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Mining Novel Multivariate Relationships in Time
Series Data Using Correlation Networks
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Abstract—In many domains, there is significant interest in capturing novel relationships between time series that
represent activities recorded at different nodes of a highly complex system. In this paper, we introduce multipoles, a
novel class of linear relationships between more than two time series. A multipole is a set of time series that have strong
linear dependence among themselves, with the requirement that each time series makes a significant contribution to the
linear dependence. We demonstrate that most interesting multipoles can be identified as cliques of negative correlations
in a correlation network. Such cliques are typically rare in a real-world correlation network, which allows us to find
almost all multipoles efficiently using a clique-enumeration approach. Using our proposed framework, we demonstrate
the utility of multipoles in discovering new physical phenomena in two scientific domains: climate science and
neuroscience. In particular, we discovered several multipole relationships that are reproducible in multiple other
independent datasets and lead to novel domain insights.

Index Terms—multivariate linear patterns; correlation mining; spatio-temporal; climate teleconnections; fMRI
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1 INTRODUCTION

IN many domains, understanding the relationships be-
tween time series is essential for obtaining actionable

insights. For instance, in climate science, pressure dipoles,
which are pairs of locations with strong negative corre-
lations in their Sea Level Pressure time series, have been
extensively studied, and have been linked with anomalous
weather events all over the globe such as forest fires, hurri-
canes etc. [1], [2], [3]. Similarly, in neuroscience, researchers
have discovered pairs of brain regions that exhibit posi-
tive correlations between their activity time series. These
correlated time series represent brain regions exhibiting
synergistic activity [4].

In this work, we define a novel class of linear rela-
tionships, called multipoles, that involve more than two
time series, also referred to as variables. We say that a set
of variables is a multipole if i) the variables show strong
linear dependence, and ii) each variable makes a significant
contribution to the linear dependence, i.e., excluding any of
the variables from the set significantly weakens the strength
of the linear dependence among the remaining variables. We
define linear dependence in terms of the variance of a linear
combination of the standardized (zero mean, unit variance)
vectors. We measure the strength of the linear dependence
of a set of time series by the variance of their least variant
linear combination, i.e., a (unit-length) linear combination
that has the minimum variance. The smaller the variance of
this linear combination, the more constant (less variable) the
linear combination, and thus higher the linear dependence,
and vice-versa. We define the contribution of each variable
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to the linear dependence as the reduction in the strength of
the linear dependence of the smaller set when this variable
is removed. We define linear gain as the minimum contribu-
tion of included variables to the linear dependence.

We next illustrate multipoles with a real-world example.
Consider a set S of three time series T1, T2, and T3, shown
in Figure 2(a), which capture the traffic volume on three
different roads in Minnesota as shown in Figure 1. The three
bottommost plots of Figure 2(b) show the least variant linear
combination for each possible pair, while the top plot of
Figure 2(b) shows the least variant linear combination for
all three. Note that the linear combination of all three time
series has a variance of only 0.08.Thus, we say that there
exists a strong, although not perfect, linear dependence
among the above three time series.

Further, note that each of the three time series forms
a crucial component of the relationship, as excluding any
one of them will significantly weaken the strength of the
linear dependence among the remaining two time series.
For example, if T3 is excluded from the set, the variance
of the least variant linear combination Z12 of T1 and T2
turns out to be 0.33, which is much higher than the variance
0.08 of Z , thus indicating a significant contribution from T3.
Similarly, if we exclude T1 or T2 instead of T3, the variance
of least variant combinations become 0.58 and 0.74. (See the
three bottommost plots of Figure 2(b).) The linear gain for
{T1, T2, T3} is min{0.33, 0.58, 0.74} − 0.08 = 0.25.

An explanation for the relationships illustrated above
can be provided by the notion of conservation of flow.
Two of the time series, T1 and T2, were observed on the
roads that act as major tributaries to the highway where
T3 is being observed. All the southbound traffic coming
from the tributaries is likely to merge at the highway, thus
leading to a strong linear dependence among the three time
series. Omitting any single time series leads to a weaker
linear dependence because, unlike the highway, traffic flow
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in the tributaries significantly changes during weekends
(see peaks and drops every Sunday), which weakens the
strength of their pairwise linear relationships with highway.
However, the simultaneous rise and fall in traffic on both
tributaries complements each other, resulting in a stronger
linear dependence among the three time series.

Multipoles can also be seen in other domains. For in-
stance, we used the techniques presented in this paper to
find several previously unknown multipole relationships
between climate variables observed at more than two dis-
tant locations. Similarly, in neuroscience, we found novel
multipole relationships between different brain regions that
are triggered by specific visual and auditory stimuli. Some
of these relationships were found to have insightful domain
interpretations. (See Section 6.)

The relationships and conditional independence of two
or more variables have been widely studied in different
contexts using a variety of techniques including regression
models [5], [6], [7], [8], PCA-based approaches [9], [10],
structure learning methods [11], [12], correlation network
analysis [13], [14], [15], [16], etc. However, as discussed in
Section 3, multipole relationships as defined here can be
viewed as novel in the sense that none of these previous
approaches can be used to find the type of relationship
represented by multipoles in the data.

A naı̈ve approach to find all multipoles in a time series
dataset would be to enumerate all possible combinations
of time series and measure the strength of their linear de-
pendence and linear gain. However, this is computationally
infeasible due to the combinatorial nature of the search
space. In this paper, we present an efficient approach to find
multipoles.

This approach formulates the multipole-search problem
as a clique-enumeration problem in a correlation network,
where each node represents a time series, and the weight of
an edge between two nodes represents the strength of the
linear correlation between the corresponding time series.
Our proposed problem formulation is motivated by the
following two key empirical observations: the upper limit
on the linear gain of a multipole is dependent on i) the
size of multipole, and ii) the maximum correlation strength
among two variables in a multipole.

Leveraging these observations, we propose a novel
Clique Based Multipole Search (CoMEt) approach to find
most interesting multipoles in a time series dataset. The
central idea of the approach is to identify and restrict the
search for multipoles to family of subsets, which we refer
to as ‘promising candidates‘ that are more likely to exhibit
multipole relationships with stronger linear gain between
their members. Using the above empirical observations, we
show that most promising candidates of multipoles with
high linear gain appear in a correlation network either
as negative cliques, i.e. sets with all pairwise correlations
being negative, or negative-equivalent cliques, that can be
transformed into negative cliques by flipping the signs of
one or more of its member variables (see Definitions 11 and
12 for further details). The number of promising candidates
typically turns out to be much smaller in scenarios where
multipoles with high linear gain are desired, thereby con-
tributing to the remarkably high computational efficiency of
our approach, although with some loss of completeness in

Fig. 1: A multipole among daily traffic time series T1,T2, and
T3 observed for three roads in Minneapolis

(a) (b)

Fig. 2: (a) Standardized (zero mean and unit variance) daily
traffic volume for the three roads shown in Figure 1. (b)
Time series of their linear combinations

the final output.

Furthermore, we propose CoMEtExtended, a more gen-
eralized version of CoMEt approach, where we rede-
fine what constitutes a promising candidate. In particular,
CoMEtExtended involves an additional parameter that can
be tuned to expand or prune the scope of promising can-
didates beyond negative cliques and negative-equivalent
cliques, which allows one to achieve a better trade-off
between computational efficiency and completeness at dif-
ferent thresholds of linear gain (see Section 4.5 for further
details).

Our paper makes several key contributions: 1) We for-
mally define multipole, a novel relationship in time series
data and devise measures to quantify its interestingness. 2)
We formulate a novel and computationally efficient pattern-
mining approach to find most interesting multipoles in
a time series dataset. 3) Further, we propose an empiri-
cal framework to evaluate discovered multipoles that in-
cludes an empirical procedure to assess the statistical sig-
nificance of multipoles. 4) Using our proposed framework,
we demonstrate the relevance of multipoles to two scientific
domains: climate science and neuroscience.
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2 DEFINITIONS AND NOTATIONS

Let S = {X1, X2, ..., Xk} denote a set of k standardized
(zero mean, unit variance) time series observed over T
consecutive timestamps. (We will use the terms ‘time series‘
and ‘variables‘ interchangeably in what follows.) Also, let X
be the corresponding T × k data matrix and let Σ = XTX
be the k × k covariance matrix. Since all the variables
(time series) are standardized, the correlation matrix and
covariance matrices will be exactly the same for X . We next
define a few measures on a set of variables which will be
eventually used to formally define a multipole.
Definition 1. A Normalized Linear Combination (NLC) refers

to a linear combination with normalized weights. Specif-
ically, for a given vector l ∈ Rk with ||l||2 = 1, a
normalized linear combination of variables in the set, S,
is given as ZS = Xl.

Definition 2. Given a set of variables S = {X1, X2, ..., Xk},
let Z∗S be the Least Variant Normalized Linear Combi-
nation (LVNLC) of variables, i.e., the NLC that has the
least variance across the T observations. Formally,

Z∗S = Xl∗ where l∗ = argmin
l∈Rk,||l||2=1

var(Xl).

In linear algebra, a set S = {X1, X2, ..., Xk} of variables
is said to be linearly dependent if there exists a linear
combination of the variables that equals the 0 vector. Since
we have subtracted the mean from our vectors (time series),
any linear combination will also have a mean of zero, and
thus the variance of a linear combination of S is equivalent
to finding the L2 norm of the linear combination. Hence,
the LVNLC of S finds the linear combination of S that is
the closest approximation to the 0 vector in terms of the L2
norm. If the linear combination of our time series (vectors)
is perfectly constant, i.e., the time series vectors are linearly
dependent, the variance of LVNLC will be exactly zero. In
the other extreme case, when all the variables are mutually
orthogonal to each other, the variance of LVNLC will be
equal to 1. (This is because we have standardized the times
series in S to have unit variance.) Thus, variance of LVNLC
can be used as an inverse indicator of the strength of linear
dependence. Based on this observation, we define the linear
dependence of a set as follows:
Definition 3 (Linear Dependence:). The linear dependence,

σS , of a set of vectors S is given by 1− var(Z∗S).

Relation between σS and least eigenvalue of correlation
matrix: Notice that on performing the eigenvalue decom-
position of correlation matrix Σ of the variables in the
set, the eigenvalues so obtained are equal to the variances
of the projections of the data along their corresponding
eigenvectors. Since Z∗S corresponds to the direction of least
variance, Z∗S is nothing but the eigenvector corresponding
to the least eigenvalue λmin of Σ. Thus, the variance of Z∗S
is exactly equal to the least eigenvalue of Σ and therefore,

σS = 1− λmin (1)

Before proceeding further, the following two properties
of linear dependence are noteworthy:
Lemma 1. For any set S of standardized variables, σS ∈

[0, 1].

Proof: See the Supplemental material. �

Lemma 2. The linear dependence of a set S is always less
than or equal to that of its supersets.

Proof: See the Supplemental material. �
Although linear dependence indicates a strong relation-

ship among the variables, it does not exclude the presence
of irrelevant variables in the set. For instance, let S =
{X1, X2, X3, X4} be a set of linearly dependent variables
with the linear relation being X1 + X2 + X3 + 0X4 = 0.
Although the four variables are linearly dependent, X4 is
an irrelevant variable and can be pruned from S without
weakening the linear dependence among remaining vari-
ables. Hence, to avoid irrelevant variables in the pattern,
we next propose a measure called linear gain that checks
the minimum contribution from all member variables to the
linear dependence of the set.

Definition 4 (Linear Gain:). The linear gain of a set S with
|S| > 2 is measured as the gain in the linear dependence
of S with respect to one of its proper subsets S′ that
has strongest linear dependence. Mathematically, we can
write linear gain of S as

∆σS = σS − max
S′⊂S

σS′ (2)

From Lemma 2, we get that the linear dependence of a
set is always greater than that of its subsets, which implies
that the linear gain of a set will always be positive. Fur-
thermore, we can say that the subset with strongest linear
dependence will be of size |S| − 1. Thus, the linear gain can
be more precisely written as

∆σS = σS − max
Xi∈S

σS−Xi
(3)

Higher values of linear gain imply that a more significant
drop in linear dependence would be observed if any one of
the variables are excluded from the set, thereby ensuring
that no irrelevant variables are included. Furthermore, a
high threshold on linear gain will avoid redundancies in
the set. For instance, in the example from traffic data de-
scribed in previous section, suppose we insert T4 into the
set {T1, T2, T3}, where T4 comes from a sensor close to the
sensor for T3, on the the same road. Since T4 is almost a
duplicate of T3, then the linear dependence of the resultant
set S′ = {T1, T2, T3, T4} would be almost 1, since there
would exist a linear combination T4 − T3 ≈ 0 with near
perfect linear dependence. However, that would also imply
that many of its subsets, e.g. {T1, T3, T4}, would have near
perfect linear dependence. Hence by definition, the linear
gain of S′ will be very close to zero. More generally, a high
threshold on linear gain will also avoid multicollinearity in
the set. For instance, consider a set S = S1∪S2 that consists
of two independent subsets S1 and S2 of perfectly linearly
dependent variables. By definition, the linear gain of such a
set S will be 0, and hence will be discarded.

Using the above definitions, we next present the formal
definition of a multipole.

Definition 5. A multipole refers to the set S of variables
with |S| ≥ 2 such that σS ≥ σ and ∆σS ≥ δ, where σ
and δ are user-specified thresholds.
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We next define the notion of maximality in a multipole.

Definition 6 (Maximal Multipole). In a set Q of multipoles,
a multipole S is considered to be maximal if none of its
supersets are in Q.

A maximal multipole is likely to capture the underly-
ing signal more comprehensively compared to its subsets.
Hence, all non-maximal multipoles could potentially be
pruned in the final output of the search.

Using the above definitions, we formulate the multipole-
discovery problem as the following:

Definition 7 (Problem Formulation:). Given δ and σ, find
the set P of all maximal multipoles in a given time series
dataset.

3 RELATED WORK

In this section, we present an overview of different tech-
niques that have been applied to study relationships be-
tween two or more variables and discuss their similarities
and differences with multipoles.

Eigenanalysis-based Approaches: Eigenanalysis based-
approaches such as Principal Component Analysis (PCA)
[9], [10] and Independent Component Analysis [17] com-
monly focus on finding linear combinations of variables
that capture the dominant global signals of variability in
the data. Thus, they are interested in the largest eigenvalues
and often treat the smaller eigenvalues as noise and discard
them. If we consider a dataset of the traffic time series at
all roads in the city and apply PCA on it, it is expected
to capture dominant global patterns of variability such as
work-home traffic patterns, patterns influenced by social
events, etc. In contrast, multipoles capture the least-variant
local linear dependencies among small subsets of vectors.
(Roads in this example.) This corresponds to subsets of
vectors whose least eigenvalue (of the correlation matrix)
is small, i.e., close to 0.

Regression Models: Regression models, such as ordi-
nary least squares (OLS) and its regularized variants ,
e.g. LASSO [5], are used to find a linear combination of
independent variables that predicts the given dependent
variable with high accuracy [6], [7]. The independent vari-
ables can therefore be considered as showing a strong linear
dependence with the dependent variable. However, such
techniques do not have a notion of gain and thus are
not designed to find multipole relationships. To illustrate,
consider once again the highway time series example. If
we use LASSO to find a set of predictors for the highway
time series T1, LASSO would always include the time series
that is most strongly correlated with T1 as the predictor,
say T ′1, collected at another sensor on the same highway.
Consequently, it will miss all multipole patterns that include
T1 but not T ′1, many of which otherwise could be capturing
interesting and non-trivial relationships of T1 with distant
road stations.

Error-In-Variables Models: Error-in-Variables (EIV)
models are a special class of regression models that ac-
count for uncertainties in the measurements of both depen-
dent and independent variables (unlike standard regression

models, which assume that independent variables are mea-
sured accurately). Like EIV models, the definition of multi-
poles does not create any distinctions among the participat-
ing variables. One of the multivariable linear EIV models,
named Total Least Squares (TLS) has striking similarities
with the proposed definition of multipoles [8]. In particular,
TLS focuses on learning a linear combination of a given set
of dependent and independent variables to minimize the
joint residual error in all the variables, which is exactly same
as finding a linear combination of variables with highest
linear dependence. Like multipoles, the solution to TLS is
obtained by computing the eigenvector corresponding to
the least eigenvalue of the covariance matrix of the given
set of variables. TLS does not have a notion of linear gain,
although it can be shown that a given set of variables
obtains a high linear gain only if 1) TLS obtains a unique
solution, and 2) all the regression coefficients obtained in
the solution of TLS are significantly higher than zero in
magnitude. Thus, applying TLS on a given set of variables
could be an alternative approch to evaluate the goodness
of a multipole relationship formed between the variables
of the set. However, TLS does not provide any approach
for searching through a large set of variables, e.g., the time
series that capture temperature on the Earth’s surface. Thus,
it cannot not be used as a tool to find all the subsets of
variables forming multipole patterns from a larger dataset.

Structure Learning: Another stream of related work
in machine learning literature is that of structure learning
methods that learn the structure of stochastic dependencies
among variables in a dataset in the form of a graphical
model called Markov network [11], [12], which is a graph
where each node represents a variable and follows the
pairwise Markovian property, according to which it is inde-
pendent of any non-neighboring node in the network con-
ditioned on all of its neighboring nodes. Markov networks
are typically studied to infer the conditional independence
between different subsets of variables using various sta-
tistical inference techniques [18]. In contrast the multipole
patterns are defined to capture direct or indirect dependen-
cies between different subsets of variables. An experimen-
tal demonstration on the limitations of structure learning
methods in finding multipoles is provided in supplemental
material.

Correlation Networks: Linear relationships in time se-
ries data have also been studied in past using correlation
networks, where each time series represent a node, and the
weight of an edge between any two nodes represents the
strength of the linear correlation between the corresponding
time series. Correlation networks have been used in past for
studying a variety of patterns, the most popular being ‘com-
munity‘, which refers to a group of nodes (time series) with
strong mutual positive correlations [13], [14]. If considered
as a potential multipole, a community would have very low
linear gain since its time series are highly similar, i.e., they
show considerable collinearity. In contrast, time series in a
multipole with high linear gain cannot be highly similar.

Some works, including our own [15], have further stud-
ied pairs of negatively correlated communities, which form
dipoles. Multipoles often have negative correlations among
vectors—see Section 4.2. Nonetheless, those links can be
relatively weak, i.e., not meaningful dipoles. Further, there



IEEE TRANSCATIONS ON KNOWLEDGE AND DATA ENGINEERING 5

is no guarantee that a dipole will show up as part of a
multipole pattern. We also recently defined tripoles [16], but
a multipole is not a generalization of a tripole. A tripole con-
sists of a root and a pair of leaf time series, such that the sum
of the leaf time series shows much stronger correlation with
the root compared to either of their individual correlations
with the root. Thus, as with regression, one of the variables
(root or dependent variable) has a special role, which is
not the case for multipoles. Further, tripoles are restricted
to only one linear combination (i.e. sum of leaves), whereas
multipoles allow arbitrary normalized linear combination to
attain linear dependence. More importantly, there does not
seem to be a way to generalize the tripole concept beyond
three time series in a way that would facilitate efficient
search for such patterns in a large data sets.

In summary, the problem of finding multipoles in the
data is a novel and unique problem and to the best of our
knowledge, there doesn’t exist any method in the relevant
literature that is directly suitable to solve this problem.

4 FINDING MULTIPOLES

The combinatorial aspect of the problem makes it extremely
challenging to come up with an approach that is both com-
putationally efficient and guarantees completeness of the
search. A brute-force approach would examine all subsets
of size k, varying k from 3 to N , the total number of time
series in the dataset. While such an approach guarantees
completeness of the search, it will easily become computa-
tionally infeasible even for very small datasets due to its
exponential time complexity. To give an estimate, one of our
real-world datasets is quite small in size and has only 171
time series. However, performing a brute-force search on
a regular desktop over all subsets of i) size 4 takes about 4
hours, ii) size 5 takes more than 5 days, and so on for subsets
of size beyond 5.

In this paper, we propose a correlation graph-based
approach to capture most interesting multipoles in a com-
putationally efficient manner. Our approach is primarily
motivated by some empirical observations that indicate a
direct relationship between the linear gain of a set and the
strengths of pairwise correlations between the members of
the set. Leveraging these observations, our approach iden-
tifies and restricts the search for multipoles to a family of
subsets, which we refer to as ‘promising candidates‘ that are
more likely to exhibit multipole relationships with stronger
linear gain between their members. Such a family of subsets
are usually much rarer in the data, thereby contributing
to the remarkably high computational efficiency of our
approach, although with some loss of completeness in the
final output of multipoles, especially at lower thresholds on
linear gain.

In the remainder of this section, we first define a canon-
ical form for a set of variables called self-canceling form that
has linear dependence and linear gain identical to that of
the original set. We then present our empirical observations
that indicate an inverse relationship between linear gain of a
set and the largest pairwise correlation in its canonical form.
Finally, we describe how the empirical observations can be
leveraged to identify promising candidates for multipoles
and describe our proposed approach in detail.

4.1 Self-Cancellation
Definition 8. A set is said to be self-canceling if all the

weights in its LVNLC are non-negative.

Any non self-canceling set S can be converted into a self-
canceling set S̃, by flipping the signs of all the members in
S that have negative weights in LVNLC of S. For example,
consider the set S ≡ T1, T2, T3 of three traffic time series
from transportation example discussed in Section 1. The
LVNLC of S was observed to be 0.6T1 + 0.65T2 − 0.47T3
(see top panel of Figure 2). By flipping the sign of T3, we
get a new set S̃ ≡ {T1, T2,−T3}, whose LVNLC is given by
0.6T1 +0.65T2 +0.47(−T3). Since all the variables in S̃ have
non-negative weights in its LVNLC, S̃ is a self-canceling
set. It is important to note that flipping the signs of one
or more variables does not affect the eigenvalues of their
correlation matrix. Therefore, S and S̃ will have identical
linear dependence and linear gain. Based on the above ideas,
we can define a canonical form of the set called the self-
canceling form as the following.
Definition 9. A self-canceling form of a set S is a canonical

form S̃ that is obtained by flipping the signs of all the
variables that have negative weights in LVNLC of S.

4.2 Empirical Observations
We are now in a position to describe our empirical ob-
servations that relate linear gain of a set S with largest
pairwise correlation in its self-canonical form S̃. Specifically,
let ρS denote the highest pairwise correlation observed
in S̃. Figure 3 then shows scatter plots between ∆σS (X-
axis) and ρS (Y-axis) for more than a million correlation
matrices of sizes k× k for k = 3, 4, 5. Each of these matrices
were generated by sampling all

(k
2

)
pairwise correlations

between [−1, 1] using a uniform distribution. Among the
generated matrices, only the ones that satisfy positive semi-
definiteness were considered to be valid correlation matri-
ces. The implementation of the procedure can be accessed at
this URL 1. From Figure 3, we make two key observations:

First key observation: All the plots in Figure 3 show
that the sets with largest linear gain (the rightmost end of
the distribution) always lie below horizontal green line that
corresponds to equation ρS = 0. This implies that the linear
gain of a set S tends to be higher when the largest pairwise
correlation in S̃ is strongly negative. More generally, for all
sets that form multipoles with linear gain at least δ, there
exists an upper bound on the largest pairwise correlation in
their self-canceling forms.

Second key observation: The maximum possible linear
gain of a multipole of size k is 1

k−1 . (In Figure 3, we can see
that for k equal to 3,4, and 5, the maximum linear gain is
0.5, 0.33, and 0.25, respectively.) The maximum linear gain
corresponds to the set where all the pairwise correlations in
its self-canceling version equals −1

k−1 . This implies that the
linear gain is smaller for larger multipoles. Hence, if we are
only interested in finding multipoles with linear gain at least
δ, we can safely ignore all sets beyond of size

⌊
1+δ
δ

⌋
. Both of

the above two observations were found to empirically hold
true also for sets of sizes beyond 5.

1. https://github.com/15saurabh16/Multipoles
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(a) 3-Poles (b) 4-Poles (c) 5-Poles

Fig. 3: Empirical relationship between linear gain ∆σS of a set S (X-axis) and largest pairwise correlation in its self-canceling
form S̃ (Y-axis) on more than 106 generated k × k correlation matrices for k ∈ [3, 5]. Vertical red-dash line in each plot
indicates largest value of linear gain observed. All promising candidates for CoMEt approach lie below the ρS = 0 (green
solid line). All multipoles with linear gain larger than a given threshold δ lie to the right of the vertical solid black line.

(a) Negative-
Equivalent clique

(b) Negative clique

Fig. 4: Illustrating equivalence between a negative-
equivalent clique and a negative clique.

Based on the above empirical observations, we next de-
fine a promising candidate for a multipole in the following
subsection.

4.3 Promising Candidates

Definition 10. A set S is said to be a promising candidate
if i) |S| ≤

⌊
1+δ
δ

⌋
, where δ is the user-specified threshold

on linear gain, and ii) maximum pairwise correlation in
its self-canceling form S̃ is negative.

Promising candidates can be classified into two types: i)
Negative Cliques, and ii) Negative Equivalent Cliques.

Definition 11. A negative clique refers to a set where all the
pairwise correlations between its members are negative.

The terminology is motivated from the appearance of
such sets in a correlation graph, where each vertex repre-
sents a variable and the weight of an edge e(Xi, Xj) is equal
to corr(Xi, Xj). Such sets would appear as a clique of nega-
tive edges in the correlation graph. It can be shown that the
self-canceling form of any negative clique is itself,i.e. S = S̃,
and by definition satisfies the requirement of all pairwise
correlations in S̃ to be negative. Therefore, a negative clique
is a promising candidate.

Definition 12. A negative-equivalent clique refers to a set
S whose self-canceling form S̃ is a negative clique.

All negative-equivalent cliques can be identified using
the following lemma.

Lemma 3. A set S is a negative-equivalent clique iff it can
be partitioned into two negative cliques S1 and S2 such
that the all the cross correlations between members of S1

and S2 are non-negative.

Proof: See supplemental material.
�

4.4 Proposed Approach: CoMEt
Leveraging the above empirical observations and the con-
cept of promising candidates discussed in previous section,
we propose our Clique Based Multipole SEarch (CoMEt)
to find multipoles. The central idea of CoMEt is to find all
promising candidates for multipoles (negative cliques and
negative-equivalent cliques) and then check each of them to
obtain true multipoles. To find all promising candidates, we
first construct a graph such that every promising candidate
forms a clique in it. We then obtain all maximal promising
candidates by enumerating all the maximal cliques of the
constructed graph. Note that maximal clique-enumeration
problem is NP-complete in general. However, the cliques of
our interest tend to be rare in the graphs generated from
real-world datasets, which allows us to recover most of
the promising candidates in much less computing time. For
each maximal clique obtained, we examine its subcliques
and select all those that form true multipoles. Finally we
eliminate all duplicate and non-maximal multipoles to ob-
tain the final set of maximal multipoles.

Algorithm 1 summarizes the CoMEt approach. We begin
by finding all maximal promising candidates in line 3, viz.
maximal negative cliques and maximal negative-equivalent
cliques using Algorithm 2. Among the obtained maximal
promising candidates, we then obtain all the multipoles in
line 3 using Algorithm 3. Finally, in line 5, we eliminate
duplicate and non-maximal multipoles using Algorithm 4.
We next describe each of the modules used in the different
steps of CoMEt.

4.4.1 FIND MAXIMAL PROMISING CANDIDATES
This module is used to find all maximal promising candi-
dates in the data that include all negative and negative-
equivalent cliques. Algorithm 2 summarizes this module.
The key idea is to construct a correlation graph (network) G
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Algorithm 1 CoMEt (Clique Based Multipole Search)
Input Dataset:D, Parameters: σ,δ
Output set U of maximal multipoles with linear gain ≥ δ.

1: C ← FIND PROMISING CANDIDATES(D)
2: for each clique S in C do
3: U ← GET MULTIPOLES FROM CANDIDATE(S)
4: end for
5: U ← REMOVE DUPLICATES & NON-MAXIMALS(U )
6: return U

(lines 1-4) such that a set of nodes of size ≥ 3 in G would
form a clique iff it is a negative clique or negative-equivalent
clique. To accomplish that, we first construct two identical
graphs G1 and G2, such that for both graphs, a set of nodes
will form a clique iff it is a negative clique. To obtain such
graphs, we begin by creating a set V1 = {v11, v12, ..., v1n} of
n nodes such that each node v1i corresponds to a time series
Xi in the given dataset D. For any pair of nodes (vi, vj), an
edge is drawn iff corr(Xi, Xj) ≤ 0. Let E1 denote the set of
all such edges. Then G1 = (V1, E1) is the desired correlation
graph where a clique will be formed among a set of nodes iff
their corresponding variables in D form a negative clique.
Similarly, an identical correlation graph G2 = (V2, E2) can
be constructed on a set of nodes V2 = {v21, v22, ..., v2n},
where each node v2i corresponds to a time series Xi in the
given dataset D.

Next, to include edges for non-negative correlations in
all negative-equivalent cliques, we construct a setE of cross-
edges between nodes of G1 and G2. Specifically, we connect
each node v1i ∈ V1 to all the nodes v2j ∈ V2 such that
corr(Xi, Xj) ≥ 0. As a result of this operation, for any
negative-equivalent clique S = S1∪S2, where S1 and S2 are
its two negative subcliques, all the non-negative correlations
across S1 and S2 are now included. Hence, in the resultant
graph G = (V1∪V2, E1∪E2∪E), every negative-equivalent
clique will also appear as a clique. Also note that every
clique S of size ≥ 3 in G would be a promising candidate; it
would either be a negative clique (if S ⊂ G1 or S ⊂ G2), or
a negative-equivalent clique (if it includes nodes from both
G1 or G2).

From the resultant graph G, all the maximal promising
candidates could be obtained by enumerating all maxi-
mal cliques in graph G using any of the standard clique-
enumeration algorithms. In this work, we used an efficient
algorithm proposed in [19] (line 11) to enumerate maximal
cliques in sparse graphs (implementation provided by au-
thors in [20]).

Note that every maximal promising candidate will re-
sult in formation of two maximal cliques in G. For in-
stance, every negative clique will form two cliques: one
in G1 and G2 each. Similarly, a negative-equivalent clique
S = (S1 = {Xi, Xj}, S2 = {Xk}), where S1 and S2 are two
negative sub-cliques, will result in formation of two cliques:
(v1i, v1j , v2k) and (v2i, v2j , v1k) in G. For every maximal
promising candidate, exactly one of the maximal cliques is
retained (line 12). Finally, the set of retained maximal cliques
is returned as the set of all maximal promising candidates.

4.4.2 GET MULTIPOLES
This procedure is applied to each of the obtained maximal
promising candidates to extract all multipole relationships.

Algorithm 2 FIND MAXIMAL PROMISING CANDIDATES
Input Dataset:D,ρ . ρ = 0 for CoMEt
Output set C of all maximal promising candidates
Correlation Graph Construction:

1: V1 ← set of n vertices v11, v12, ..., v1n corresponding to n variables
X1, X2, ..., Xn in D

2: E1 ← All pairs (v1i, v1j) s.t. corr(Xi, Xj) ≤ 0
3: G1 = (V1, E1)
4: G2 = (V2, E2) be the exact duplicate of G1

5: E ← φ . An empty set of edges
6: for each v1i ∈ V1 do
7: E′ ← all pairs (v1i, v2j) s.t. corr(Xi, Xj) ≥ 0
8: E = E ∪ E′

9: end for
10: G = (V1 ∪ V2, E1 ∪ E2 ∪ E)
11: C ← All maximal cliques of G . algorithm proposed in [19]
12: Remove all duplicate maximal cliques from C
13: return C

As summarized in Algorithm 3, we begin by checking if
the given candidate S forms a multipole by comparing
its linear dependence and linear gain with user-specified
thresholds σ and δ, respectively. If so, then S is added to
the set of discovered multipoles and we move on to the
next promising candidate. Otherwise, it could be possible
that one or more of the subsets of S might form a multipole
that satisfies the thresholds. However, if σS turns out to be
lower than the threshold σ, then by Lemma 2, all the subsets
of S would also have weaker linear dependence than σ and
thus, could be safely ignored. Therefore, only if σS ≥ σ,
do we perform an exhaustive search on all subsets of S
of sizes [3,

⌊
1+δ
δ

⌋
] and select all the ones that satisfy the

thresholds. The range of sizes of subsets is derived based
on the observation made in section 4.2, which states that for
a given threshold δ on linear gain, all sets of sizes beyond⌊
1+δ
δ

⌋
can be safely discarded.

Applying the above procedure to all maximal promising
candidates might result in inclusion of several non-maximal
multipoles in the output. Furthermore, a multipole could be
generated multiple times from different maximal promising
candidates. Hence, in the final step of CoMEt, we eliminate
all non-maximal and duplicate multipoles using the module
described below.

Algorithm 3 GET MULTIPOLES FROM CANDIDATE(S)
Input: set S, σ, δ
Output All multipoles S′ with σS′ ≥ σ, and ∆σS′ ≥ δ

1: if ∆σS ≥ δ and σS′ ≥ σ then
2: M ← S
3: else if σS′ ≥ σ then
4: M ← all subsets S′ of S s.t. |S′| ∈ [3,

⌊
1 + 1

δ

⌋
], σS′ ≥ σ, and

∆σS′ ≥ δ
5: end if
6: return M

4.4.3 REMOVE NON-MAXIMALS & DUPLICATES
This module is called in line 5 of Algorithm 1 to eliminate all
non-maximal and duplicate multipoles that are generated
in the previous step. As described in Algorithm 4, we first
initialize two empty sets (lines 1-2): i) U ′ that collects the
final set of non-redundant multipoles, and ii) IsIncluded,
that maintains a collection of all the subsets of multipoles
that are included in the final set U ′ at any point of time.
We then scan through all the multipoles in input set U . For
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(a) (b)

Fig. 5: Motivation of CoMEtExtended: (a) shows the multi-
poles missed by CoMEt for a given threshold δ on linear
gain, which could be recovered by CoMEtExtended by
setting parameter ρ to a higher value as shown in (b).

each multipole S in U , we first check if it is present in the
IsIncluded set, and if not, insert it into the final output set
U ′ as well as insert all the subsets of S in IsIncluded that
are not previously present in it (lines 5-8). We then remove
S from U and repeat the entire procedure in lines (4-9) until
U is empty. All the multipoles in the resultant set U ′ are
consequently distinct and maximal.

Algorithm 4 REMOVE DUPLICATES & NON-MAXIMALS
Input: a set U of multipoles
Output: a set U ′ of non-maximal and distinct multipoles

1: U ′ ← φ
2: IsIncluded← φ
3: while U 6= φ do
4: S ← A multipole in U
5: if S not in IsIncluded then
6: Insert S′ to IsIncluded ∀S′ ⊆ S
7: U ′ ← U ′ ∪ S
8: end if
9: U ← U − S

10: end while
11: return U ′

4.5 CoMEtExtended

In certain cases, the completeness and computational ef-
ficiency of CoMEt might be unsatisfactory. For instance,
at lower thresholds of linear gain, the obtained set of
promising candidates by CoMEt approach could potentially
miss some of the interesting multipoles (see Figure 5(a)).
On the other hand, at high thresholds of linear gain, there
could potentially be many false positives among promising
candidates, which would compromise the computational
efficiency. Hence, to overcome these limitations of CoMEt,
we further propose CoMEtExtended, a generalized version
of CoMEt, where we redefine what constitutes a promising
candidate and allow user to expand or prune the scope of
promising candidates in different scenarios. The ability to
adjust the search space helps CoMEtExtended in achieving
a better trade-off between computational efficiency and
completeness at different thresholds of linear gain (demon-
strated further in Section 5.3) .

We first begin with redefining the notion of a promising
candidate. Specifically, instead of enforcing that all the pair-
wise correlations in S̃ be negative, we require all of them
to be below a threshold ρ, where ρ ∈ [−1, 1]. Likewise,
we redefine the notion of negative and negative equiva-

lent cliques as pseudo-negative and pseudo negative equivalent
cliques respectively as the following:

Definition 13. For a given ρ ∈ [−1, 1], a pseudo negative
clique refers to a set where all the pairwise correlations
between its members are less than or equal to ρ.

Definition 14. A pseudo negative-equivalent clique refers
to a set S whose self-canceling form S̃ is a pseudo-
negative clique.

A pseudo negative-equivalent clique can be identified
using the following lemma which is a general version of
Lemma 3.

Lemma 4. A set S is a pseudo negative-equivalent clique iff
it can be partitioned into two pseudo negative cliques S1

and S2 such that the all the cross correlations between
members of S1 and S2 are pseudo non-negative.

Proof: See the Supplemental material.
�

Using the above definitions and results, we now pro-
pose CoMEtExtended which is the more general version of
CoMEt. The steps of CoMEtExtended are exactly the same
as that of CoMEt, the only difference being in the lines 2
and 7 of Algorithm 2 where the threshold of 0 on pairwise
correlations is replaced by ρ and −ρ, respectively. By in-
corporating ρ in thresholds, we ensure that every clique in
the resultant graph is either a pseudo negative clique or
a pseudo negative-equivalent clique. Note that setting ρ to
zero gives us the original definition of promising candidates,
whereas setting ρ to a higher positive value would include
more sets as promising candidates and hence lead to re-
covery of more of the missed multipoles (see Figure 5(b)).
However, it should be noted that setting ρ to positive
values would increase the number of candidate cliques and
thus increase the computational cost. In fact, setting ρ to
1 would turn CoMEtExtended into an exhaustive brute-
force search, which guarantees completeness, but would be
computationally infeasible. On the other hand, setting ρ to
a high negative value would reduce the search space and
hence leads to much faster recovery of the multipoles with
a very high linear gain in larger datasets.

5 DATA AND EXPERIMENTAL EVALUATION

In this section, we discuss results and computational eval-
uation of proposed approach CoMEtExtended. Specifically,
we evaluate the completeness of CoMEtExtended against a
regularized linear regression-based baseline, analyze trade-
off between completeness and computational efficiency of
CoMEtExtended at multiple parameter settings, study the
scalability of CoMEtExtended, analyze the statistical signif-
icance of the multipoles, and evaluate their utility using
real-world datasets from climate science and neuroscience
domains. All experiments were run on a computer with 20
processors, each processor being Intel(R) Xeon(R) CPU E5-
2470 0 running at 2.30GHz with a total shared RAM of 100
GB, running Linux version 2.6.32-696. We begin by describ-
ing all the datasets along with the data pre-processing steps
that were applied to each of them.
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5.1 Data and Preprocessing

5.1.1 Sea Level Pressure (SLP) data:

We used monthly Sea Level Pressure (SLP) dataset pro-
vided by NCEP/National Center for Atmospheric Research
(NCAR) Reanalysis Project [21], which is available from
1979-2014 (36 years) at a spatial resolution of 2.5 × 2.5
degree (10512 grid points, also referred to as locations). In
this paper, we constructed SLP time series for each location
using only the months of winter season (December, January,
and February) from each year, thereby resulting in 108
observations in every time series. For each of the time series,
we followed the standard pre-processing steps followed in
climate science to remove the annual seasonality and linear
trends [1].

Relationships in climate datasets are preferably studied
between regions (sets of spatially contiguous locations) as
opposed to individual locations because of spatial autocor-
relation, due to which locations in a spatial neighborhood
have highly similar time series that will lead to discovery of
redundant relationships. Therefore, we next converted the
given location-based time series dataset into a set of 171
region-based time series dataset using a simple clustering
procedure that is described in supplemental material. In ad-
dition, for purposes of validation of obtained multipoles, we
used monthly Hadley Center SLP (HadSLP2) observational
data available for years prior to 1979 to obtain the time series
of these regions.

5.1.2 Brain fMRI data:

We used neuroimaging data collected at the University of
Utah as part of a reproducibility study [22]. In this study,
a set of 50 functional-Magnetic Resonance Imaging (fMRI)
scans of one subject were acquired while the subject was in-
volved in an audio-visual task (watching cartoons). Another
set of 50 fMRI scans were collected from the same subject
while the subject was resting. The spatial resolution and the
temporal resolution of every scan was 3mm × 3mm × 3mm
and 2 secs, respectively. A number of fMRI pre-processing
steps—described in [22]—were performed including motion
correction, unwarping, and filtering. In addition, we used
an Automated Anatomical Labeling Atlas [23], which maps
grey matter locations to 90 anatomical regions, to compute
a mean time series of each brain region from each scan. As
a result, we obtained a set of 90 time series for each of the
100 fMRI scans. We applied our approach to find multipoles
in one of the 50 audio-visual fMRI scans, while the other
49 scans were used for evaluation purposes that we will
describe later in this section.

5.2 Parameter settings

Two user-specified thresholds, minimum linear gain (δ) and
minimum linear dependence (σ), are needed for discovering
multipoles. The choice of values for these parameters needs
to be determined based on domain knowledge and the
availability of computational resources to find multipoles.
In particular, a relaxed linear gain threshold δ will increase
the search space of multipoles and thus will require more
computational time for search and evaluation. Similarly,
a lower threshold of σ will result in a larger number of

discovered multipoles to be analyzed further by domain
experts.

In this work, we performed computational evaluation
and scalability analysis at different combinations of values
of σ ∈ {0.4, 0.5, 0.6} and δ ∈ {0.1, 0.15, 0.2} respectively.
Statistical significance analysis was performed on multi-
poles obtained at σ = 0.50 and δ = 0.15 for both SLP and
brain fMRI datasets.

Total Multipoles in Completeness
(σ,δ) Pseudo-complete set LAB CoMEtExtended

(0.4,0.1) 70150 0.09% 81%, ρ=0.01
(0.4,0.15) 6255 0.33% 96%, ρ=0.01
(0.4,0.2) 1264 0.39 % 99%, ρ=0.01
(0.5,0.1) 41126 0.15% 76%, ρ=0.01

(0.5,0.15) 3348 0.62% 92%, ρ=0.01
(0.5,0.2) 930 0.54% 99%, ρ=0.01
(0.6,0.1) 13743 0.47% 75.5%, ρ=0.03

(0.6,0.15) 1525 1.38% 85%, ρ=0.01
(0.6,0.2) 488 1.0% 98%, ρ=0.01

TABLE 1: Completeness evaluation of CoMEtExtended
against LASSO-based baseline (LAB) at different combina-
tions of σ and δ in the SLP dataset. The parameter ρ in
CoMEtExtended was set so as to keep the computational
time under 90 minutes.

Total Multipoles in Completeness
(σ,δ) Pseudo-complete set LAB CoMEtExtended

(0.4,0.1) 15855 0.006% 71%, ρ=0.2
(0.4,0.15) 3019 0% 98%, ρ=0.2
(0.4,0.2) 716 0% 100%, ρ=0.2
(0.5,0.1) 15258 0.006% 70%, ρ=0.2
(0.5,0.15) 2805 0% 98%, ρ=0.2
(0.5,0.2) 697 0% 100%, ρ=0.2
(0.6,0.1) 13721 0.007% 82%, ρ=0.25
(0.6,0.15) 2172 0% 97%, ρ=0.2
(0.6,0.2) 547 0% 100%, ρ=0.2

TABLE 2: Same as Table 1, but in the fMRI dataset.

5.3 Evaluation
Comparison of CoMEtExtended to another approach is dif-
ficult, since it defines local patterns in terms of linear algebra
concepts and finds such patterns by searching for negative
cliques in a similarity graph. None of the related works
mentioned in Section 3 do the same thing. Nonetheless,
to provide some comparison, we evaluate the completeness
of the search of CoMEtExtended with respect to a LASSO-
based baseline approach (LAB) that is described as follows:

LASSO-based baseline approach (LAB): LASSO is a
variant of regularized linear regression that obtains a subset
of variables from a larger set that could be linearly com-
bined to predict the given predictand with high accuracy.
Specifically, given a predictand Y and a set of predictors
X = [X1, X2, ..., Xn], it learns a sparse set of regression co-
efficients β = [β1, β2, ..., βk]T by minimizing the following
objective function:

min
β
||Y −Xβ||2 + λ||β||1,

where λ is the hyperparameter that can be tuned to con-
trol the number of non-zero regression coefficients in the
solution. In this baseline, we use LASSO to find potential
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candidates that could form multipoles. Specifically, in a
dataset of N variables {X1, X2, ..., Xn}, for any variable Xi,
we consider the remaining set of variables as predictors and
apply LASSO find a subset of predictors from the remaining
N − 1 variables that could be linearly combined to best
predict Xi. The combined set of Xi and the predictors
with non-zero regression coefficients is then added to the
set of potential candidates of multipoles. For each variable
Xi, we obtain up to N − 1 different solutions of LASSO
by varying λ such that every solution yields a different
number of predictors with non-zero regression coefficients.
By applying the above procedure to all possible Xi, we
obtain upto N × (N − 1) potential candidates of multipoles
in total. For each the obtained candidates, we next compute
linear dependence and linear gain and discard all those that
do not satisfy the given thresholds σ and δ.

We next evaluate the completeness of CoMEtExtended
with that of LAB.The completeness of an algorithm is mea-
sured as the fraction of multipoles of a complete set (a set
that includes all the multipoles present in the data) that
it finds from the data. An ideal approach to generate a
complete set of multipoles will be to perform an exhaustive
brute-force search over all possible subsets of variables and
select those subsets that show linear dependence ≥ σ and
linear gain ≥ δ. However, in practice, such an approach
is computationally infeasible even for small-size datasets.
For instance, in case of SLP data that has 171 time series,
the estimated time on our computer to examine all subsets
of size 5 is more than 5 days, size 6 is more than 144
days, and so on. Hence, for the purposes of evaluation, we
generated a pseudo-complete set of multipoles that includes
unique and non-redundant multipoles generated by the
following approaches: i) an exhaustive brute-force search
over all subsets of variables upto size 4 for SLP, and 5 for
fMRI dataset, ii) A random-search approach that is run for
24 hours to examine random subsets of variables of size
k, where k ≥ 5 for SLP, and k ≥ 6 for fMRI datasets,
and select the ones that show linear dependence ≥ σ and
linear gain ≥ δ, iii) LAB approach, and iv) CoMEtExtended
approach, where the choice of parameters is set so as to keep
its computational time within 90 minutes.

Tables 1 and 2 summarize the results of completeness
evaluation on SLP and fMRI datasets respectively. The first
column in both the tables indicate the total size of the
pseudo-complete set of multipoles at different combinations
of parameters σ and δ. Second and third columns indicate
the completeness of LAB and CoMEtExtended approach. As
can be seen in both tables, LAB recovers a negligible or very
tiny fraction of multipoles in all the parameter settings. For
instance, in the SLP dataset, LAB recovers less than 1.3% of
total multipoles in pseudo-complete set in all the parameter
settings. The completeness is negligible (< 0.1%) for cases
where δ = 0.1. Further, in the fMRI dataset, LAB is able to
recover only one multipole for cases where δ = 0.1, whereas
for the remaining other cases where δ ≥ 0.15, LAB is unable
to find any multipole. This strongly indicates that linear
regression-based approaches like LASSO are not suitable for
finding multipoles in the data.

In contrast, the completeness of CoMEtExtended is more
than 80 % for all the parameter settings. Moreover, the com-
pleteness of CoMEtExtended increases at higher thresholds

of linear gain and is close to 100 % for δ = 0.2, which
shows that our approach is less likely to miss multipoles
with high linear gain. This is in concordance with our em-
pirical observations made in Figure 3, according to which,
whenever linear gain is high, the largest pairwise correlation
in the self-canceling version of all of the multipoles tends to
be much lower and approaches strong negative values. As
a result, they are more likely to be captured as promising
candidates by our approach. In summary, CoMEtExtended
outperforms the LASSO-based baseline approach in com-
pleteness at different thresholds on linear dependence and
linear gain. Further, it is much more efficient and relatively
complete in finding multipoles at higher thresholds of linear
gain, compared to brute-force and the LASSO-based base-
line approach.

Trade-off between completeness and efficiency: We also
evaluated the performance of CoMEtExtended based on
the trade-off made between completeness and efficiency by
varying parameter ρ. Table 3 shows completeness and com-
putational time (in seconds) on SLP and fMRI datasets re-
spectively at different values of ρ for different combinations
of σ and δ. As ρ increases, the completeness improves but
also adds to the total computational cost. This is expected
since ρ signifies the upper bound on the largest pairwise
correlation in the self-canceling version of a promising
candidate. Therefore, as ρ increases, more sets qualify as
promising candidates, which further expands the search
space, leading to higher computational cost.

Completeness, Computing Time (in minutes)
(σ,δ) ρ = −0.2 ρ = −0.1 ρ = 0 ρ = 0.01

(0.4,0.1) 1%,0.1 12%,0.5 77%,13 81%,28
(0.4,0.15) 21%,0.1 76%,0.3 95%,9 96%,21
(0.4,0.2) 73%,0.1 92%,0.2 99%,9 99%,20
(0.5,0.1) 2%,0.1 12%,0.3 71%,11 76%,23
(0.5,0.15) 27%,0.1 63%,0.2 91%,8 72%,18
(0.5,0.2) 70%,0.1 90%,0.2 98%,7 99%,17
(0.6,0.1) 6%,0.1 14%,0.2 63%,7 68%,14
(0.6,0.15) 31%,0.1 55%,0.2 82%,6 85%,12
(0.6,0.2) 67%,0.1 83%,0.2 97%,5 98%,11

TABLE 3: Performance of CoMEtExtended at different val-
ues of ρ for different combinations of σ and δ in SLP dataset.
Each cell in the table contains two values: i)Completeness of
search, and ii) Computational time (in minutes) taken by
CoMEtExtended.

Also note that at higher δ, the completeness of CoME-
tExtended reaches close to 100 % at much smaller values
of ρ and requires much less computing time. This indi-
cates that our approach is much more efficient in finding
multipoles with high linear gain. This is again consistent
with the empirical observations made in Figure 3 where
we observed that for a multipole with high linear gain, all
the pairwise correlations in its self-canceling version tend to
have stronger negative values. Therefore, they get included
among the promising candidates at much lower values of ρ.

5.4 Scalability Analysis
As is common with many pattern finding techniques, such
as frequent pattern mining, the CoMEt algorithm is inher-
ently exponential. (For a detailed analysis of the the time
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complexity of the the three parts of the algorithm, see the
Supplemental material.) However, as with association anal-
ysis, adjusting the parameter settings—in this case, σS and
∆σS—can make the pattern search quite tractable in many
situations. To illustrate, we next discuss the scalability of our
approach using SLP data, i.e., how does the computational
time vary with the size of datasets (number of time series).
To obtain datasets of different sizes, we first generated 10 ad-
ditional seasonal datasets for different seasons, each season
being a set of three consecutive months: ((Jan.,Feb.,Mar.),
(Feb.,Mar.,Apr.) ,...(Oct. Nov. Dec.)). Each dataset consists
of time series from the same 171 regions that we chose for
our original SLP dataset. We then generated 10 datasets of
sizes 171*k, where k ∈ [1, 10] by merging k of the above 10
seasonal datasets.

Figure 6(a) shows the total computational time of CoME-
tExtended on all of the above datasets, at σ = 0.5 and
δ = 0.15 for different values of ρ in range [−0.15,−0.06]. As
can be seen in figure, the computing time increases with the
increase in the size of the datasets at different rates depend-
ing on ρ. For stronger negative values of ρ, the computing
time increases almost linearly with the increase in size of
datasets, which highlights its scalability2. However, as ρ
approaches zero, the scalability is weak, and the comput-
ing time increases dramatically for bigger datasets. Similar
observations are also made at other parameter settings, e.g.
at (σ = 0.4, δ = 0.15) and (σ = 0.4, δ = 0.2), as shown
in Figures 6(b) and 6(c) respectively. The observed loss in
scalability could be attributed to the typical distribution of
pairwise correlations in the correlation graph of any time
series dataset, as shown in Figure 6(d) for one of the SLP
datasets. The distribution is bell-shaped with major fraction
of edges having strengths close to zero in magnitude. Conse-
quently, as ρ approaches zero, the number of cliques found
in Step 1 of the algorithm increase exponentially. Note that
many of the cliques that have all or most of the edges being
weak are expected to have weak linear dependence among
their variables, and hence are unlikely to form a multipole.
By setting ρ to stronger negative values, we avoid such
cliques and save a lot of computing time. However, that also
leads to missing some of the interesting cliques where only
one or two edges were close to zero.3 Such cliques could
potentially be recovered by heuristic approaches, which
could be an interesting direction to pursue for future work.

5.5 Evaluation of Multipoles
One of the key challenges of this work is distinguishing
between reliable and spurious multipoles, i.e., those mul-
tipole patterns that arise due to random variation, from the
large number of discovered multipoles. Domain validation
is an ideal approach to evaluate multipoles, but most of
the multipole relationships discovered in this work are
currently unknown to domain scientists. Thus, in our work,
we used an empirical evaluation framework that consists of
two steps. The first step involves a procedure for estimating

2. We have also demonstrated the scalability of our approach on
larger synthetic datasets containing upto 100k time series (see supple-
mental)

3. The exact number of missing cliques could not be computed due to
the absence of ground truth and computational intractability of brute-
force approach.

1
7
1
 

3
4
2
 

5
1
3
 

6
8
4
 

8
5
5
 

1
0
2
6

1
1
9
7

1
3
6
8

1
5
3
9

1
7
1
0

Size of dataset (Number of variables)

0

2000

4000

6000

8000

10000

C
o

m
p

u
ti
n

g
 t

im
e

 (
in

 s
e

c
o

n
d

s
)  = -0.15

 = -0.12

 = -0.09

 = -0.06

(a) σ = 0.5, δ= 0.15

1
7
1
 

3
4
2
 

5
1
3
 

6
8
4
 

8
5
5
 

1
0
2
6

1
1
9
7

1
3
6
8

1
5
3
9

1
7
1
0

Size of dataset (Number of variables)

0

1000

2000

3000

4000

5000

6000

C
o

m
p

u
ti
n

g
 t

im
e

 (
in

 s
e

c
o

n
d

s
)  = -0.15

 = -0.12

 = -0.09

 = -0.06

(b) σ = 0.4, δ= 0.15

1
7
1
 

3
4
2
 

5
1
3
 

6
8
4
 

8
5
5
 

1
0
2
6

1
1
9
7

1
3
6
8

1
5
3
9

1
7
1
0

Size of dataset (Number of variables)

0

2000

4000

6000

8000

10000

12000

C
o

m
p

u
ti
n

g
 t

im
e

 (
in

 s
e

c
o

n
d

s
)  = -0.15

 = -0.12

 = -0.09

 = -0.06
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Fig. 6: Scalability analysis: Figures 6(a), 6(b), and 6(c) plot
the computing time (Y-axis) of COMETExt on different sizes
of SLP datasets (X-axis) at different values of ρ for three
parameter settings (indicated in subcaptions). Figure 6(d)
shows the distribution of correlation strengths of edges in
a correlation network in the SLP dataset that has 1710 time
series. See section 5.4 for further details.

the statistical significance of a multipole. This procedure is
then used in the second step to assess the reproducibility
of a discovered multipole in multiple datasets, where each
dataset is collected during a time period different from that
of original dataset used for finding multipoles. Intuitively,
spurious multipoles are less likely to reproduce in time
periods that were not used for finding them. In contrast,
multipoles that do reproduce with high statistical signifi-
cance are more likely to be patterns that are outcome of a
real phenomenon, and thus they would be ideal candidates
for further investigation by domain experts.

5.5.1 Step 1: Statistical Significance Evaluation:

To filter spurious multipoles, it is important to answer
the following two questions: i) how likely is it that the
observed level of linear dependence, σS , of a multipole S
is due to chance? and ii) does every member in S contribute
significantly to the linear dependence of S?

To address the first question, we generate a null distribu-
tion of linear dependence by randomly generating 100,000
sets of time series and evaluating each set S for its level
of linear dependence. Each of these randomly generated
sets is created by sampling time series from different time
periods. For instance, for our SLP investigations, a random
set of size |S| is constructed by sampling a time series
from any |S| of the nine time windows of HadSLP2 data.
Similarly, for brain fMRI data, a random set of |S| time
series is constructed by sampling a time series from any
|S| of the 50 scans. Generating a random set in this manner
is an approximation to independently generating |S| time
series while ensuring that the general underlying nature of
domain time series (e.g. autocorrelation, periodicity etc.) is
retained in the randomly generated data. Using the resultant
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more robustness

(a) SLP Data

more robustness

(b) fMRI Data

Fig. 7: Reproducibility analysis: Figures show the number
of multipoles that are found to be reproducible (Y-axis) in
different number of independent datasets (X-axis) for both
SLP and fMRI data for σ = 0.5, δ = 0.15, and ρ = 0. See
section 5.5.2 for further details

null distribution, we then determine the statistical signifi-
cance of the multipoles we originally found. We evaluate
σS at a 0.01 level of significance.

We next describe our approach to assess the second
point, i.e, the significance of the contribution of each of
the k variables in a given set S = {X1, X2, ..., Xk} to its
linear dependence. Specifically, to assess the significance
of the contribution of time series Xi, we replace it with a
random time seriesXR that is sampled from an independent
dataset in a manner similar to the procedure above. We
then compute the linear dependence of the resultant set,
which we call S′. If the contribution of Xi is not spurious,
it would be unlikely for a randomly chosen time series
XR to replicate it in which case, σS′ ≤ σS . We repeat the
above process 1000 times and compute the fraction of the
population for which σS′ ≤ σS holds true. This fraction
is our significance level. We again use a significance level
of 0.01. The above procedure is repeated for each of the k
members.

5.5.2 Step 2: Reproducibility in Independent Datasets

In this step, we estimate the reproducibility of a given mul-
tipole in multiple time periods. A multipole is considered
to be reproducible in a dataset D, if, at a 0.01 level of
significance, it is found to have statistically significant linear
dependence, as well as a statistically significant contribution
from each of its members. Specifically, for each multipole
discovered in 1979-2014 SLP dataset, we computed its linear
gain and linear dependence in HadSLP2 data in 9 time
windows 1901-1936, 1906-1941,...,1941-1976. Likewise, for
multipoles discovered in one of the 50 brain fMRI scans,
we studied their reproducibility in the remaining 49 scans.

Figure 7(a) shows number of multipoles reproduced in
different numbers of HadSLP2 time windows during 1901-
1976. More than 40% of multipoles reproduced in all 9 time
windows. Similarly, Figure 7(b) shows number of multipoles
from fMRI data reproduced in different number of fMRI
scans taken while the subject was watching a video. At least
25% of multipoles reproduced in more than 10 other scans.
Higher reproducibility of multipoles suggests that they are
more robust to noise in the data and unlikely to be spurious.

6 CASE STUDIES

Results discussed in the previous section indicate the ex-
istence of several multipole relationships with high re-
producibility in multiple independent time periods, which
makes a compelling case for their connection to underlying
physical phenomena that might be currently unknown to
domain scientists, but could potentially be discovered by
domain experts upon further analysis. In this section, we
present case studies on the physical interpretation of two of
the discovered multipoles in SLP and brain fMRI data.

6.1 Discovering Climate Phenomena

One of the multipoles in SLP data was found between
the four regions shown in Figure 8. The time series of the
four regions show negative correlations with each other,
resulting in a multipole relationship with linear dependence
of 0.7 and a linear gain of 0.15 during 1979-2014. Further,
as indicated in Figure 9(a), the multipole was found to be
reproducible in 7 out of 9 time windows during the period
of 1901-1976, showing strong linear dependence (red curve)
and linear gain (indicated by gap between red and black
curves). This multipole appears to be strongly related to
the well-known climate phenomenon known as the El-Nino
Southern Oscillation (ENSO) as indicated by regions R2

and R3. This phenomenon appears not only in the tropical
Pacific Ocean, but also has large-scale impacts on regional
climate outside the tropics [24]. More recently, a connection
between the West Siberian Plain and ENSO was discovered
as a tripole relationship (as defined in [16]) between three
regions, that are re-captured as regions R1, R2, and R3

in above multipole. This phenomenon was attributed to a
wave train that originates from the sub-tropical Atlantic
and propagates north-eastwards towards the north of the
West Siberian Plain, where it is deflected southeastwards
and reaches all the way to the central Pacific Ocean, where
the two centers of action of ENSO are located. Notably,
region R4 in the northern Atlantic Ocean is located near the
proposed location of origin of the wave train. This finding
can be further used to study the detailed path of the wave
train and to attribute weather and climate characteristics
over wave-affected regions to their potential ENSO origins.

Evaluation of Climate Models: Multipoles, being po-
tential representatives of physical processes, could serve
as useful benchmarks to evaluate various climate models
that are often used to study climate change under different
greenhouse gas emission scenarios. In particular, climate
models can be evaluated based on their ability to reproduce
the physical processes represented by these multipoles. For
instance, Figure 9 compares the linear dependence and
linear gain of the above multipole across multiple time
windows obtained in observations data (HadSLP2) and a
couple of climate models used in the IPCC (Intergovern-
mental Panel on Climate Change) CMIP5 (Couple Model
Intercomparison Project Phase 5) evaluation. It can be seen
that climate models differ in their ability to simulate the
multipole effectively. Specifically, climate model MPI-ESM-
MR is able to reproduce multipole with statistically signifi-
cance in at least 4 time windows, whereas the other model
BNU-ESM could not reproduce the given multipole at all.
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Fig. 8: A 4-pole in 1979-2014 that was reproducible in 7 out
of 9 time windows during 1901-1976

6.2 Studying Complex Dynamics in Brain

The notion of multipoles proposed in this paper is highly
suited for capturing complex signaling relationships in the
brain. For example, one of the multipoles we discovered in
one of the brain fMRI scans captures a relationship between
three brain regions: Right Frontal Inferior (T2), Right Parietal
Inferior(T1), and Right Temporal Pole Superior(T3). This multi-
pole was found to be reproducible in 23 out of 50 ‘task‘ scans
(collected while the subject was watching a cartoon video)
while only in 5 of the 50 other ‘resting state’ scans (collected
while subject was resting). This relationship is interesting for
multiple reasons. First, the parietal and temporal regions are
known to be the first recipients of the visual and auditory
stimuli [25], respectively, that are presented to the subject
in the form of cartoon videos. Second, the fact that the de-
pendence of the above multipole relationship in task scans
is greater than that of resting-state scans provides support
for the argument that visual and auditory stimuli would
have triggered signaling from parietal and temporal regions
to the frontal region. While some existing studies [26] have
observed activity in the frontal region due to visual and
auditory stimuli, existence of a direct signaling pathway
between visual and auditory cortices with the frontal region
is yet to be fully investigated. In summary, the multipole
framework could serve as a promising tool for discovering
new signaling pathways that exist in the brain.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced and formally studied a novel
class of multivariate linear relationships called multipoles in
time series data. A multipole corresponds to a set of time se-
ries that show much stronger linear dependence compared
to any of its subsets. We presented a series of empirical
observations to show that most interesting multipoles could
be found as cliques of negative correlations in a correlation
network, and proposed a novel and computationally effi-
cient correlation network-based approach to find multipoles
in the data. We demonstrated the utility of our proposed
approach to find multipoles on real-world datasets from cli-
mate and neuroscience domain. Furthermore, we presented
case studies from both domains to highlight the potential of
multipoles in discovering novel physical processes. While
the approach proposed in this paper is based on a series
of empirical observations, it is noteworthy that all of our
observations are universal in nature as opposed to being

specific to a particular time series dataset. Moreover, there
are certain scenarios in which our approach could be em-
pirically shown to guarantee completeness of the search
(see supplemental material for further details). Derivation of
theoretical proofs of these observations are subject of future
research. Other useful extensions of this work could be to
extend the notion of multipoles to non-linear relationships,
and generalization to time-lagged mutipole-relationships.
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