+ 2γ2t

n−1∑
i=n−t+1

E
[
‖∇w(i,j0)‖

2
]

≤ 4γ2t2G2.

14

Under review as a conference paper at ICLR 2020

Theorem A.2. Consider the sequence generated by the Delayed Algorithm, then

1

N

N−1∑
n=0

E[‖∇f(∇w(n))‖2] ≤
2

γN
(f(w0)− f∗) + 4γ2t2G2L2 +

L

J
γσ2.

Proof. By smoothness of f , we have

E[f(∇w(n))] ≤ E[f(∇w(n−1))+ 〈∇f(∇w(n−1)),∇w(n)−∇w(n−1)〉+
L

2
‖∇w(n)−∇w(n−1)‖2]

Note that

∇w(n) = ∇w(n−1) −
γ

J

J∑
j=1

∇w(n−1,j).

We have

E[‖∇w(n) −∇w(n−1)‖2]

= γ2E[‖ 1
J

J∑
j=1

∇w(n−1,j)‖2]

= γ2E[‖ 1
J

J∑
j=1

(∇w(n−1,j) −∇fj(w(n−1,j))‖2] + γ2E[‖ 1
J

J∑
j=1

∇fj(w(n−1,j))‖2]

=
γ2

J2

J∑
j=1

E[‖(∇w(n−1,j) −∇fj(w(n−1,j))‖2] + γ2E[‖ 1
J

J∑
j=1

∇fj(w(n−1,j))‖2]

≤ γ2σ2

J
+ γ2E[‖ 1

J

J∑
j=1

∇fj(w(n−1,j))‖2].

Moreover,

E[〈∇f(∇w(n−1)),∇w(n) −∇w(n−1)]

= − γE[〈∇f(∇w(n−1)),
1

J

J∑
j=1

∇w(n−1,j)]

= − γE[〈∇f(∇w(n−1)),
1

J

J∑
j=1

∇fj(w(n−1,j)]

= − γ

2
E[‖∇f(∇w(n−1))‖2] +

γ

2
E[‖∇f(∇w(n−1))−

1

J

J∑
j=1

∇fj(w(n−1,j)‖2]−
γ

2
E[‖ 1

J

J∑
j=1

∇fj(w(n−1,j))‖2]

Applying the lemma, we have

E[‖∇f(∇w(n−1))−
1

J

J∑
j=1

∇fj(w(n−1,j)‖2]

=E[‖ 1
J

J∑
j=1

(∇fj(∇w(n−1))−∇fj(w(n−1,j))‖2]

≤ 1

J

J∑
j=1

E[‖(∇fj(∇w(n−1))−∇fj(w(n−1,j))‖2]

≤ L2

J

J∑
j=1

‖∇w(n−1) − w(n−1,j)‖2

≤ 4γ2L2t2G2.

15

Under review as a conference paper at ICLR 2020

Thus, combining the above inequalities together with γ ≤ 1
L yields

E[f(∇w(n))]− E[f(∇w(n−1))]

≤ γL2 − γ
2

E[‖ 1
J

J∑
j=1

∇fj(w(n−1,j))‖2]−
γ

2
E[‖∇f(∇w(n−1))‖2] + 2γ3L2t2G2 +

L

2J
γ2σ2

≤ − γ

2
E[‖∇f(∇w(n−1))‖2] + 2γ3L2t2G2 +

L

2J
γ2σ2.

Rearrange the terms yields

E[‖∇f(∇w(n−1))‖2] ≤
2

γ
(E[f(∇w(n−1))]− E[f(∇w(n))]) + 4γ2L2t2G2 +

L

J
γσ2

Telescoping from n = 1, ..N yields

1

N

N∑
n=1

E[‖∇f(∇w(n−1))‖2] ≤
2

γ
(E[f(∇w(0))]− E[f(∇w(n))]) + 4γ2L2t2G2 +

L

J
γσ2

Corollary A.2.1. When the number of iteration N surpass the number of machines J , let the stepsize
γ =

√
J

L
√
N

, yields

1

N

N−1∑
n=0

E[‖∇f(∇w(n))‖2] ≤
2L√
JN

(f(w0)− f∗ + σ2) +
4t2G2J

N
.

= O(
1√
JN

) +O(
t2J

N
)

When delayed steps is in a reasonable range (t < O(N
1
4 J−

3
4)), the first term dominates and delayed

update demonstrates the same convergence speed as original SSGD O(1/
√
JN).

A.2.2 PROOF OF THE CONVERGENCE OF TEMPORALLY SPARSE UPDATE ALGORITHM

Temporally Sparse Update Algorithm

1. Initialize w0 and initialize each worker with w0,j = w0 for j ∈ [1, J].

2. For iteration n = 0, 1, · · ·

On each local worker j, sample a stochastic gradient∇w(n−1,j) and update:
◦ If n (mod d) 6= 0, update with standard (local) SGD rule:

w(n,j) = w(n−1,j) − γ∇w(n−1,j)

◦ Else:

w(n,j) = w(n−1,j)−γ[∇w(n−1,j)+

n−1∑
k=n−d

(∇wn−d+k−∇w(n−d+k,j))] (16)

where

∇wn−d+k =
1

J

J∑
j=1

∇w(n−d+k,j)

3. Output∇w(n) =
1
J

∑J
j=1 w(n,j)

16

Under review as a conference paper at ICLR 2020

Notably, the temporally sparse update formula can rewritten as

w(n,j) = w0 − γ
dbnd c∑
i=0

∇wi︸ ︷︷ ︸
invariant of j

−γ
n−1∑

i=dbnd c+1

∇w(i,j), (TS)

where the first quantity is commonly shared among all the workers and the second term corresponds
to local updates.
Lemma A.3. Let (w(i,j)) be the sequence generated on the j-th worker according to Temporally
Sparse Update Algorithm, then for any j0 ∈ [1, J]

E
[
‖∇w(n) − w(n,j0)‖

2
]
≤ 4γ2d2G2

Proof. From the update of (TS), we have

E
[
‖∇w(n) − w(n,j0)‖

2
]

= γ2E


∥∥∥∥∥∥ 1J

J∑
j=1

n−1∑
i=dbnd c+1

∇w(i,j) −
n−1∑

i=dbnd c+1

∇w(i,j0)

∥∥∥∥∥∥
2


≤ 2γ2E


∥∥∥∥∥∥ 1J

J∑
j=1

n−1∑
i=dbnd c+1

∇w(i,j)

∥∥∥∥∥∥
2
+ E

‖ n−1∑
i=dbnd c+1

∇w(i,j0)‖
2


≤ 2γ2d

J

J∑
j=1

n−1∑
i=dbnd c+1

E
[∥∥∇w(i,j)

∥∥2]+ 2γ2d

n−1∑
i=dbnd c+1

E
[
‖∇w(i,j0)‖

2
]

≤ 4γ2d2G2.

Theorem A.4. Consider the sequence generated by the Temporally Sparse Update Algorithm, then

1

N

N−1∑
n=0

E[‖∇f(∇w(n))‖2] ≤
2

γN
(f(w0)− f∗) + 4γ2d2G2L2 +

L

J
γσ2.

Proof. Based on Lemma A.3, the proof follows the exact same schema as the Delayed Update
Algorithm, which we omit here.

Corollary A.4.1. When the number of iteration N surpass the number of machines J , let the stepsize
γ =

√
J

L
√
N

, yields

1

N

N−1∑
n=0

E[‖∇f(∇w(n))‖2] ≤
2L√
JN

(f(w0)− f∗ + σ2) +
4d2G2J

N
.

= O(
1√
JN

) +O(
d2J

N
)

When temporal sparsity is in a reasonable range (d < O(N
1
4 J−

3
4)), the first term dominates and

temporally sparse update demonstrates the same convergence speed as original SSGD O(1/
√
JN).

17

	Introduction
	Related Work
	Approach
	Delayed Update
	Temporally Sparse Update
	Delayed and temporally sparse update

	Experiment
	Experiment settings
	Results of Delayed Update
	Results of Temporally Sparse Update
	Distributed Training across the World

	Conclusion
	Appendix
	Connection to variance reduction approach
	Theoretical Justification
	Proof of the convergence of Delayed Update Algorithm
	Proof of the convergence of Temporally Sparse Update Algorithm

