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Abstract
We investigate the learned dynamical landscape of
a recurrent neural network solving a simple task
requiring the interaction of two memory mecha-
nisms: long- and short-term. Our results show
that while long-term memory is implemented by
asymptotic attractors, sequential recall is now ad-
ditionally implemented by oscillatory dynamics in
a transverse subspace to the basins of attraction of
these stable steady states. Based on our observa-
tions, we propose how different types of memory
mechanisms can coexist and work together in a
single neural network, and discuss possible appli-
cations to the fields of artificial intelligence and
neuroscience.

1. Introduction
Recurrent neural networks (RNN) are widely used to carry
out tasks that require learning temporal dependencies across
several scales. Training RNN’s to perform such tasks of-
fers its share of challenges, from well-known exploding and
vanishing gradients, to the difficulties of storing, accessing,
and forgetting memories (Pascanu et al., 2013; Bengio et al.,
1994). Viewed as dynamical system, the activity structure
of recurrent network state spaces can reveal how networks
learn tasks, and can help guide training and architecture de-
sign. In this study, we perform a dynamical system analysis
of a trained RNN on a simple tasks that requires two types
of memory paradigms interact: short-term memory of past
inputs and a delayed output during classification.

While gating units found in LSTM (Schmidhuber & Hochre-
iter, 1997) and in a variety of other architectures (e.g., Cho
et al., 2014; van der Westhuizen & Lasenby, 2018) directly
aim at addressing these long-scale temporal learning issues,
they are always used in conjunction with so-called “vanilla”
recurrent units that shoulder the majority of computation. It
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is not yet well understood how internal network dynamics
supported by such circuits combine information from exter-
nal inputs to solve complex tasks that require remembering
information from the past and delaying output changes. On
one hand, attractor networks are a known solution to keep
finite memories indefinitely (Hopfield, 1982). On the other,
orthogonal transformations (e.g., identity and rotations) are
used to build explicit RNN solutions to recall tasks (Jing
et al., 2016; Vorontsov et al., 2017; Arjovsky et al., 2015).
Indeed, for the well-studied copy task, where a sequence
of symbols needs to be outputted after a long delay, it is
known that the best solution is to use rotations to store
the sequences, much like clocks that align at the time of
recall (Henaff et al., 2016). However, it is unclear how
attractor dynamics and orthogonal (rotational) transforma-
tions interact when a task requires both long term memory
and sequential recall. We explore this situation here.

Leveraging slow-point analysis techniques (Sussillo &
Barak, 2013), we uncover how short-term memory tasks
with delayed outputs give rise to attractor dynamics with
oscillatory transients in low-dimensional activity subspaces.
Our result uncovers how the boundaries of basins of at-
tractions that are linked to memory attractors interact with
transverse oscillatory dynamics to support timed, sequential
computations of integrated inputs. This provides novel in-
sights into dynamical strategies to solve complex temporal
tasks with randomly connected recurrent units. Moreover,
such transient oscillatory dynamics are consistent with peri-
odic activity found throughout the brain (Llinás, 2014), and
we discuss the impact of our findings on computations in
biological circuits.

2. Preliminaries
In this paper we replicate and advance further the study of
Sussillo & Barak (2013) on the implementation of memory
tasks in artificial RNNs. This simple analysis allows for
careful examination of the inner workings of RNNs, which
we leverage here to study the interaction of two distinct
memory mechanisms in it with the introduction of delayed
recall in a memory task.

While the original study (i.e., Sussillo & Barak, 2013)
used continuous time, we used a discrete-time network and
trained it with standard optimization algorithms. This is in
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order to verify if the original findings translate well between
the different types of network, and to explore network archi-
tectures that are more widely used in the machine learning
community. Detailed description of our setup is provided in
Section 3.

We base our analysis on a densely connected single-layer
RNN with a hyperbolic tangent activation function. Specif-
ically, let X be the input signal, S the hidden state of the
network and Y the output of the network. We use N = 100
neurons with input matrix Win, output matrix Wout, and
recurrent connection (i.e., used to update the hidden layer
over time) matrix W . Then, the update rule for the hidden
states and outputs of the network are defined as:

S(t) = tanh(WS(t− 1) +WinX(t))

Y (t) = tanh(WoutS(t))

For training, we unfold the network in time, up to ten
timesteps, and use the standard Adam (Kingma & Ba, 2014)
optimization algorithm. Only the W and Wout matrices
were trained. See Appendix A for more details.

We characterized the behavior of the neural circuit using
tools from dynamical system theory, which enable us to iden-
tify internal states and transitions over time in the neural
circuit. In particular, we use slow point analysis, developed
in Sussillo & Barak (2013), to find approximate fixed points.
Formally, let S(t) be the state of the network at time t. We
define a Lyapunov function q inspired by the physical for-
mula for potential energy. We adapt this original approach
to a discrete-time system as

q =
1

2
|S(t+ 1)− S(t)|2 (1)

The minima of this function indicate the fixed points of the
system, and their types (e.g., sink or saddle point) can be
determined by the number of positive eigenvalues of the
Jacobian matrix at that point.

3. Problem setup
We use a delayed 3-bit flip-flop task to illustrate our find-
ings, as it requires the interaction of two types of memory
mechanisms and lends itself to easily interpretable network
dynamics. The network has three independent channels
with an associated input (Win) and output (Wout) neuron
each. Each input neuron sends short spikes of magnitude
1 or -1 at random time intervals (Poisson distribution with
homogeneous rate λ = 50) and is set at zero otherwise. The
output channel must maintain the value of the last input
spike sent by its associated input neuron.

To study the interaction between long term memory and
sequential recall, we add a time delay to this task. This

Figure 1. Task definition. The neural network is expected to match
and maintain the last input for each channel while preventing cross-
talk. For the delayed task definition, the neural network must, in
addition, delay its response (and therefore remember the input)
during a certain number of time steps by ∆t, illustrated in grey.

in turn requires the network to delay its change of internal
state upon the reception of a novel input by a period ∆t.
Representative examples of both tasks are demonstrated in
Figure 1.

4. Time-delay impact on internal RNN state
space

We begin by replicating the observations from Sussillo &
Barak (2013) in our discrete-time setting. We tested the
trained network during roughly a hundred thousand steps,
during which the network receives approximately 2000 in-
puts, saving the neurons states and the network output at
every step. We then analyzed the resulting dynamics, iden-
tifying slow and fixed points with slow-point analysis, and
projecting dynamics in the first three principal components
(PC), i.e., using PCA.

As we can see in figure 2a, we do observe the characteristic
“cube” discovered in the original research. Here, each vertex
represents a certain output state (since there are three binary
channels, this means there are eight possible states), with
adjacent vertices varying by a single output. The slow point
analysis also revealed attractors at the corners of the cube
described by the path of the states, saddle points with one
unstable dimension on the edges, saddle points with two un-
stable dimensions on the faces and a saddle point with three
unstable dimensions at the center. The attractors implement
long-term memory by “trapping” trajectories in the absence
of inputs. Each of the eight attractors encodes a specific
output state. Saddle-points channel the dynamics during a
switch of output state. Their associated stable subspaces
form the separatrices between the basins of attraction of the
stable fixed points on each side. The configuration of fixed
points observed here is also consistent with the findings
of Sussillo & Barak (2013).

We next turn to the trajectories produced by the network
trained to perform the delayed task (see Figure 2b). The
position of the “corner” attractors is fairly similar to that
of the zero-delay case. However, the steady-state dynamics
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(a) (b)

Figure 2. (a) Dynamics during 3000 time-steps without delay, projected in the first three principal components. Each point represents the
network’s state at a different time-step and is color-coded according to the effective output value at that time. In the absence of input, the
network will maintain its position in phase-space at one of 8 stable fixed points, encoding the current binary combination of the 3 input
channels. Injecting an input in the network induces a switch of the network towards different attracting states, and thus, produces distinct
outputs. (b) Same as in (a) for dynamics with delayed output. The network must generate the same output as before but delay its output
change for ∆t = 8 time-steps.

surrounding these corners have changed considerably. One
hint about the hidden dynamics implementing sequential
recall is the “loops” protruding from the corners of the initial
cube and disappearing with the addition of delay. Since we
use a tanh activation function that limits outputs between
1 and -1, overshooting the attractor assures that the correct
output is expressed immediately after receiving the input,
while undershooting it would give a visible transient period.
However, in the delayed task, inputs have to be treated in
a subspace orthogonal to the output space since no output
change must be expressed before the delay has elapsed. This
means that the input pulse is now invisible in the output
space. With these observations in mind, we would like to
further investigate the different hidden dynamics brought
by the added delay. Since standard PCA and slow-point
analysis failed to sufficiently inform us about this aspect,
we now turn to triggered activation averages described in
Section 5.

5. Characterization of memory mechanisms
with spectral analysis

For simplicity, we focus at this point on characterizing a
single type of transition in the network. Without loss of
generality, we chose the transition from state (−1,−1,−1)
to state (−1,−1, 1), and searched every instance during
testing when the network had to perform this switch. We
note that this choice of input switch is arbitrary but fixed,
although other switches can also be analyzed in a similar
manner. For each instance, we kept a trajectory of RNN
states (i.e., hidden-layer activations) starting a few steps
before the switch and ending a few steps after it. We then

averaged these trajectories over instances, aligned at the
switch time, in order to obtain a single short average tra-
jectory (in the hidden-layer activation space) representing
the mean activity surrounding the examined switch. PCA
projection of this new signal is shown in Figure 3.

In figure 3c, we see a decomposition akin to Fourier modes
of a step function, with increasingly rapid oscillations oc-
curring in one forth of a period phase shifted pairs. Here,
individual neurons appear to lock into dynamical regimes
associated to precise frequencies. From the way the cube is
flattened in figure 3b, we also conclude that the subspace
where the rotational transformations are implemented is
mostly orthogonal to the separatrices of the attractors corre-
sponding to the different memorized outputs. A schematic
of the transition is presented at figure 3a. We note that
such rotating dynamics have indeed been observed previ-
ously when implementing sequential recall in artificial neu-
ral networks, and it is known that initializing RNNs with
orthogonal rotation matrices helps solve sequential recall
tasks (Henaff et al., 2016).

The periodic nature of the observed signals motivated us to
explore the eigenspectrum of the matrix W (see Figure 4).
Indeed, when considering the complex eigenvalues of this
matrix, their complex parts correspond to rotating speeds in
different subspaces. For comparison, the network without
delay has only three eigenvalues that distinguish themselves
from the random cloud around zero, which is expected from
random Gaussian matrices. These are on or close to the real
axis, and slightly higher than one. Considering the hyper-
bolic tangent activation function applied at every time-step,
this indicates three dimensions in which the state compo-
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(a) (b)
(c)

Figure 3. (a) Schematic of the transition for the delayed task. Oscillatory dynamics perpendicular to the separatrix delays the passage to
the new fixed point used for the long term memory classification task. The rotational dynamics are a result of the implementation of
sequential recall, they do not appear in the network without delay. (b) The switch from output (-1,-1,-1) to output (-1,-1,1) for the delayed
network was studied using a triggered average. The resulting signal was then plotted according to the first principal components. For
clarity, a cube is used to mark the approximate trajectory of neurons states during the test. Trajectory in the space spanned by the first
three principal components. (c) Same trajectory but with the first 9 principal components represented.

nents are maintained at about 1.

Figure 4. Analysis of the eigenvalues of the recurrent connection
matrix W for the studied RNNs. The eigenvalues of the network
without delay is displayed to the left and the ones for the 8 time-
steps delayed network to the right.

In the delayed network, the rotating dynamics are clearly
indicated by eigenvalues with large imaginary parts, in ad-
dition to the three real eigenvalues corresponding to the
long term memory subspace. This additional information is
consistent with our interpretation that oscillatory dynamics
implement sequential recall, much like orthogonal RNNs do
during simple recall tasks (Jing et al., 2016; Vorontsov et al.,
2017; Arjovsky et al., 2015; Henaff et al., 2016). However,
in this case they do so in a localized fashion to facilitate in-
teraction with other computation mechanisms implemented
by the network.

6. Conclusion & discussion
We have seen in this study that long-term memory and se-
quential recall can be implemented by a simple RNN fairly
easily, and in parallel, by acting on different subspaces of the
RNN phase space. Specifically, sequential recall is achieved
by rotational dynamics localized around the origin, which
occur in a subspace orthogonal to the separatrices of the
basins of attraction that solve the classification task. Our
findings suggest that this population-level periodic activity
may serve as a general “precision timing” mechanism that
can be combined with distinct, learned computations. In-
deed, oscillations enable the introduction of small delays,
transverse to low dimensional activity of recurrent neural
circuits. An interesting line of future work would be to
investigate more thoroughly this mechanism in the pres-
ence of distinct computational tasks, such as character-level
prediction, or arithmetic operations. We believe that learn-
ing a delayed recall in conjunction with any task will lead
to generic, emergent oscillations that enable transient dy-
namics transverse to the subspaces used to perform other
computations. It may be possible to leverage this geometric
understanding for faster training by initializing networks in
a way that promotes transverse rotations.

Furthermore, this oscillatory mechanism is consistent with
observations of oscillatory dynamics in the brain (Llinás,
2014). Together with the known phenomena whereby neu-
rons in the brain perform tasks with low-dimensional activity
patterns, and that the same neurons engage in oscillatory
activity when viewed at the population-level, our findings
are consistent with a general principle of delayed recall in
neural networks, either biological or artificial.
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A. Implementation details
The network was a one-layered discrete and densely con-
nected recurrent neural network with a N = 100 neurons.
The network is composed of three real-valued matrix, the
square matrix W representing the recurrent connection be-
tween the neurons, the 3× 100 Win matrix representing the
strength of connections between the input channels and the
neurons of the network and the 100× 3 Wout matrix repre-
senting the strength of the connection between the neurons
of the network and the output neurons. At each neuron, the
signal goes through an “activation function”, in this case the
hyperbolic tangent. A schematic of the neural network is
shown on figure 5a.

The hyperbolic tangent is often used as the activation func-
tion in studies about neural networks as it is a good repre-
sentation of biological spiking neurons. It models the way
the number and strength of excitatory and inhibitory signals
entering the neuron affects its spiking frequency (Hoerzer
et al., 2014).

A discrete, as opposed to a continuous-time, network was
chosen for a few reasons. First, we wanted to see if the
findings of Sussillo & Barak (2013) could be transposed
to a discrete-time network, as the researchers themselves
where wondering in their paper. This was further motivated
by the fact that in the field of artificial intelligence, discrete-
time networks are widely used (LeCun et al., 2015) as they
are better adapted to the computer architecture. Any link
between the study of neural networks for neuroscience and
for artificial intelligence would be beneficial to both fields.
Last but not least is the fact that discrete-time networks are
much easier and faster to implement than their continuous
counterparts, and a wide array of resources to train them are
freely available.

The Win, W and Wout weights matrices were originally
set randomly (using a linear probability function) between
− 1√

3
and 1√

3
for Win and between − 1√

N
and 1√

N
for W

and Wout where N is the number of neurons. This strategy
is often used in the literature to get an initial output with
a probability distribution approaching a normal law with
average 0 and variance 1. Only the W and Wout matrices
were trained.

Since the network is recurrent, the output is potentially the
result of an infinite number of steps, which complicates
training. The solution is to “unfold” the network, i.e., to
consider only a certain number of steps back in time during
training. In figure 5b, we see the unfolded version of the
network. By trial and error we chose a 10 time-steps deep
unfolded network for training.

B. Additional figures
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(a)
(b)

Figure 5. (A) Diagram of the recurrent neural network. Each time step, the neurons receive the previous states of all neurons through a
weight matrix representing the strength of the connecting axons. Every neuron in the network uses the hyperbolic tangent as their internal
function. (B) The unfolded diagram. A truncated unfolded version of the recurrent neural network is used during training.

(a) (b)

Figure 6. (a) Slow point analysis of RNN without delay. For clarity, a cube is used to mark the approximate trajectory of neurons states
during the test. The slow points are color coded with respect to their number of unstable dimensions. This is consistent with the findings
of Sussillo and Barak. (b) Slow point analysis of RNN delayed by 8 time-steps. There are now slow points with more than three unstable
dimensions. Those are marked by red triangles and the number of unstable dimensions is written above. We posit that this is a result of
the networks’ capacity being stretched to the limit (it could not perform the task for longer delays) and not an actual change in strategy for
the long-term memory task.


