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Abstract
Variational Bayesian Inference is a popular methodology for approximating posterior distributions
over Bayesian neural network weights. Recent work developing this class of methods has explored
ever richer parameterizations of the approximate posterior in the hope of improving performance.
In contrast, here we share a curious experimental finding that suggests instead restricting the vari-
ational distribution to a more compact parameterization. For a variety of deep Bayesian neural
networks trained using Gaussian mean-field variational inference, we find that the posterior stan-
dard deviations consistently exhibit strong low-rank structure after convergence. This means that
by decomposing these variational parameters into a low-rank factorization, we can make our varia-
tional approximation more compact without decreasing the models’ performance. Furthermore, we
find that such factorized parameterizations improve the signal-to-noise ratio of stochastic gradient
estimates of the variational lower bound, resulting in faster convergence.

1. Introduction

Bayesian Neural Networks (MacKay, 1992; Neal, 1993) explicitly represent their parameter-
uncertainty by forming a posterior distribution over model parameters, instead of relying on a single
point estimate for making predictions, as is done in traditional deep learning. Besides offering im-
proved predictive performance over single models, Bayesian neural networks are also more robust
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to hard examples (Raftery et al., 2005), have better calibration of predictive uncertainty and thus
can be used for out-of-domain detection or other risk-sensitive applications (Ovadia et al., 2019).

Variational inference (Peterson, 1987; Hinton and Van Camp, 1993) is a popular class of meth-
ods for approximating the posterior distribution p(w|x,y), since the exact Bayes’ rule is often in-
tractable to compute for models of practical interest. This class of methods specifies a distribution
qθ(w) of given parametric or functional form as the posterior approximation, and optimizes the ap-
proximation by solving an optimization problem. In particular, we minimize the negative Evidence
Lower Bound (negative ELBO) approximated by samples from the posterior:

Lq ≈ DKL[qθ(w)||p(w)]− 1

S

S∑
s=1

log p(y|w(s),x), w(s) ∼ qθ(w), (1)

by differentiating with respect to the variational parameters θ (Salimans et al., 2013; Kingma and
Welling, 2013).

In Gaussian Mean Field Variational Inference (GMFVI) (Blei et al., 2017; Blundell et al.,
2015), we choose the variational approximation to be a fully factorized Gaussian distribution:

q(W) = N (µq,Σq) =
m∏
i=1

n∏
j=1

q(wij), with q(wij) = N (µij , σ
2
ij) (2)

where W ∈ Rm×n is a weight matrix of a single network layer and i and j are the row and
column indices in this weight matrix. In practice, we often represent the posterior standard deviation
parameters σij in the form of a matrix A ∈ Rm×n

+ . With this notation, we have the relationship
Σq = diag(vec(A2)) where the elementwise-squared A is vectorized by stacking its columns,
and then expanded as a diagonal matrix into Rmn×mn

+ . While Gaussian Mean-Field posteriors
are considered to be one of the simplest types of variational approximations, with some known
limitations (Giordano et al., 2018), they scale to comparatively large models and generally provide
competitive performance (Ovadia et al., 2019). However, when compared to deterministic neural
networks, GMFVI doubles the number of parameters and is often harder to train due to the increased
noise in stochastic gradient estimates.

Beyond fully factorized mean-field, recent research in variational inference has explored richer
parameterizations of the approximate posterior in order to improve the performance of Bayesian
neural networks (see Appendix A and Figure 3). For instance, various structures of Gaussian
posteriors have been proposed, with per layer block-structured covariances (Louizos and Welling,
2016; Sun et al., 2017; Zhang et al., 2017), full covariances (Barber and Bishop, 1998) with differ-
ent parametrizations (Seeger, 2000), up to more flexible approximate posteriors using normalizing
flows (Rezende and Mohamed, 2015) and extensions thereof (Louizos and Welling, 2017). In con-
trast, here we study a simpler, more compactly parameterized mean-field variational posterior which
ties variational parameters in the already diagonal covariance matrix. We show that such a posterior
approximation can also work well for a variety of models. In particular we find that:
• Converged posterior standard deviations under GMFVI consistently display strong low-rank

structure. This means that by decomposing these variational parameters into a low-rank fac-
torization, we can make our variational approximation more compact without decreasing our
model’s performance.
• Factorized parameterizations of posterior standard deviations improve the signal-to-noise ra-

tio of stochastic gradient estimates, and thus not only reduce the number of parameters com-
pared to standard GMFVI, but also can lead to faster convergence.
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2. The k-tied Normal Distribution: Exploiting Low-Rank Parameter-Structure in
Mean Field Posteriors

We start by empirically studying the properties of the spectrum of posterior standard deviation matri-
ces A, post training, in models already trained until convergence using standard fully-parameterized
Gaussian mean-field variational distributions. Interestingly, we observe that those matrices naturally
exhibit a low-rank structure (see Figure 1), i.e,

A ≈ UVT (3)

for some U ∈ Rm×k, V ∈ Rn×k and k a small value (e.g., 2 or 3). This observation motivates the
introduction of the following variational family, which we name k-tied Normal:

k-tied -N (W;µq,U,V) = N
(
µq,diag

(
vec
(
(UVT )2

)))
, (4)

where the squaring of the matrix UVT is applied elementwise. Due to the tied parametrization of
the diagonal covariance matrix, we emphasize that this variational family is smaller—i.e., included
in—the standard Gaussian mean-field variational distribution family. Interestingly, we find that
despite its compactness, our posterior is able to match the fully parametrized GMFVI in terms of
ELBO and predictive performance both in a post training approximation (see Figure 1) and when
training the tied parameters U and V from a random initialization (see Figure 2).

Furthermore, the total number of the standard deviation parameters in our method is k(m +
n) from U and V, compared to mn for A in the standard GMFVI parametrization. Given that
in our experiments the k is very low (e.g k = 2) this reduces the number of standard deviation
parameters from quadratic to linear in the dimensions of the layer, see Table 1. More importantly,
such parameter sharing across the weights leads to higher signal-to-noise ratio during training and
thus in some cases faster convergence, see Figure 2. Finally, the matrix variate Gaussian distribution
(Gupta and Nagar, 2018), referred to asMN and already used for variational inference in the most
closely related work of Louizos and Welling (2016) and Sun et al. (2017), is similar to our k-tied
Normal distribution when k = 1 (see also Figure 3). Interestingly, we prove that for k ≥ 2, our
k-tied Normal distribution cannot be represented by anyMN distribution (see Appendix B).

3. Experimental results

We now provide a short description of the experimental setting and more detailed experimental
results. In our experiments we use three model types: a 3 layer Multilayer Perceptron (MLP) trained
on the MNIST dataset (LeCun and Cortes, 2010), a LeNet-type Convolutional Neural Network
(CNN) (LeCun et al., 1998) trained on the CIFAR-100 dataset (Krizhevsky et al., 2009), and a
vanilla LSTM model (Hochreiter and Schmidhuber, 1997) trained on the IMDB dataset (Maas et al.,
2011). Appendix E provides more details about the experimental setting. We highlight that our
experiments focus primarily on the comparison across a broad range of model types rather than
competing with the state-of-the-art results over the specifically used datasets. Therefore, we use
small to medium models that are known to train well using the standard GMFVI approach explored
in this paper. Scaling GMFVI to larger model sizes is still a challenging research problem (Osawa
et al., 2019).
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Rank k -ELBO ↓ NLL ↓ Accuracy ↑
Full 3.83±0.020 2.23±0.017 42.1±0.49

1 4.33±0.021 2.30±0.016 41.7±0.49

2 3.88±0.020 2.24±0.017 42.2±0.49

3 3.86±0.020 2.24±0.017 42.1±0.49

Figure 1: Posterior standard deviations,
in contrast to posterior means, of dense
layers in LeNet CNN trained using stan-
dard GMFVI display strong low-rank
structure and can be approximated with-
out loss to predictive metrics. Top: Ex-
plained variance1 per singular value from
SVD of matrices of converged posterior
means and standard deviations. Bottom:
Impact of post training low-rank approx-
imation of the posterior standard devi-
ation matrices on model’s performance.
We report mean and standard error of the
mean (SEM) for each metric across 100
models samples.

Figure 1 shows that GMFVI applied to the LeNet CNN
learns posterior standard deviation matrices of the CNN’s
dense layers that have most of their variance explained1 by
the first two components of their SVD decomposition. Fur-
thermore, we also see that these matrices can be approxi-
mated post training by their low-rank SVD decompositions
with little ELBO and predictive performance loss. In Ap-
pendix C we show that these results also hold for the ana-
lyzed MLP and LSTM models.

Figure 2 shows the results of exploiting the above ob-
servation by applying the k-tied Normal posterior during
GMFVI training. We see that for k ≥ 2, the k-tied Nor-
mal posterior is able to achieve the performance competitive
with the standard GMFVI posterior parametrization, while
reducing the total number of model parameters. The bene-
fits of using the k-tied Normal posterior are most visible for
models where the dense layers with the k-tied Normal pos-
terior constitute a significant portion of the total number of
the model parameters (e.g. MLPs and CNNs with dense lay-
ers for classification). Furthermore, we observe a significant
increase in the signal-to-noise ratio2 (SNR) of the gradients
of parameters of the GMFVI posterior standard deviations
when using the k-tied Normal posterior. Importantly, we
also see that the increase in the gradient SNR translates into
faster convergence of the negative ELBO objective in some
of the analyzed models.

4. Conclusion

In this work we have shown that Bayesian Neural Networks trained with standard Gaussian mean-
field variational inference exhibit posterior standard deviation matrices that can be approximated
with little information loss by a low-rank decomposition. This suggests that richer parameteriza-
tions of the variational posterior may not always be needed, and that compact parameterizations
can also work well. We used this insight to propose a simple, yet effective variational posterior
parametrization, which speeds up training and reduces the number of variational parameters with-
out degrading predictive performance on three different model types.

In future work, we hope to scale up variational inference with compactly parameterized approx-
imate posteriors to much larger models and more complex problems. For mean-field variational
inference to work well in that setting several challenges will likely need to be addressed (Osawa
et al., 2019); improving the signal-to-noise ratio of ELBO gradients using our compact variational
parameterizations may provide a piece of the puzzle.

1. Explained variance for the rank k approximation is calculated as γ2
k/

∑
i′ γ

2
i′ , where γi′ are singular values.

2. SNR for each gradient value is calculated as E[g2b ]/Var[g
2
b ], where gb is the gradient value for a single parameter.

The expectation E and variance V ar of the gradient values gb are calculated over a window of last 10 batches.
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Model & Dataset Rank k -ELBO ↓ NLL ↓ Accuracy ↑ #Par. [k] ↓
MNIST, MLP full 0.501±0.0061 0.133±0.0040 96.8±0.18 957
MNIST, MLP 1 0.539±0.0063 0.155±0.0043 96.1±0.19 482
MNIST, MLP 2 0.520±0.0063 0.129±0.0039 96.8±0.18 484
MNIST, MLP 3 0.497±0.0060 0.120±0.0038 96.9±0.18 486
CIFAR100, CNN full 3.72±0.018 2.16±0.016 43.9±0.50 4,405
CIFAR100, CNN 1 3.65±0.017 2.12±0.015 45.5±0.50 2,262
CIFAR100, CNN 2 3.76±0.019 2.15±0.016 44.3±0.50 2,268
CIFAR100, CNN 3 3.73±0.018 2.13±0.016 44.3±0.50 2,273
IMDB, LSTM full 0.538±0.0054 0.478±0.0052 79.5±0.26 2,823
IMDB, LSTM 1 0.592±0.0041 0.512±0.0040 77.6±0.26 2,693
IMDB, LSTM 2 0.560±0.0042 0.484±0.0041 78.2±0.26 2,694
IMDB, LSTM 3 0.550±0.0051 0.491±0.0050 78.8±0.26 2,695

Rank k
MNIST, MLP Dense 2, SNR at step

1000 5000 9000
full 4.13±0.027 4.45±0.091 3.21±0.035

1 5840±190 158±3.8 5.3±0.20

2 7500±240 140±11 4.3±0.26

3 7000±270 117±1.7 4.1±0.20

Rank k
MNIST, MLP, -ELBO at step
1000 5000 9000

full 42.16±0.070 26.52±0.016 15.39±0.016

1 43.11±0.039 14.85±0.017 2.06±0.027

2 42.74±0.090 13.97±0.023 1.82±0.017

3 42.63±0.068 13.61±0.020 1.80±0.031

Figure 2: Left: impact of the k-tied Normal posterior on test ELBO, test predictive performance and number
of model parameters. Test performance is reported as a mean and SEM across 100 weights samples after
training each model for ≈300 epochs. Right top: mean gradient SNR in the Dense 2 layer of the MNIST
MLP model at increasing training steps for different ranks of tying k. We observe a similar increase in the
SNR from tying for the CNN and the LSTM models as for the MLP model shown here. We report mean
and SEM across 3 training runs with different random seeds. Right bottom: Negative ELBO on the MNIST
validation data set at increasing training steps for different ranks of tying k. See also Figure 6, which shows
negative ELBO convergence plots for the all three models types.
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Appendix A. More details on the related work

The application of variational inference to neural networks dates back at least to Peterson (1987);
Hinton and Van Camp (1993). Many developments3 have followed those seminal research efforts,
in particular regarding (1) the expressiveness of the variational posterior distribution and (2) the
way the variational parameters themselves can be structured to lead to compact, easier-to-learn and
scalable formulations. We organize the discussion of this section around those two aspects, with a
specific focus on the Gaussian case. For a graphical overview of the related work see Figure 3.

factorized
distributiondistribution

joint

tied
parameters

flat
parameters

normalizing
flows

hierarchical
VB

Gaussian mean field

Our method

structured
mean field

Matrix-variate
Normal VB

Noisy
K-FAC

Figure 3: Approaches to variational Bayes on
Bayesian neural networks, ordered by i) whether
they factorize the variational distribution q, and
ii) whether they tie the variational parameters.

Full Gaussian posterior. Because of their sub-
stantial memory and computational cost, Gaussian
variational distributions with full covariance matri-
ces have been primarily applied to (generalized) lin-
ear models and shallow neural networks (Jaakkola
and Jordan, 1997; Barber and Bishop, 1998; Mar-
lin et al., 2011; Titsias and Lázaro-Gredilla, 2014;
Miller et al., 2017; Ong et al., 2018). To represent
the dense covariance matrix efficiently in terms of
variational parameters, several schemes have been
proposed, including the sum of low-rank plus di-
agonal matrices (Barber and Bishop, 1998; Seeger,
2000; Miller et al., 2017; Zhang et al., 2017; Ong
et al., 2018), the Cholesky decomposition (Challis
and Barber, 2011) or by operating instead on the precision matrix (Tan and Nott, 2018; Mishkin
et al., 2018).

3. We refer the interested readers to Zhang et al. (2018) for a recent review of variational inference.
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Gaussian posterior with block-structured covariances. In the context of Bayesian neural net-
works, the layers represent a natural structure to be exploited by the covariance matrix. When
assuming independence across layers, the resulting covariance matrix exhibits a block-diagonal
structure that has been shown to be a well-performing simplification of the dense setting (Sun et al.,
2017; Zhang et al., 2017), with both memory and computational benefits. Within each layer, the
corresponding diagonal block of the covariance matrix can be represented by a Kronecker product
of two smaller matrices (Louizos and Welling, 2016; Sun et al., 2017), possibly with a parametriza-
tion based on rotation matrices (Sun et al., 2017). Finally, using similar techniques, Zhang et al.
(2017) proposed to use a block tridiagonal structure that better approximates the behavior of a dense
covariance.

Fully factorized mean-field Gaussian posterior. A fully factorized Gaussian variational distri-
bution constitutes the simplest option for variational inference. The resulting covariance matrix
is diagonal and all underlying parameters are assumed to be independent. While the mean-field
assumption is known to have some limitations—e.g., underestimated variance of the posterior dis-
tribution (Turner and Sahani, 2011) and robustness issues (Giordano et al., 2018)—it leads to scal-
able formulations, with already competitive performance, as for instance illustrated by the recent
uncertainty quantification benchmark of Ovadia et al. (2019).

Variational family Parameters (total)
Multivariate Normal mn+ mn (mn+1)

2
Diagonal Normal mn+mn
MN (rank 1) mn+m+ n
k-tied Normal mn+ k(m+ n)

Table 1: Number of variational parameters for
a variational family for a matrix W ∈ Rm×n.
MN (rank 1) is from Louizos and Welling
(2016).

Because of its simplicity and scalability, the
fully-factorized Gaussian variational distribution
has been widely used for Bayesian neural net-
works (Graves, 2011; Ranganath et al., 2014; Blun-
dell et al., 2015; Hernández-Lobato and Adams,
2015; Zhang et al., 2017; Khan et al., 2018).

Our approach can be seen as an attempt to fur-
ther reduce the number of parameters of the (al-
ready) diagonal covariance matrix. Closest to our
approach is the work of Louizos and Welling (2016).
Their matrix variate Gaussian distribution instanti-
ated with the Kronecker product of the diagonal row- and column-covariance matrices leads to a
rank-1 tying of the posterior variances. In contrast, we explore tying strategies beyond the rank-1
case, which we show to lead to better performance (both in terms of ELBO and predictive metrics).
Importantly, we further prove that tying strategies with a rank greater than one cannot be represented
in a matrix variate Gaussian distribution, thus clearly departing from (Louizos and Welling, 2016)
(see Appendix B for details).

Our approach can be also interpreted as a particular case of hierarchical variational infer-
ence (Ranganath et al., 2016) where the prior on the variational parameters corresponds to a Dirac
distribution, non-zero only when a pre-specified low-rank tying relationship holds.

We close this related work section by mentioning the existence of other strategies to produce
more flexible approximate posteriors, e.g., normalizing flows (Rezende and Mohamed, 2015) and
extensions thereof (Louizos and Welling, 2017).
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Appendix B. Proof of the Matrix Variate Normal Parameterization

In this section of the appendix, we formally explain the connections between the k-tied Normal
distribution and the matrix variate Gaussian distribution (Gupta and Nagar, 2018), referred to as
MN .

Consider positive definite matrices Q ∈ Rr×r and P ∈ Rc×c and some arbitrary matrix
M ∈ Rr×c. We have by definition that W ∈ Rr×c ∼ MN (M,Q,P) if and only if vec(W) ∼
N (vec(M),P⊗Q), where vec(·) stacks the columns of a matrix and ⊗ is the Kronecker product

TheMN has already been used for variational inference by Louizos and Welling (2016) and
Sun et al. (2017). In particular, Louizos and Welling (2016) consider the case where both P and
Q are restricted to be diagonal matrices. In that case, the resulting distribution corresponds to our
k-tied Normal distribution with k = 1 since

P⊗Q = diag(p)⊗ diag(q) = diag(vec(qp>)).

Importantly, we prove below that, in the case where k ≥ 2, the k-tied Normal distribution cannot
be represented as a matrix variate Gaussian distribution.

Lemma. [Rank-2 matrix and Kronecker product] Let B be a rank-2 matrix in Rr×c
+ . There do

not exist matrices Q ∈ Rr×r and P ∈ Rc×c such that

diag(vec(B)) = P⊗Q.

Proof Let us introduce the shorthand D = diag(vec(B)). By construction, D is diagonal and has
its diagonal terms strictly positive (it is assumed that B ∈ Rr×c

+ , i.e., bij > 0 for all i, j).
We proceed by contradiction. Assume there exist Q ∈ Rr×r and P ∈ Rc×c such that D =

P⊗Q.
This implies that all diagonal blocks of P ⊗ Q are themselves diagonal with strictly positive

diagonal terms. Thus, pjjQ is diagonal for all j ∈ {1, . . . , c}, which implies in turn that Q is
diagonal, with non-zero diagonal terms and pjj 6= 0. Moreover, since the off-diagonal blocks pijQ
for i 6= j must be zero and Q 6= 0, we have pij = 0 and P is also diagonal.

To summarize, if there exist Q ∈ Rr×r and P ∈ Rc×c such that D = P⊗Q, then it holds that
D = diag(p)⊗ diag(q) with p ∈ Rc and q ∈ Rr. This last equality can be rewritten as bij = pjqi
for all i ∈ {1, . . . , r} and j ∈ {1, . . . , c}, or equivalently

B = qp>.

This leads to a contradiction since qp> has rank one while B is assumed to have rank two.

Appendix C. Low rank-structure in the GMFVI posterior standard deviations

We provide here more results from the post training analysis of the converged posterior standard
deviations trained with the standard parameterization of the GMFVI. In particular, while in the
main paper we focused on the CNN model, here we provide also the results for the MLP and LSTM
model.

Our main experimental observation is that the standard GMFVI learns posterior standard de-
viation matrices that have a low-rank structure across different model types. To show this, we

10
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investigate the results of the SVD decomposition of posterior standard deviation matrices for three
types of models trained until ELBO convergence using GMFVI. Figure 5 shows per rank percentage
of explained variance with respect to the rank k of the low-rank SVD approximation. The percent
of explained variance for the rank k approximation is calculated as 100 · γ2k/

∑
i′ γ

2
i′ , where γi′ are

singular values. We observe that most of the variance in the posterior standard deviation parameters
is captured in the rank-1 approximation. However, a more fine-grained analysis shows that a rank-2
approximation can encompass nearly all of the remaining variance. Finally, we note that we do not
observe the same behaviour for the posterior mean parameters as we do for the posterior standard
deviation parameters. Figure 4 further supports this claim visually by comparing the heat maps of
the full-rank posterior standard deviations matrix with its rank-1 and rank-2 approximations. In
particular, we observe that the rank-2 approximation results in the heat-map looking visually very
similar to the full-rank matrix.

Figure 4: Heat map of the posterior standard deviation matrix for the weights in the first dense layer of
a LeNet CNN trained using GMFVI on the CIFAR-100 dataset. Left: no approximation. Middle: rank-1
approximation. Right: rank-2 approximation. The rank-2 approximation looks visually similar to the full-
rank matrix/no approximation, confirming our quantitative results from Figure 5.
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Figure 5: Explained variance per singular value from SVD of matrices of converged posterior means and
posterior standard deviations for different layers of three types of models trained using standard GMFVI:
MLP (left), CNN (center), LSTM (right). Posterior standard deviations clearly display strong low-rank struc-
ture, with most of the variance contained in the top few singular values, while this is not the case for posterior
means.

Motivated by the above observation, we show that it is possible to replace the full-rank posterior
standard deviation matrix with its low-rank approximation without a decrease in performance. Table
2 shows the comparison of performance of models with different ranks of approximation to their
posterior standard deviation matrix. The results show that the post training approximation with
ranks higher than 1 achieves predictive performance very close to that of the full-rank matrix. This
observation itself could be used as a form of a post training network compression. Moreover, it
gives rise to further interesting exploration directions such as formulating posteriors that exploit
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such a low rank structure. In this paper by explore this particular direction in the form of the k-tied
Normal posterior.

MLP CNN LSTM
Rank -ELBO ↓ NLL ↓ Accuracy ↑ -ELBO ↓ NLL ↓ Accuracy ↑ -ELBO ↓ NLL ↓ Accuracy ↑
Full 0.431±0.0057 0.100±0.0034 97.6±0.15 3.83±0.020 2.23±0.017 42.1±0.49 0.536±0.0058 0.493±0.0057 80.1±0.25

1 3.41±0.019 0.677±0.0040 93.6±0.25 4.33±0.021 2.30±0.016 41.7±0.49 0.687±0.0058 0.491±0.0056 80.0±0.25

2 0.456±0.0059 0.107±0.0033 97.6±0.15 3.88±0.020 2.24±0.017 42.2±0.49 0.621±0.0058 0.494±0.0057 80.1±0.25

3 0.450±0.0059 0.106±0.0033 97.6±0.15 3.86±0.020 2.24±0.017 42.1±0.49 0.595±0.0058 0.493±0.0056 80.1±0.25

Table 2: Impact of post training low-rank approximation of the GMFVI-trained posterior standard deviation
matrices on ELBO and predictive performance, for three types of models. We report mean and SEM of each
metric across 100 weights samples.

Appendix D. Impact of the k-tied Normal on the GMFVI convergence speed

Figure 6 shows convergence plots of negative ELBO on respective validation data sets for differ-
ent model types trained with GMFVI using the standard parametrization (full-rank) and the k-tied
Normal posterior with different levels of tying k. We observe that the impact of the k-tied Nor-
mal posterior on the convergence depends on the model type. For the MLP model the impact is
strong and consistent with the k-tied Normal posterior increasing convergence speed compared to
the standard GMFVI parametrization. For the LSTM model we also observe a similar speed-up.
However, for the CNN model the impact of the k-Normal posterior on the ELBO convergence is
much smaller. We hypothesize that this is due to the fact that we use the k-tied Normal posterior
for all the layers trained using GMFVI in the MLP and the LSTM models, while in the CNN model
we use the k-tied Normal posterior only for some of the GMFVI trained layers. More precisely, in
the CNN model we use the k-tied Normal posterior only for the two dense layers, while the two
convolutional layers are trained using the standard parametrization of the GMFVI.
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Figure 6: Impact of the k-tied Normal posterior with different ranks k on the convergence of negative ELBO
(lower is better) reported on validation datasets of the MLP (left), CNN (center), and LSTM (right) models.
Full-rank is the standard parametrization of the GMFVI without any tying.

Appendix E. Experimental details

Model architectures We analyze three types of GMFVI Bayesian neural network models:

• Multilayer Perceptron (MLP): a network of three dense layers and ReLu activations that we
train on the MNIST dataset (LeCun and Cortes, 2010). We use the last 10,000 examples of
the training set as a validation set. The three layers have sizes of 400, 400 and 10 hidden
units.
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• Convolutional Neural Network (CNN): a LeNet architecture (LeCun et al., 1998) with two
convolutional layers and two dense layers that we train on the CIFAR-100 dataset (Krizhevsky
et al., 2009). We use the last 10,000 examples of the training set as a validation set. The two
convolutional layers have filters of sizes 32 and 64. The two dense layers have sizes of 512
and 100 hidden units.

• Long Short-Term Memory (LSTM): a model that consists of an embedding and an LSTM cell
(Hochreiter and Schmidhuber, 1997), followed by a single unit dense layer. We train it on an
IMBD dataset (Maas et al., 2011), in which we use the last 5,000 examples of the training set
as a validation set. The LSTM cell consists of two dense weight matrices, namely kernel and
recurrent kernel. The embedding and the LSTM cell are each of size 128. More concretely,
we use the model architecture available in the Keras (Chollet et al., 2015) examples4, but
without dropout.

GMFVI training In the MLP and the CNN models we approximate the posterior using GMFVI
for all the weights (both kernel and bias weights). In the LSTM model we approximate the posterior
using GMFVI only for the kernel and recurrent kernel weights, while the posterior for the bias
weights is approximated using a MAP solution.

In each of the three models we use a mean-field Normal posterior with the standard reparametriza-
tion trick (Kingma and Welling, 2013) and a Normal prior N (0, σp) with a single scalar standard
deviation hyper-parameter σp for all the layers. We initialize the variational posterior means using
the standard He initialization (He et al., 2015) and the posterior standard deviations using samples
from N (0.01, 0.001). We select the σp for each of the models separately from a set of {0.2, 0.3}
based on the performance on the validation data set.

For optimization we use an Adam optimizer (Kingma and Ba (2014)). We pick the optimal
learning rate for each model from the set of {0.0001, 0.0003, 0.001, 0.003} based on the perfor-
mance on the validation data set. We chose the batch size also based on the performance on the
validation data set. For the MLP and the CNN models we use the batch size of 1024 and for the
LSTM model a batch size of 128.

Low-rank structure analysis To investigate the low-rank structure in the converged posterior
standard deviation matrices, we generate low-rank approximations to these matrices. It is possible
that such low-rank approximations contain negative values. In such cases, we threshold the mini-
mum values of the resulting approximations at a very low positive constant to meet the constraint
on the positive values of the standard deviations.

k-tied Normal posterior training When training the GMFVI models with the k-tied Normal
variational posterior, we use the k-tied Normal variational posterior for all the dense layers of the
three analyzed models. More concretely, we use the k-tied Normal variational posterior for all the
three layers of the MLP model, for the two dense layers of the CNN model and for the LSTM cell’s
kernel and recurrent kernel.

We initialize the parameters uik and vjk of the k-tied Normal distribution so that after the outer-
product operation the respective standard deviations σij have the same mean values as we obtain
when using the standard GMFVI posterior parametrization. In other words, we initialize the param-
eters uik and vjk so that after the outer-product operation the respective σij standard deviations have

4. https://github.com/keras-team/keras/blob/master/examples/imdb_lstm.py
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means at 0.01 before transforming to log-domain. This means that in the log domain the parameters
uik and vjk are initialized as 0.5(log(0.01) − log(k)). We also add white noise N (0, 0.1) to the
values of uik and vjk in the log domain to break symmetry.

We recommend using KL annealing for training the models with the k-tied Normal posterior.
With KL annealing, we linearly scale-up the contribution of the KL term from a fraction of its full
value to its full contribution over the course of training. We select the best linear coefficient for
the KL annealing from {5 × 10−5, 5 × 10−6} per batch and increase the KL contribution every
100 batches. For instance, we use KL annealing to obtain the results for the test performance in
Figure 2. However, we do not use KL annealing for the runs for which we report the SNR and
negative ELBO convergence results in the same Figure 2. In these two cases KL annealing would
occlude the values, which show the clear impact of the k-tied Normal posterior.
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