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ABSTRACT

Traditional synchronous distributed training is performed inside a cluster since it
requires high bandwidth and low latency network (e.g. 25Gb Ethernet or Infini-
band). However, in many application scenarios, training data are often distributed
across many geographic locations, where physical distance is long and latency is
high. Traditional synchronous distributed training cannot scale well under such
limited network conditions. In this work, we aim to scale distributed learning un-
der high-latency network. To achieve this, we propose Delayed and Temporally
Sparse (DTS) update that enables synchronous training to tolerate extreme network
conditions without compromising accuracy. We benchmark our algorithms on
servers deployed across three continents in the world: London (Europe), Tokyo
(Asia), Oregon (North America) and Ohio (North America). Under such challeng-
ing settings, DTS achieves 90× speedup over traditional methods without loss of
accuracy on ImageNet.

1 INTRODUCTION

Deep neural networks have demonstrated much success in solving large-scale machine learning
problems (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016). However, training
deep neural networks may take days or even weeks to converge. In order to enable training in a
reasonable time, distributed training is an important technique and gains increasing attention (Li
et al., 2014; Dean et al., 2012; Recht et al., 2011; Goyal et al., 2017; Jia et al., 2018). To maintain a
good scalability, a low latency and high bandwidth network is essential for most modern distributed
systems. Existing frameworks (Chen et al., 2015; Xing et al., 2015; Moritz et al., 2015; Abadi et al.,
2015; Akiba et al., 2017; Paszke et al., 2017; Sergeev & Del Balso, 2018) all require high-end network
infrastructure such as 25Gbps Ethernet or Infiniband where bandwidth is as large as 10 to 100 Gbps
and latency is as small as 1 us.

16x4 = 64 cards, batch size 32

latency(ms) speed SSGD DTS ECD-PSGD ASGD FedAvg
0 151 0.79 0.7935 0.7994

1 141 0.73 0.7907 0.7829

5 130 0.68 0.7878 0.7677

10 119 0.62 0.7816 0.7607

50 62.2 0.32 0.7866 0.70 0.68 0.7441

100 34.2 0.18 0.7853 0.7370

500 7.46 0.04 0.7812 0.5179

1000 3.73 0.02 0.7721 0.3764
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16x4 = 64 cards, batch size 32-1
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Figure 1: DTS maintains a good scala-
bility when network latency increases,
while the performance of conventional
algorithms degrades quickly.

Bandwidth is easy to increase (e.g. stacking hardware) but
latency is hard to improve (physical limits). For example,
if we have two servers located at Shanghai and Boston
respectively, even at the speed of light and direct air dis-
tance, it still takes 78ms∗ to send and receive a packet. In
real world scenario, the latency can be only worse (around
700ms) because indirect routing between internet service
providers (ISP) and queuing delay in switches. Such high
latency cause severe scalability† issue for distributed train-
ing. As shown in Fig. 1, traditional distributed training
algorithm scales poorly under such large latency.

In many scenarios, the training data involves privacy-
sensitive information, such as personal medical his-
tory (Jochems et al., 2016; 2017) and keyboard input his-
tory (McMahan et al., 2016; Konen et al., 2016; Bonawitz
et al., 2019), thus cannot be centralized to a data center
due to security and legacy concerns (GDPR, 2016). When datasets are distributed across many

∗11, 725km × 2/(3× 108m/s) = 78.16ms. Information collected from Google Maps.
†If a system can achieve M times speedup on N machines, the scalability is defined as M/N .
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Figure 2: Network conditions across different continents (Left) and the comparison between connec-
tions inside a cluster (Right). Different from training inside a data center, long-distance distributed
training suffers from high latency, which proposes a severe challenge to scale across the world.

locations across public clouds, private clusters and even edge devices, it is impossible to setup a low
latency network under long-distance connections and thereby hurts the scalability of training.

In this work, we enable scalable distributed training across different geographical locations with
long distance and high latency network connection. We propose Delayed Update to tolerate latency
by putting off the synchronization barrier to a later iteration; we also propose Temporally Sparse
Update to amortize the latency and alleviate congestion by reducing the synchronization frequency.
To ensure no loss of accuracy, we design a novel error compensation to overcome the staleness for
both vanilla and momentum SGD. We focus on the widely adopted synchronous update using data
parallelism. As shown in Fig. 1, DTS can maintain high scalability even when latency is as high as
1000ms. This result is also better than existing state of art technologies such as ECD-PSGD (results
copied directly from their original paper (Tang et al., 2018a))

We benchmark our DTS under a challenging settings: training a deep neural network on four AWS
P3 instances located in different continents of the world (Fig. 2). The measured latency is as large
as 277ms (compared to internal latency 2us). In this case, the naive distributed synchronous SGD
(SSGD) can only achieve a poor scalability of 0.008. It means in this setting, distributed training with
100 servers is even slower than single machine (0.8 v.s. 1.0). Meanwhile DTS achieves scalability of
0.72 without compromising the accuracy. In conclusion, our contributions are listed below:

• We propose delayed update to tolerate the latency and temporally sparse update to amortize
the latency. While preserving the accuracy, delayed update tolerates up to 6 seconds latency
and temporally sparse update reduced the traffic congestion by 20×.
• We theoretically justify the convergence rate of our proposed algorithms. We show that both

algorithms can be as fast original SGD while scaling well under high latency.
• With servers and data distributed in four different countries across the world, we can train

ResNet-50 on ImageNet with scalability. To our best knowledge, DTS is the first work that
can achieve scalable synchronous distributed training under such high latency.

2 RELATED WORK

Distributed Learning becomes ever more important as the sizes of both datasets and models increase.
Many studies have been made to explore the efficiency, both at the algorithm level (Li et al., 2014;
Dean et al., 2012; Recht et al., 2011; Goyal et al., 2017; Jia et al., 2018) and at the framework
level (Chen et al., 2015; Akiba et al., 2017; Abadi et al., 2015; Paszke et al., 2017; Sergeev &
Del Balso, 2018). In most of distributed algorithms, each node performs computation and exchange
updates through network. A key component to improve scalability is to reduce the communication-to-
computation ratio. The communication cost is determined by latency and bandwidth. Conventional
studies focus on reducing bandwidth requirements as the latency of internal traffic is usually low.

Gradient quantization / compression has been proposed to reduce the data to be transferred. One-
bit gradient gradient (Seide et al., 2014) achieves 10× speedup using 20 GPUs on text-to-speech task.
QSGD (Alistarh et al., 2016) and Terngrad (Wen et al., 2017) further improves the trade-off between
accuracy and gradient precision. But the theoretical limit of the quantization cannot go beyond 32. To
overcome the limitation, gradient sparsification using predefined static threshold (Strom, 2015; Aji &
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Heafield, 2017) and dynamic compression ratio (Chen et al., 2018) demonstrate that 99% gradients
can be pruned with negligible degradation on model performance. (Sattler et al., 2018) combines
both quantization and compression to push the ratio to a new level. DGC (Lin et al., 2017) and
DoubleSequeeze (Tang et al., 2019) explore how to compensate the error to preserve the accuracy
better. The convergence of quantization and compression is also discussed in (Tang et al., 2019; Jiang
& Agrawal, 2018; Alistarh et al., 2018). However, latency remains an issue, especially when servers
are not in the same physical location.

Learning on decentralized data has become increasingly popular recently as the growing awareness
of data privacy (GDPR, 2016). For example, Federated Learning (Google, 2017) aim to jointly train
a model without centralizing the data and have been used to train models for medical treatments
across multiple hospitals (Jochems et al., 2016), analyze patient survival situations from various coun-
tries (Jochems et al., 2017) and build predictive keyboards to improve typing experience (McMahan
et al., 2016; Google, 2017; Bonawitz et al., 2019). However, existing federated learning works do not
scale well under high latency network. An orthogonal exploration is Decentralized Training where
only partial synchronization is performed in each update, such as AD-PSGD (Lian et al., 2017) and
D2 (Tang et al., 2018b). None of them has been evaluated on large learning tasks yet.

Asynchronous SGD (ASGD) is derived from (Tsitsiklis et al., 1986) and has advantages in unstable
latency and fault tolerance. Different from synchronous SGD (SSGD), ASGD relaxes synchronization
by allowing training on inconsistent models and powers many successful applications such as
HOGWILD! (Recht et al., 2011), BUCKWILD! (De Sa et al., 2015) and dist-belief (Dean et al.,
2012). However, most of them are implemented through parameter server (Dean et al., 2012; Chilimbi
et al., 2014; Li et al., 2014) and leads to problems like communication congestion and resource
congestion when scaling up. Moreover, training on inconsistent models leads to different behaviors
compared to training on a single device. Though there are studies discussing the convergences (Recht
et al., 2011; De Sa et al., 2015) and showing that ASGD converges as good as SSGD (Lian et al.,
2015), synchronous SGD (SSGD) is usually preferred in practice (Goyal et al., 2017; Sun et al., 2019)
because it has consistent behaviors when increasing the number of machines and therefore is easy to
develop and deploy.

3 APPROACH

To motivate this section, we first review the mechanism of synchronous distributed training: at each
step, each node will first compute gradients locally, then they wait for the collective operation to
transmit gradients to each other to calculate the average. They use the averaged gradient to update the
weight and continue to the next step. As shown in right of Fig. 3a, when the communication increases
, the whole training process would be drastically slowed down.

To address the problem, our proposed algorithm contains two parts: delayed update (Fig. 3b) and
temporally sparse update (Fig. 3c). With the delayed update, instead of waiting for average gradients
to come back, it puts off the synchronization barrier to steps later to tolerate the latency. With the
temporally sparse update, the synchronization frequency is reduced to amortize latency.

Throughout the paper, we use the following notions:

• γ: learning rate.
• t: iteration steps that the synchronization bar-

rier is delayed.
• p: iteration steps between temporally sparse

update intervals.
• u(i,j): momentum at iteration i on worker j.

• u′(i,j): error compensated momentum at itera-
tion i on worker j.

• w(i,j): model weights at iteration i
on worker j.

• w′(i,j): error compensated weights at
iteration i on worker j.

• ∇w(i,j): local gradients at iteration
i on worker j.

• ∇w(i): global averaged gradients at
iteration i.

3.1 DELAYED UPDATE
In modern implementations of vanilla SSGD, the transmission is partially pipelined with back-
propogration: Synchronizing gradients of nth layer can be performed simultaneously with back-
propagating (n − 1)th layer. However, it is not enough to cover communication since latency on
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(a) Synchronous distributed learning.
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(b) Synchronous distributed learning with delayed update.
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(c) Synchronous distributed learning with temporally sparse update.

Figure 3: The visualization of our proposed techniques (Left) and the execution pipeline (Right).
Yellow lines and blocks indicate communication, while green ones indicate computation. Delayed
update covers communication by computation and requires the same number of synchronization.
Temporally sparse reduces the synchronization frequency and improve the amortized latency.

long-distance connection is usually larger ( ≥ 100ms) than propagating a layer ( ≈ 11ms). To relax
the limitation, we design delayed update to put off the the synchronization barrier by n steps as shown
in Fig. 3b. To ensure minimal loss on accuracy, we modify the gradient update formula with error
compensations.

To understand, we start with vanilla SGD: Consider a worker with index j, the weights at timestamp
n during distributed training are derived via

w(n,j) = w(n−1,j) − γ∇w(n−1) = w(0,j) − γ
n−1∑
i=0

∇w(i) (1)

where ∇w(n−1) is the averaged gradients calculated by gathering all local gradients ∇w(n−1,j). In
SSGD, the synchronization has to finish before (n+ 1)th forwarding. In delayed update, we delay
the barrier to (n+ t)th iteration and because of the delay, ∇w(n−1) is not received at timestamp n.
We use local gradients to update instead.

w(n,j) = w(n−1,j) − γ∇w(n−1,j) (2)

Meanwhile, stale gradients ∇w(n−t) arrive. At timestamp n − t, we performed the gradient step
using local gradients∇w(n−t,j), which should be the global averaged∇w(n−t) in SSGD. We correct
the mismatch caused by replacing ∇w(n−t,j) with ∇w(n−t). From Eq. 1, it adds a compensation
term, which is the difference of two gradients.

w′(n,j) = w(n−1,j) − γ∇w(n−1,j)︸ ︷︷ ︸
local gradients

−γ(∇w(n−t) −∇w(n−t,j)︸ ︷︷ ︸
error compensation

)

= w(n,j) − γ(∇w(n−t) −∇w(n−t,j))

(3)

Next, we consider momentum SGD. With momentum m, the weight at timestamp n is updated by

u(n,j) = mu(n−1,j) +∇w(n,j) w(n,j) = w(n−1,j) − γu(n−1,j) (4)
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We rewrite the cumulative form to general form

u(n,j) =

n∑
i=0

mi∇w(n−i,j)

=

n∑
i=0

mn−i∇w(i,j)

(5)

w(n,j) = w(0,j) − γ
n−1∑
i=0

u(i,j)

= w(0,j) − γ
n−1∑
i=0

i∑
k=0

mi−k∇w(k,j)

= w(0,j) − γ
n−1∑
i=0

n−1−i∑
k=0

mk∇w(i,j)

(6)

Then, we can derive the compensated momentum

u′(n,j) = mu(n−1,j) +∇w(n−1,j) +mt(∇w(n−t) −∇w(n−t,j))

= u(n,j) +mt(∇w(n−t) −∇w(n−t,j))
(7)

and weights similarly

w′(n,j) = w(n−1,j) − γu(n−1,j) − γ
t−1∑
k=0

mk(∇w(n−t) −∇w(n−t,j))

= w(n,j) − γ
t−1∑
k=0

mk(∇w(n−t) −∇w(n−t,j))

(8)

In original synchronous stochastic gradient descent (SSGD), every worker receives averaged gradients
from n− 1 at timestamp n. This requires collective operation (e.g. Allreduce) to execute quickly;
otherwise, it will slow down the training process. In delayed update, the barrier of the collective
operation is moved from timestamp n to n+ t− 1. It means as long as the gradients are transmitted
within t× Tcompute, the training is not blocked. To put some real numbers, assume we are training
ResNet-50 on Nvidia Tesla V100, each step takes around 300ms. If we delay the update by 20 steps,
even with latency as large as 6 seconds, the communication still can be fully covered by computations.
We attach the proof of convergence in Appendix A.2.1 and show this is as fast as SSGD.

3.2 TEMPORALLY SPARSE UPDATE

Delayed update provides a good solution to tolerate latency. However, there still remains two issues
and network congestion is the first one. In the original SSGD, only one transmission is performed
during one iteration. But when using delayed update, there can be up to t transmissions at the same
time. Without a special hacking to low-level network driver, gradients sent earlier may arrive later,
which is not what we want. The second one is latency variance. In real world network, especially for
those long-distance connections, the latency varies in a large range. Even though the average latency
is small, some accidentally high latency can slow the system.

To address, we adapt temporally sparse update to reduce the communication frequency and design
corresponding error compensation to guarantee the accuracy. As demonstrated in Fig. 3c, temporally
sparse update only synchronizes for every p steps. For those steps where synchronization is not
performed, each worker updates its model with local gradients. For those steps where synchronization
is performed, each worker calculates error compensations based averaged information. As a result,
the networking congestion is alleviated and the networking latency is amortized across multiple local
update steps.

For vanilla SGD, like the delayed update, we can derive the compensation term for temporally sparse
update from Eq. 1, which is the difference between accumulated gradients. Note the compensation in
temporally sparse update only applies when n (mod p) ≡ 0.

w′(n,j) = w(n,j) − γ(
n−1∑
i=n−p

∇w(i) −
n−1∑
i=n−p

∇w(i,j)) (9)
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Bandwidth Non-computing time
Synchronous SGD 2||w||/Ttraining Tcommunicate − Toverlap
Delayed Update (t) 2||w||/Ttraining max(0, Tcommunicate − Toverlap − t× Tcompute)

Temporal Sparsity (p) 4||w||/(p× Ttraining) (Tcommunicate − Toverlap)/p
Delayed Update (t) +
Temporal Sparsity (p)

4||w||/(p× Ttraining) max(0, (Tcommunicate − Toverlap − t× Tcompute))/p

Table 1: The networking requirements for different training strategies.

For SGD with momentum acceleration, based on accumulated gradients is not enough to compensate
both∇w(n,j) and u(n,j). We need to transmit an extra term to correct the momentum:

u′(n,j) = u(n,j) + (

n−1∑
i=n−p

mn−i∇w(i) −
n−1∑
i=n−p

mn−i∇w(i,j))

w′(n,j) = w(n,j) − γ(
n−1∑
i=n−p

n−1−i∑
k=0

mk∇w(i) −
n−1∑
i=n−p

n−1−i∑
k=0

mk∇w(i,j))

= w(n,j) − γ(
n−1∑
i=n−p

i∑
k=n−p

mi−k∇w(k) −
n−1∑
i=n−p

i∑
k=n−p

mi−k∇w(k,j))

(10)

Let S(i,j) =
∑i
k=n−pm

i−k∇w(k,j). Note S(i+1,j) = mS(i,j) + ∇w(i+1,j) and S(n−p+1,j) =
∇w(n−p,j), the formula can be written as:

u′(n,j) = u(n,j) + (S(n) − S(n,j))

w′(n,j) = w(n,j) − γ(
n−1∑
i=n−p

S(i) −
n−1∑
i=n−p

S(i,j))
(11)

Note temporally sparse update is different from gradient accumulation (forward and backward
N times, accumulate the gradients and optimizer steps only 1 time). Gradient accumulation is
equivalent to increasing the batch size and requires to adjust learning rate and the parameters of batch
normalization to ensure smooth convergence. Temporally sparsity updates model every iteration and
compensate error every N steps. It does not require any changes to the hyper-parameters. We prove
the convergence of temporally sparse update in Appendix A.2.2 and demonstrate that it enjoys the
same convergence rate as SSGD.

3.3 DELAYED AND TEMPORALLY SPARSE UPDATE

The delayed technique and temporally sparse update can be combined together. The compensation
formulas for vanilla SGD is

w′(n,j) = w(n,j) − γ(
n−t−1∑
i=n−t−p

∇w(i) −
n−t−1∑
i=n−t−p

∇w(i,j)) (12)

and for momentum SGD is

u′(n,j) = u(n,j) +mt(Sn−t − S(n−t,j))

w′(n,j) = w(n,j) − γmt(

n−t−1∑
i=n−t−p

Si −
n−t−1∑
i=n−t−p

S(i,j))
(13)

Original ring allreduce transfers 2||w|| packets (Thakur et al., 2005). Though temporally sparse
update doubles data transferred, the temporal sparsity t is always larger than 2. As a consequence,
combing two methods can further improve scalability under challenging networking ( Tab. 1).
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Figure 4: Compare the top-1 accuracy and scalability on ImageNet training.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

We evaluate our DTS on image classification task. We studies ResNet-50 (He et al., 2016) on
ImageNet (Deng et al., 2009). ImageNet contains 1.2 million training images and 50,000 vali-
dation images in 1000 classes. We train ImageNet model with momentum SGD using warmup
strategy (Goyal et al., 2017) and cosine anneal learning rate decay (Loshchilov & Hutter, 2016)
with 120 epochs. Standard data augmentations random crop and flip are adapted. We set the initial
learning rate 0.0125 for which grows linearly w.r.t number of GPUs. For a fair comparison, the
training settings are set the same among all experiments.

When performing ablation studies under different latency, we synthesis the network condition using
netem‡. When training across the world, the limited network is benchmarked using qperf §. We
implement DST in PyTorch framework (Paszke et al., 2017) and adapt Horovod (Sergeev & Del Balso,
2018) as the distributed training backend. To make results reproducible, we conduct our experiment
on 16 standard Amazon p.large EC2 instances with eight Nvidia Tesla V100 on each and will release
the codebase when less anonymous.

4.2 RESULTS OF DELAYED UPDATE

Fig. 4a shows the performance and scalability for delayed update with different latency. We start
from delay steps 4 and gradually increase it. The learning curve shows that with our proposed
error compensation delayed update demonstrates robust convergence and comparable performance
compared vanilla SSGD, even when delay interval is as large as 20.

‡https://wiki.linuxfoundation.org/networking/netem
§https://linux.die.net/man/1/qperf
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Top-1%
Original SGD 76.63

D=4, T=4, C=1% 76.15
D=8, T=8, C=1% 76.32
D=12, T=8, C=1% 76.18

D=20, T=12, C=1% 75.81

(a) Delayed updates preserves the accuracy while tolerate
a large latency. D, T, C indicate delayed update, temporal
sparsity and gradient compression ratio respectively. The
results are evaluated on ImageNet dataset.
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(b) Better speedup and scalability with DTS.
Measured on servers across the world.

Table 2: DTS demonstrates good scalability and accuracy on world-wide high latency training.

In original SSGD and modern deep learning frameworks, though the transmission is partially pipelined
with backpropogration: Synchronizing gradients of nth layer can be performed simultaneously with
back-propagating (n− 1)th layer, it is not enough to fully cover communication since latency on long
distance connection is usually larger ( ≥ 100ms) than propagating a layer (11ms). By delaying the
synchronization, delayed update provides much more spare time for transmission and thus scales
better. As shown in Fig. 4a, the larger the delayed interval is, the better tolerance towards latency.
The scalability keeps stable until maximum tolerance is exceeded.

4.3 RESULTS OF TEMPORALLY SPARSE UPDATE

The connection of real-world network has many bothering issues such as unstable latency and conges-
tion on routers. Temporally sparse is introduced to amortize these via reducing the synchronization
frequency. The results are shown in Fig. 4b(Left): we start with temporal sparsity 4 and increase to
20. With proposed compensation, the temporally sparse update has a negligible loss on accuracy.
Fig. 4(Right) exhibits how temporally sparse training scales under different network latency. The
scalability degrades slower than because temporally sparse update amortizes the latency.

4.4 DISTRIBUTED TRAINING ACROSS THE WORLD

With two powerful techniques, we are close to our original target of distributed training across world.
To evaluate DTS, we deploy located at four different locations across the world: Tokyo(Japan),
London (U.K), Oregon (U.S.A) and Ohio(U.S.A). The latency information is shown in Fig.2. The
real latency across the ring allreduce is about 479ms through Ethernet. On V100 GPU, ResNet-50
takes around 300ms to forward and backward. Therefore delayed update with steps more than 4 is
already enough to tolerate such a network. In terms of latency variance and network congestion, we
integrate temporally sparse update to alleviate which drastically reduces the bandwidth requirement
by t times. However, there is still a bottleneck on bandwidth for cross-continent connections (e.g.
Tokyo to London). Though theoretically bandwidth is achievable by switching to better internet
service providers, AWS does not provide such an option. As an economical alternative, we adapt deep
gradient compression (Lin et al., 2017) to work through. As shown in Tab. 2a, DTS has little effect on
training accuracy. Meanwhile, DTS demonstrates strong scalability (0.72) under high latency (200ms
between workers) and this performance is close to what conventional algorithms achieved inside a
data center (speedup ratio 0.78 and 1us latency).

5 CONCLUSION

In this paper, we propose two novel delayed update and temporally sparse update methods to scale
synchronous distributed training on servers located at different continents across the world. We
demonstrate that delayed synchronization and temporally sparse update are both accuracy preserving
while tolerate poor network conditions. We believe that our work will open future avenues for a wide
range of decentralized learning applications.
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A APPENDIX

A.1 CONNECTION TO VARIANCE REDUCTION APPROACH

A lot of recent work has been devoted to the study of variance reduction techniques in convex
optimization, including (Johnson & Zhang, 2013; Shalev-Shwartz & Zhang, 2013b; Xiao & Zhang,
2014; Schmidt et al., 2017; Defazio et al., 2014; Mairal, 2015). The vanilla SVRG algorithm has the
update

wn = wn−1 − η
[
∇fi(wn−1) +∇f(w̃)−∇fi(w̃)

]
, (14)

where w̃ is a snapshot reference point updated every constant iteration. These methods are able to
achieve linear convergence rates for smooth strongly-convex optimization problems, which signif-
icantly improve the sub-linear rate of vanilla SGD. Extension to multiple setting are investigated,
including acceleration (Shalev-Shwartz & Zhang, 2013a; Lin et al., 2015; Allen-Zhu, 2017), stream-
ing (Frostig et al., 2015; Lei & Jordan, 2016), synchronous distributed setting (Lee et al., 2015),
data augmentation (Bietti & Mairal, 2017). Extension of variance reduction approaches to general
non-convex problems has also been studied in (Allen-Zhu & Hazan, 2016; Reddi et al., 2016). Despite
these theoretical progress, variance reduction technique does not appear to be helpful for training
deep neural network (Defazio & Bottou, 2018).

Our proposed method could be viewed as a delayed variant of SVRG in the decentralized setting.
The update (15) in our method mimic the update of vanilla SVRG (14), with the difference that
the average gradient is obtained across machine base on local parameters. This variance reduction
technique empirically stabilized the asynchronous gradients and handle the staleness, which is able
to achieve state-of-the-art performance in modern deep learning setting. Moreover, we obtain close
linear speed up with respect to the number of machine, which is the essential goal of distributed
optimization.

A.2 THEORETICAL JUSTIFICATION

Our proof closely follows the analysis in (Yu et al., 2019). We consider the following non-convex
optimization problem

min
w
f(w) =

1

J

J∑
j=1

fj(w),

where J denotes the number of workers. Moreover, each fj = Eζj [Fj(w, ζj)]. In the empirical
minimization setting, ζj corresponds to a mini-batch sampling strategy and fj could again be
expressed as a finite sum fj = 1

Kj

∑
fkj . Throughout this paper, we assume the optimization

satisfies the following assumptions.
Assumption 1 (L-smooth). Each function fj(x) is L-smooth, i.e. for all x, y ∈ Rd and i ∈ [1, J ],

||∇fj(x)−∇fj(y)|| ≤ L||x− y||.

Assumption 2 (Bounded gradients and variances). There exists a positive constant G and σ such
that

Eζj ||∇Fj(w; ζi)||2 ≤ G2,∀w,∀j
Eζj ||∇Fj(w; ζj)−∇fj(w)||2 ≤ σ2,∀w,∀j

We prove that our algorithms have the convergence rate

O(
1√
JN

) +O(
c2J

N
)

where J is the number of workers, N is iterations and c is staleness in our algorithm (t for delayed
steps and d for temporal sparsity). With proper settings, our algorithms are as fast as original SSGD
O(1/

√
JN). The detailed proof follows below.
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A.2.1 PROOF OF THE CONVERGENCE OF DELAYED UPDATE ALGORITHM

Delayed Update Algorithm

1. Initialize w0 and initialize each worker with w0,j = w0 for j ∈ [1, J ].

2. For iteration n = 0, 1, · · ·

On each local worker j, sample a stochastic gradient∇w(n−1,j) and update:
◦ If n < t, update with standard SGD rule:

w(n,j) = w(n−1,j) − γ∇w(n−1,j)

◦ Else:

w(n,j) = w(n−1,j) − γ(∇w(n−1,j) +∇wn−t −∇w(n−t,j)) (15)

where

∇wn−t =
1

J

J∑
j=1

∇w(n−t,j)

3. Output∇w(n) =
1
J

∑J
j=1 w(n,j)

Notably, the delayed update formula can rewritten as

w(n,j) = w0 − γ
n−t∑
i=0

∇wi︸ ︷︷ ︸
invariant of j

−γ
n−1∑

i=n−t+1

∇w(i,j), (Delayed)

where the first quantity is commonly shared among all the workers and the second term corresponds
to local updates.

Lemma A.1. Let (w(i,j)) be the sequence generated on the j-th worker according to Delayed Update
Algorithm, then for any j0 ∈ [1, J ]

E
[
‖∇w(n) − w(n,j0)‖

2
]
≤ 4γ2t2G2

Proof. From the delayed update formula Delayed, we have,

E
[
‖∇w(n) − w(n,j0)‖

2
]

= γ2E


∥∥∥∥∥∥ 1J

J∑
j=1

n−1∑
i=n−t+1

∇w(i,j) −
n−1∑

i=n−t+1

∇w(i,j0)

∥∥∥∥∥∥
2


≤ 2γ2E


∥∥∥∥∥∥ 1J

J∑
j=1

n−1∑
i=n−t+1

∇w(i,j)

∥∥∥∥∥∥
2
+ E

[
‖

n−1∑
i=n−t+1

∇w(i,j0)‖
2

]

≤ 2γ2t

J

J∑
j=1

n−1∑
i=n−t+1

E
[∥∥∇w(i,j)

∥∥2]+ 2γ2t

n−1∑
i=n−t+1

E
[
‖∇w(i,j0)‖

2
]

≤ 4γ2t2G2.
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Theorem A.2. Consider the sequence generated by the Delayed Algorithm, then

1

N

N−1∑
n=0

E[‖∇f(∇w(n))‖2] ≤
2

γN
(f(w0)− f∗) + 4γ2t2G2L2 +

L

J
γσ2.

Proof. By smoothness of f , we have

E[f(∇w(n))] ≤ E[f(∇w(n−1))+ 〈∇f(∇w(n−1)),∇w(n)−∇w(n−1)〉+
L

2
‖∇w(n)−∇w(n−1)‖2]

Note that

∇w(n) = ∇w(n−1) −
γ

J

J∑
j=1

∇w(n−1,j).

We have

E[‖∇w(n) −∇w(n−1)‖2]

= γ2E[‖ 1
J

J∑
j=1

∇w(n−1,j)‖2]

= γ2E[‖ 1
J

J∑
j=1

(∇w(n−1,j) −∇fj(w(n−1,j))‖2] + γ2E[‖ 1
J

J∑
j=1

∇fj(w(n−1,j))‖2]

=
γ2

J2

J∑
j=1

E[‖(∇w(n−1,j) −∇fj(w(n−1,j))‖2] + γ2E[‖ 1
J

J∑
j=1

∇fj(w(n−1,j))‖2]

≤ γ2σ2

J
+ γ2E[‖ 1

J

J∑
j=1

∇fj(w(n−1,j))‖2].

Moreover,

E[〈∇f(∇w(n−1)),∇w(n) −∇w(n−1)]

= − γE[〈∇f(∇w(n−1)),
1

J

J∑
j=1

∇w(n−1,j)]

= − γE[〈∇f(∇w(n−1)),
1

J

J∑
j=1

∇fj(w(n−1,j)]

= − γ

2
E[‖∇f(∇w(n−1))‖2] +

γ

2
E[‖∇f(∇w(n−1))−

1

J

J∑
j=1

∇fj(w(n−1,j)‖2]−
γ

2
E[‖ 1

J

J∑
j=1

∇fj(w(n−1,j))‖2]

Applying the lemma, we have

E[‖∇f(∇w(n−1))−
1

J

J∑
j=1

∇fj(w(n−1,j)‖2]

=E[‖ 1
J

J∑
j=1

(∇fj(∇w(n−1))−∇fj(w(n−1,j))‖2]

≤ 1

J

J∑
j=1

E[‖(∇fj(∇w(n−1))−∇fj(w(n−1,j))‖2]

≤ L2

J

J∑
j=1

‖∇w(n−1) − w(n−1,j)‖2

≤ 4γ2L2t2G2.
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Thus, combining the above inequalities together with γ ≤ 1
L yields

E[f(∇w(n))]− E[f(∇w(n−1))]

≤ γL2 − γ
2

E[‖ 1
J

J∑
j=1

∇fj(w(n−1,j))‖2]−
γ

2
E[‖∇f(∇w(n−1))‖2] + 2γ3L2t2G2 +

L

2J
γ2σ2

≤ − γ

2
E[‖∇f(∇w(n−1))‖2] + 2γ3L2t2G2 +

L

2J
γ2σ2.

Rearrange the terms yields

E[‖∇f(∇w(n−1))‖2] ≤
2

γ
(E[f(∇w(n−1))]− E[f(∇w(n))]) + 4γ2L2t2G2 +

L

J
γσ2

Telescoping from n = 1, ..N yields

1

N

N∑
n=1

E[‖∇f(∇w(n−1))‖2] ≤
2

γ
(E[f(∇w(0))]− E[f(∇w(n))]) + 4γ2L2t2G2 +

L

J
γσ2

Corollary A.2.1. When the number of iteration N surpass the number of machines J , let the stepsize
γ =

√
J

L
√
N

, yields

1

N

N−1∑
n=0

E[‖∇f(∇w(n))‖2] ≤
2L√
JN

(f(w0)− f∗ + σ2) +
4t2G2J

N
.

= O(
1√
JN

) +O(
t2J

N
)

When delayed steps is in a reasonable range (t < O(N
1
4 J−

3
4 )), the first term dominates and delayed

update demonstrates the same convergence speed as original SSGD O(1/
√
JN).

A.2.2 PROOF OF THE CONVERGENCE OF TEMPORALLY SPARSE UPDATE ALGORITHM

Temporally Sparse Update Algorithm

1. Initialize w0 and initialize each worker with w0,j = w0 for j ∈ [1, J ].

2. For iteration n = 0, 1, · · ·

On each local worker j, sample a stochastic gradient∇w(n−1,j) and update:
◦ If n (mod d) 6= 0, update with standard (local) SGD rule:

w(n,j) = w(n−1,j) − γ∇w(n−1,j)

◦ Else:

w(n,j) = w(n−1,j)−γ[∇w(n−1,j)+

n−1∑
k=n−d

(∇wn−d+k−∇w(n−d+k,j))] (16)

where

∇wn−d+k =
1

J

J∑
j=1

∇w(n−d+k,j)

3. Output∇w(n) =
1
J

∑J
j=1 w(n,j)
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Notably, the temporally sparse update formula can rewritten as

w(n,j) = w0 − γ
dbnd c∑
i=0

∇wi︸ ︷︷ ︸
invariant of j

−γ
n−1∑

i=dbnd c+1

∇w(i,j), (TS)

where the first quantity is commonly shared among all the workers and the second term corresponds
to local updates.
Lemma A.3. Let (w(i,j)) be the sequence generated on the j-th worker according to Temporally
Sparse Update Algorithm, then for any j0 ∈ [1, J ]

E
[
‖∇w(n) − w(n,j0)‖

2
]
≤ 4γ2d2G2

Proof. From the update of (TS), we have

E
[
‖∇w(n) − w(n,j0)‖

2
]

= γ2E


∥∥∥∥∥∥ 1J

J∑
j=1

n−1∑
i=dbnd c+1

∇w(i,j) −
n−1∑

i=dbnd c+1

∇w(i,j0)

∥∥∥∥∥∥
2


≤ 2γ2E


∥∥∥∥∥∥ 1J

J∑
j=1

n−1∑
i=dbnd c+1

∇w(i,j)

∥∥∥∥∥∥
2
+ E

‖ n−1∑
i=dbnd c+1

∇w(i,j0)‖
2


≤ 2γ2d

J

J∑
j=1

n−1∑
i=dbnd c+1

E
[∥∥∇w(i,j)

∥∥2]+ 2γ2d

n−1∑
i=dbnd c+1

E
[
‖∇w(i,j0)‖

2
]

≤ 4γ2d2G2.

Theorem A.4. Consider the sequence generated by the Temporally Sparse Update Algorithm, then

1

N

N−1∑
n=0

E[‖∇f(∇w(n))‖2] ≤
2

γN
(f(w0)− f∗) + 4γ2d2G2L2 +

L

J
γσ2.

Proof. Based on Lemma A.3, the proof follows the exact same schema as the Delayed Update
Algorithm, which we omit here.

Corollary A.4.1. When the number of iteration N surpass the number of machines J , let the stepsize
γ =

√
J

L
√
N

, yields

1

N

N−1∑
n=0

E[‖∇f(∇w(n))‖2] ≤
2L√
JN

(f(w0)− f∗ + σ2) +
4d2G2J

N
.

= O(
1√
JN

) +O(
d2J

N
)

When temporal sparsity is in a reasonable range (d < O(N
1
4 J−

3
4 )), the first term dominates and

temporally sparse update demonstrates the same convergence speed as original SSGD O(1/
√
JN).
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