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Note. “Thought Curvature” is similar to “Thought vectors[19]”, 

with the distinction that supermanifold[1]/curvatures[21] are 

used to describe the "Supersymmetric Artificial Neural 

Network"(SANN) hypothesis. (See manifold[2]/curvature[21] work 

in geometric deep learning by Michael Bronstein et al.[20]) 

Introduction. Machine learning non-trivially 
concerns the application of families of functions 
that guarantee more and more variations in 
weight space. 
 
This means that machine learning researchers 
study what functions are best to transform the 
weights of the artificial neural network, such that 
the weights learn to represent good values for 
which correct hypotheses or guesses can be 
produced by the artificial neural network. 
 
The “Supersymmetric Artificial Neural Network” 
(or ‘thought curvature’) is reasonably yet another 
way to represent richer values in the weights of 
the model; because supersymmetric values can 
allow for more information to be captured about 
the input space. For example, supersymmetric 
systems can capture potential-partner signals, 
which is beyond the feature space of magnitude 
and phase signals learnt in typical real valued 
neural nets and deep complex neural networks 
respectively.  As such, a brief historical progression 
of geometric solution spaces for varying neural 
network architectures follows: 

1. An optimal weight space produced by 
shallow or low dimension integer valued 
nodes or real valued artificial neural nets, 
may have good weights that lie for 
example, in one simple (ℤ𝑛 𝑜𝑟 ℝ𝑛 −
𝑜𝑟𝑑𝑒𝑟𝑒𝑑) cone per class/target group. 
(This may guarantee some variation, but 
not enough for more sophisticated tasks 
of higher dimension)

[5][10]
 

 
2. An optimal weight space produced by 

deep and high-dimension-absorbing real 
valued artificial neural nets, may have 
good weights that lie in disentangleable 
(ℝ𝑛 ∗ ℝ𝑛 − 𝑜𝑟𝑑𝑒𝑟𝑒𝑑) manifolds per 
class/target group convolved by the 
operator ∗, instead of the simpler regions 
per class/target group seen in item (1). 

The “Supersymmetric Artificial Neural Network” 

hypothesis(with the novel-denotation 𝜙(𝑥; 𝜃, 𝜃)⊤𝑤) 

seeks to explore a regime with the potential to 

fundamentally use supersymmetric methods to 

construct artificial neural networks, therein  seeking 

to engender novel, non-trivial contributions to deep 

or hierarchical artificial learning. Looking at the 

progression of ‘solution geometries’; going from 

 𝑆𝑂(𝑛) representation (such as Perceptron like 

models) to 𝑆𝑈(𝑛) representation (such as 

UnitaryRNNs) has guaranteed richer and richer 

representations in weight space of the artificial 

neural network, and hence better and better 

hypotheses were generatable. The Supersymmetric 

Artificial Neural Network hypothesis explores a 

natural step forward, namely 𝑆𝑈(𝑚|𝑛) 

representation. These supersymmetric biological 

brain representations (Perez et al.) can be 

represented by supercharge compatible special 

unitary notation 𝑆𝑈(𝑚|𝑛), or 𝜙(𝑥; 𝜃, 𝜃)⊤𝑤 

parameterized by 𝜃, 𝜃, which are supersymmetric 

directions, unlike 𝜃 seen in the typical non-

supersymmetric deep learning model. Notably, 

Supersymmetric values can encode or represent 

more information than the typical deep learning 

model, in terms of “partner potential” signals for 

example. This paper does not contain empirical 

code concerning supersymmetric artificial neural 

networks, although it does highlight empirical 

evidence, that indicates how such types of 

supersymmetric learning models could exceed the 

state of the art, due to preservation features seen in 

progressing through earlier related models from the 

days of older perceptron like models that were not 

supersymmetric. 
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(This may guarantee more variation in the 
weight space than (1), leading to better 
hypotheses or guesses)

[6]
 

 
3. An optimal weight space produced by 

shallow but high dimension-absorbing 
complex valued artificial neural nets, may 
have good weights that lie in multiple 
(ℂ𝑛 − 𝑜𝑟𝑑𝑒𝑟𝑒𝑑) sectors per class/target 
group, instead of the real regions per 
class/target group seen amongst the prior 
items.

 
(This may guarantee more variation 

of the weight space than the previous 
items, by learning additional features, in 
the “phase space”. This also leads to 
better hypotheses/guesses)

[7]
 

 

4. An optimal weight space produced by 
deep or high dimension-absorbing 
complex valued artificial neural nets, may 
have good weights that lie in chi 
distribution bound, (ℂ𝑛 ∗ ℂ𝑛 − 𝑜𝑟𝑑𝑒𝑟𝑒𝑑) 
rayleigh space per class/target group 
convolved by the operator ∗, instead of 
the simpler sectors/regions per 
class/target group seen amongst the 
previous items.

 
(This may guarantee more 

variation of the weight space than the 
prior items, by learning phase space 
representations, and by extension, 
strengthen these representations via 
convolutional residual blocks. This also 
leads to better hypotheses/guesses)

[8]
 

 

5. The “Supersymmetric Artificial Neural 
Network” operable on high dimensional 
data, may reasonably generate good 
weights that lie in disentangleable 

(𝐶∞(𝑅𝑚|𝑛) − 𝑜𝑟𝑑𝑒𝑟𝑒𝑑) supermanifolds 
per class/target group, instead of the 
solution geometries seen in the prior 
items above.  Supersymmetric values can 
encode rich partner-potential delimited 
features beyond the phase space of (4) in 
accordance with cognitive biological 
space

[3]
, where (4) lacks the partner 

potential formulation describable in 
Supersymmetric embedding.

[9]
 

 
Another view of “solution geometry” history, 

which may promote a clear way to view the 

reasoning behind the subsequent pseudocode 

sequence. 

1. There has been a clear progression of 
“solution geometries”, ranging from those 
of the ancient Perceptron

[5]
 to complex 

valued neural nets 
[8]

, grassmann manifold 
artificial neural   
networks

[13]
 or unitaryRNNs.

[12][14][16] 
 

These models may be denoted 
by 𝜙(𝑥; 𝜃)⊤𝑤 parameterized 
by 𝜃, expressible as geometrical groups 
ranging from orthogonal

[4]
 to special 

unitary group
[18] 

based: 𝑆𝑂(𝑛) to 𝑆𝑈(𝑛)…, 
and they got better at representing input 
data i.e. representing richer weights, thus 
the learning models generated better 
hypotheses or guesses. 

2. By “solution geometry” I mean simply the 
class of regions where an algorithm's 
weights may lie, when generating those 
weights to do some task. 

3. As such, if one follows cognitive science, 
one would know that biological brains 
may be measured in terms of 
supersymmetric operations. (Perez et al, 
“Supersymmetry at brain scale” 

[3]
) 

4. These supersymmetric biological brain 
representations can be represented by 
supercharge

[11]
 compatible special unitary 

notation 𝑆𝑈(𝑚|𝑛), or 𝜙(𝑥; 𝜃, 𝜃)⊤𝑤 

parameterized by 𝜃, 𝜃 
[9]

, which are 
supersymmetric directions, unlike 𝜃 seen 
in item (1). Notably, Supersymmetric 
values can encode or represent more 
information than the prior classes seen in 
(1), in terms of “partner potential” signals 
for example. 

5. So, state of the art machine learning work 
forming 𝑈(𝑛) or 𝑆𝑈(𝑛) based solution 
geometries, although non-
supersymmetric, are already in 
the family of supersymmetric solution 
geometries that may be observed as 
occurring in biological brain or 𝑆𝑈(𝑚|𝑛) 
supergroup

[17]
 representation. 

 

A naive supersymmetric artificial neural network 
architecture. (See points 1 to 5 in 

[15]
) It seems 

feasible that a C∞ bound atlas-based learning 
model, where said C∞ is in the family of 
supermanifolds from supersymmetry, may be 
obtained from a system, which includes charts 
(𝑘

𝑛) of grassmann manifold networks 𝐺𝑅𝑘,𝑛 and 

stiefel manifolds 𝐺𝐹𝑘,𝑛, in (𝜙𝐼 , 𝑈𝐼) terms, where 

there exists some invertible submatrix entailing 
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matrix 𝐴 ∈ 𝜙𝐼(𝑈𝐼 ∩ 𝑈𝐽) for 𝑈𝐼 = 𝜋(𝑉𝐼) where 𝜋 is 

a submersion mapping on some stiefel manifold 
𝐺𝐹𝑘,𝑛, thereafter enabling some differentiable 

grassmann manifold 𝐺𝑅𝑘(ℝ𝑛) wherein 

𝑉𝐼 = {𝑢 ∈ ℝ𝑛×𝑘: 𝑑𝑒𝑡(𝑢𝐼) ≠ 0}.  

 
Conclusion. Pertinently, the “Edward 
Witten/String theory powered supersymmetric 
artificial neural network”, is one wherein 
supersymmetric weights are sought. 
 
Many machine learning algorithms are not 
empirically shown to be exactly biologically 
plausible, i.e. Deep Neural Network algorithms, 
have not been observed to occur in the brain, but 
regardless, such algorithms work in practice in 
machine learning.   
 
Likewise, regardless of Supersymmetry's 
elusiveness at the LHC, as seen above, it may be 
quite feasible to borrow formal methods from 
strategies in  physics even if such strategies are yet 
to show related physical phenomena to exist; thus 
it may be pertinent/feasible to try to construct a 
model that learns supersymmetric weights, as I 
proposed throughout this paper, following the 

progression of solution geometries going from 
𝑆𝑂(𝑛) to 𝑆𝑈(𝑛) and onwards to 𝑆𝑈(𝑚|𝑛) 

[17]
. 
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Appendix: Artificial neural network/symmetry group landscape visualization. 

 
Figure Description: The two axes above are in arbitrary units, that seek to display non-arbitrary progression in representation power and symmetry group 

connectivity degree. A larger picture is available here. 

 

 

 

 

1. 𝑶(𝒏) structure – Orthogonal is not 

connected enough, therefore not amenable to 

gradient descent in machine learning. (Paper: See 

note 2 at end of page 2, in reference 
[22]

.) 

2. 𝑺𝑶(𝒏) structure – Special Orthogonal; is 

connected, gradient descent compatible, 

while preserving orthogonality, concerning 

normal space-time. (Paper: See paper in item 

1). 

3. 𝑺𝑼(𝒏) structure – Special Unitary; is 

connected, gradient descent compatible; 

complex generalization of 𝑶(𝒏), but only a 

subspace of larger unitary space, concerning 

normal space-time. (The Unitary Evolution 

Recurrent Neural Network
[14]

 related to 

complex unit circle seen in 𝑈(1) in physics 

(See page 2 in 
[24]

.)) 

4. 𝑈(𝑛) structure – Unitary
[16]

; is connected, 

gradient descent compatible; Larger unitary 

landscape than 𝑆𝑈(𝑛), concerning normal 

space-time.   

5. 𝑆𝑈(𝑚|𝑛) structure –  Supersymmetric; is 

connected 
[23]

, thereafter reasonably gradient 

descent compatible and even larger than the 

𝑈(𝑛) landscape, to permit sparticle 

invariance, being a Poincare group 

extension (See page 7 in 
[24]

) containing both 

normal space-time and anti-commuting 

components, as seen in the Supersymmetric 

Artificial Neural Network which this paper 

proposes. 
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