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Abstract

We develop a stochastic whole-brain and body simulator of the nematode round-
worm Caenorhabditis elegans (C. elegans) and show that it is sufficiently regu-
larizing to allow imputation of latent membrane potentials from partial calcium
fluorescence imaging observations. This is the first attempt we know of to “com-
plete the circle,” where an anatomically grounded whole-connectome simulator is
used to impute a time-varying “brain” state at single-cell fidelity from covariates
that are measurable in practice. Using state of the art Bayesian machine learning
methods to condition on readily obtainable data, our method paves the way for
neuroscientists to recover interpretable connectome-wide state representations,
automatically estimate physiologically relevant parameter values from data, and
perform simulations investigating intelligent lifeforms in silico.

1 Introduction

One of the goals of artificial intelligence, neuroscience and connectomics is to understand how
sentience emerges from the interactions of the atomic units of the brain, to be able to probe these
mechanisms on the deepest level in living organisms, and to be able to simulate this interaction ad
infinitum [1]. In this work, we assemble an anatomically grounded, interpretable probabilistic brain-
body simulator for the widely studied nematode roundworm Caenorhabditis elegans (C. elegans) [2,
3]. We then present methods for performing posterior inference in the time evolution of the state of
the worm and estimate the global simulator parameter values from readily obtainable non-invasive
calcium fluorescence data [4]. We refer to using an anatomically grounded model to infer latent
states and parameters, conditioned on partial data, as a “virtual patch clamp” (VPC). The VPC
also facilitates in silico experimentation on “digital” C. elegans specimens, by programmatically
modifying the simulator and observing the resulting simulations; enabling rapid, wide-reaching, fully
observable and perfectly repeatable exploration of hypotheses into the how the fundamental units of
the neural circuit of C. elegans combine to create intelligent behaviour.

2 Simulating C. elegans

Due to the simplicity and regularity of its anatomy, and its predictable yet sophisticated behavioural
repertoire, C. elegans is used as a “model organism” across biology and neuroscience research.
Notably, its connectome is regular across wild-type specimens and has been mapped at synapse and
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Figure 1: (a): Diagram adapted from Sarma et al. [1] reflecting the community planned development
pipeline for C. elegans simulation. Greyed out components are not considered in this paper. The
status of components are as categorized by OpenWorm [1]. (b): Successful recovery of latent states
conditioned on just 49 calcium traces, where the true trajectory is shown in black, as introduced
in Section 4 (c), (d), and (e): Learning better parameters, as introduced in Section 4 and shown in
(d) enables better recovery of latent voltage trajectories and body states (blue, Subfigures (c) and
(e) respectively) compared with parameters drawn from the prior (red). This also indicates that the
quality of the posterior predictive distributions and unconditional generations are of higher quality.

gap junction fidelity using electron microscopy [2, 3]. Because of this fixed architecture, neural
circuit simulators, imbued with anatomically correct structure, have been developed to produce
feasible whole C. elegans connectome simulators [5] by leveraging highly accurate neural dynamics
models [6]. Likewise, its simple anatomy has allowed body and locomotion simulators to be
developed [7]. The first contribution of this paper is a new C. elegans simulator that integrates
existing simulators and models [5, 7, 8] developed by the C. elegans community. At a high level, our
simulator is comprised of three components: a simulator for the time-evolution of the membrane
potential [5] and intracellular calcium ion concentration [8] in all 302 C. elegans neurons, a simulator
for the physical form of the worm and the associated neural stimuli and proprioceptive feedback [7],
and a model relating the intracellular calcium to the observable florescence data [4, 8].

The first component of our model is a simulator of connectome-scale, single-neuron fidelity neural
dynamics. We modify the simulator presented by Marblestone [5], which builds on Wicks et al.
[6], called ‘simple C. elegans’ (SCE). SCE is designed to be an easily interpretable simulator of C.
elegans neural membrane potential dynamics via single-compartment neuron models connected by
chemical synapses and electrical gap junctions. Exemplar voltage traces generated by our simulator
are shown as black dashed lines in Figure 1(b). We add to SCE a model for intracellular calcium
ion concentration [8]. We also integrate a simulator of the body shape of the worm, WormSim [7].
WormSim models the body shape in two dimensions as a series of rods, contractile units and springs
driven by impulses generated by a simplified neural network. We integrate the anatomically correct
representation used by SCE to drive WormSim and receive proprioceptive feedback. A typical
evolution of body state is shown in black in Figure 1(e). Finally we incorporate a model of the
fluorescence signals observed through calcium imaging. This dependence is described by a saturating
Hill-type conditioned on intracellular calcium concentration [8], where only M of the 302 neurons
are observed and identified (here M = 49, see Kato et al. [4]).
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To summarize our model, the neuron states, body state, and proprioceptive feedback define the latent
“brain” and “body” state of the worm, denoted at time t as xt ∈ R994. The observed data, yt ∈ RM+ ,
is the calcium florescence signal. We now demonstrate how the tools of Bayesian inference can
be employed to condition simulations on partial observations, make predictions conditionally or
unconditionally, and perform marginal maximum a posteriori parameter estimation.

3 The Virtual Patch Clamp

The second contribution of this paper is the adoption and scaling of a method to impute the entire
latent state, xt, conditioned on observable calcium imaging florescences. We wish to quantify the
distribution over the latent states conditioned on the observed data, referred to as the posterior
distribution p(x0:T |y1:T ,θ). To relate how this achieves to our outlined objectives, this represents,
under the model, the distribution over all latent neural and physiological states, xt, conditioned on
the observed data, providing the imputation element of the VPC. Forward simulation of the particles
initialized from the posterior distribution at T provides posterior predictive inference over state
evolution, where, for instance, physiological variables can be programmatically clamped (inspiring
the name VPC). Finally the posterior, p(θ|y1:T ) = p(y1:T |θ)p(θ), allows us to objectively compare
models and hypotheses, which will be used later for parameter estimation. Due to the non-invertible,
non-differentiable nature of the simulator, we use sequential Monte Carlo (SMC) for estimating the
posterior as a weighted discrete measure approximating the target distribution, as well as providing
an estimation of the model evidence, p(y1:T |θ) [9].

In our first experiment we first generate a synthetic state trajectory by sampling from the model, and
then recover the known ground-truth trajectory from observed fluorescence traces using a fixed model.
Specifically we condition on the same 49 neurons identified in the calcium imaging data released by
Kato et al. [4]. Results for this are shown in Figure 1(b), where the true state is shown in black, while
the filtering distribution recovered by SMC is shown in blue.

The blue reconstructions are congruent with the black trace, indicating that the latent behaviour of
the complete system is being well-reconstructed despite partial observability. Critically, neurons not
directly connected to observed neurons (for instance VD6) are correctly reconstructed, indicating that
the regularizing capacity of the model is sufficient to constrain these variables. Further confirmation of
the power of this method can be seen in the leftmost column of Figure 1(e), showing the predicted body
shape closely matches the true state, despite not being explicitly conditioned upon body shape. This
experiment shows that the VPC is tractable and is capable of yielding high-fidelity reconstructions
of pertinent latent states given partial calcium imaging observations via the application of Bayesian
inference to time series models of C. elegans.

4 Parameter Estimation

The posterior inference and evidence approximation presented in the previous section is useful for
imputing values and performing in silico experimentation. In the previous section we fixed the model
to demonstrate the viability of SMC for latent state imputation. We now allow the parameters of
the simulator, collectively denoted θ, such as the non-directly observable electrical and chemical
characteristics of individual synapses in the C. elegans connectome, as well as parameters of the body
model, the calcium fluorescence model, etc, to be unknown and hence must be learned. We conclude
this paper by taking concrete steps towards performing such parameter estimation, as defined by the
simulator-structured hypothesis class defined by the chosen model.

Our goal is to estimate the best simulator parameters θ∗ given observed data, i.e. θ∗ =
argmaxθ p(θ|y) = argmaxθ p(y|θ)p(θ). The method we employ for performing parameter estima-
tion is a novel combination of variational optimization (VO) [10] and SMC evidence approximation.
This results in a stochastic gradient for parameter estimation that does not require a differentiable sim-
ulator and can deal with a large number of latent variables. VO starts with the following bound [10]

min
θ

f(θ) ≤ Eθ∼q(θ|φ) [f(θ)] = U(φ). (1)

The gradient of U(φ) with respect to φ can then be computed as

∇φU(φ) = ∇φEθ∼q(θ|φ) [f(θ)] = Eθ∼q(θ|φ) [f(θ)∇φ log q(θ|φ)] , (2)
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where Monte Carlo integration is used to evaluate this expectation.

The objective function is the joint density f(θ) = −p(y,θ) = −p(y|θ)p(θ), where the likelihood
term is approximated via SMC. To our knowledge, this is the first time that pseudo-marginal methods
have been paired with variational optimization methods. We refer to this procedure as particle
marginal variational optimization (PMVO). We implement a framework for embarrassingly parallel
evaluation of multiple SMC sweeps on large, distributed high performance compute clusters, where
each SMC sweep is executed on a single node, eliminating network overheads.

We conclude by demonstrating the utility of our PMVO technique by recovering known simulator
parameters on synthetic data generated by the model. For this work, we optimize the two parameters
we introduced by integrating SCE and WormSim, namely the strength of motor stimulation, wm, and
proprioceptive feedback, ws. The results of this experiment are shown in Figure 1. Figures 1(c) and
1(e) show the imputed voltage traces and body poses when using the true parameters (blue), initial
parameters (red) and optimized parameters (green), conditioned on just 49 neurons. Recovery of
“good” parameter values facilitates good imputation of latent states, especially for body position which
is not explicitly conditioned on after initialization. Figure 1(d) shows the distribution of convergence
of the two parameters towards the true value. This experiment shows that parameter inference in C.
elegans models using PMVO is viable. Increasing the number of particles used in the SMC sweeps,
the number of samples drawn from the proposal and observing more neurons (although currently
logistically infeasible) improves the quality of the reconstructions and recovery of parameters.

5 Discussion

In this work we have explored performing Bayesian inference in whole-connectome neural and
whole-body C. elegans simulations. We describe the model-based Bayesian inference aspect of this
as a “virtual patch clamp,” whereby unobserved latent membrane potentials can be inferred from
partial observations gathered non-invasively. Our choice of inference method facilitates estimation of
the model evidence, a measure of how well the model explains the observed data. We presented a
method for maximizing this evidence without requiring differentiable simulation components. In the
past year several articles discussing open research issues pertaining to C. elegans simulation have
been produced by the C. elegans community [1, 11]. Figure 1(a) outlines the community planned
development pipeline for C. elegans simulation. Our work addresses the implementation of the
box simply labelled “optimization.” We show on representative synthetic data that our method is
capable of performing such an optimization. This approach promises to allow neuroscientists to peer
deeper into the neural function of a living organism, testing hypothesis on neural function that were
previously unreachable. It is widely touted that convolutional neural networks were developed by
wide-scale study of the V1 cortex. We believe connectome-level optimization and simulation, as
demonstrated here, is the next step in neuroscience to understanding the very root of intelligence, but
also discovering and developing techniques building towards artificial general intelligence.

6 Acknowledgements

Andrew Warrington is funded by the Shilston Scholarship, Keble College, Oxford. Arthur Spencer
is supported by the Wellcome Trust. We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Canada CIFAR AI Chairs Program, Compute
Canada, Intel, and DARPA under its D3M and LWLL programs.

References
[1] G. P. Sarma, C. W. Lee, T. Portegys, V. Ghayoomie, T. Jacobs, B. Alicea, M. Cantarelli, M. Currie, R. C.

Gerkin, S. Gingell, et al. Openworm: overview and recent advances in integrative biological simulation
of caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences, 373
(1758):20170382, 2018.

[2] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure of the nervous system of the
nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 314(1165):1–340, Nov 1986.

[3] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B. Chklovskii. Structural properties of
the caenorhabditis elegans neuronal network. PLOS Computational Biology, 7(2):1–21, 02 2011. doi:
10.1371/journal.pcbi.1001066.

4



[4] S. Kato, H. Kaplan, T. Schrödel, S. Skora, T. Lindsay, E. Yemini, S. Lockery, and M. Zimmer. Global brain
dynamics embed the motor command sequence of caenorhabditis elegans. Cell, 163(3):656–669, 2015.

[5] A. Marblestone. Simple c. elegans. www.github.com/adammarblestone/simple-C-elegans.
[6] S. Wicks, C. Roehrig, and C. Rankin. A dynamic network simulation of the nematode tap withdrawal

circuit: predictions concerning synaptic function using behavioral criteria. Journal of Neuroscience, 16
(12):4017–4031, 1996.

[7] J. H. Boyle, S. Berri, and N. Cohen. Gait modulation in c. elegans: an integrated neuromechanical model.
Frontiers in computational neuroscience, 6:10, 2012.
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