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ABSTRACT

Deep neural networks (DNN) are widely used in many applications. However,
their deployment on edge devices has been difficult because they are resource
hungry. Binary neural networks (BNN) help to alleviate the prohibitive resource
requirements of DNN, where both activations and weights are limited to 1-bit.
We propose an improved binary training method (BNN+), by introducing a reg-
ularization function that encourages training weights around binary values. In
addition to this, to enhance model performance we add trainable scaling factors to
our regularization functions. Furthermore, we use an improved approximation of
the derivative of the sign activation function in the backward computation. These
additions are based on linear operations that are easily implementable into the bi-
nary training framework. We show experimental results on CIFAR-10 obtaining
an accuracy of 86.5%, on AlexNet and 91.3% with VGG network. On ImageNet,
our method also outperforms the traditional BNN method and XNOR-net, using
AlexNet by a margin of 4% and 2% top-1 accuracy respectively.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated success for many supervised learning tasks rang-
ing from voice recognition to object detection (Szegedy et al., 2015; Simonyan & Zisserman, 2014;
Iandola et al., 2016). The focus has been on increasing accuracy, in particular for image tasks, where
deep convolutional neural networks (CNNs) are widely used. However, their increasing complexity
poses a new challenge, and has become an impediment to widespread deployment in many appli-
cations; specifically when trying to deploy such models to resource constrained and lower-power
devices. A typical DNN architecture contains tens to thousands of layers, resulting in millions of
parameters. As an example, AlexNet (Krizhevsky et al., 2012) requires 200MB of memory, VGG-
Net (Simonyan & Zisserman, 2014) requires 500MB memory. Large model sizes are further exacer-
bated by their computational cost, requiring GPU implementation to allow real-time inference. Such
requirements evidently cannot be accustomed by edge devices as they have limited memory, com-
putation power, and battery. This motivated the community to investigate methods for compressing
and reducing computation cost of DNNs.

To make DNNs compatible with the resource constraints of low power devices, there have been
several approaches developed, such as network pruning (LeCun et al., 1990), architecture design
(Sandler et al., 2018), and quantization (Courbariaux et al., 2015; Han et al., 2015). In particular,
weight compression using quantization can achieve very large savings in memory, where binary (1-
bit), and ternary (2-bit) approaches have been shown to obtain competitive accuracy (Hubara et al.,
2016; Zhu et al., 2016; Tang et al., 2017). Using such schemes reduces model sizes by 8x to 32x
depending on the bit resolution used for computations. In addition to this, the speed by quantizing
the activation layers. In this way, both the weights and activations are quantized so that one can
replace the expensive dot products and activation function evaluations with bitwise operations. This
reduction in bit-width benefits hardware accelerators such as FPGAs and neural network chips.

An issue with using low-bit DNNs is the drastic drop in accuracy compared to its full precision coun-
terpart, and this is made even more severe upon quantizing the activations. This problem is largely
due to noise and lack of precision in the training objective of the networks during back-propagation
(Lin et al., 2017). Although, quantizing the weights and activations have been attracting large in-
terests thanks to their computational benefits, closing the gap in accuracy between the full precision
and the quantized version remains a challenge. Indeed, quantizing weights cause drastic informa-
tion loss and make neural networks harder to train due to a large number of sign fluctuations in the

1



Under review as a conference paper at ICLR 2019

weights. Therefore, how to control the stability of this training procedure is of high importance.
In theory, it is infeasible to back-propagate in a quantized setting as the weights and activations
employed are discontinuous and discrete. Instead, heuristics and approximations are proposed to
match the forward and backward passes. Often weights at different layers of DNNs follow a certain
structure. How to quantize the weights locally, and maintaining a global structure to minimize a
common cost function is important (Li et al., 2017).

Our contribution consists of three ideas that can be easily implemented in the binary training frame-
work presented by Hubara et al. (2016) to improve convergence and generalization accuracy of
binary networks. First, the activation function is modified to better approximate the sign function in
the backward pass, second we propose two regularization functions that encourage training weights
around binary values, and lastly a scaling factor is introduced in both the regularization term as
well as network building blocks to mitigate accuracy drop due to hard binarization. Our method is
evaluated on CIFAR-10 and ImageNet datasets and compared to other binary methods. We show
accuracy gains to traditional binary training.

2 RELATED WORK

We focus on challenges present in training binary networks. The training procedure emulates binary
operations by restricting the weights and activations to single-bit so that computations of neural
networks can be implemented using arithmetic logic units (ALU) using XNOR and popcount op-
erations. More specifically, XNOR and popcount instructions are readily available on most CPU
and GPU processing units. Custom hardware would have to be implemented to take advantage of
operations with higher bits such as 2 to 4 bits. The goal of this binary training is to reduce the model
size and gain inference speedups without performance degradation.

Primary work done by Courbariaux et al. (2015) (BinaryConnect) trains deep neural networks with
binary weights {−1, +1}. They propose to quantize real values using the sign function. The prop-
agated gradient applies update to weights |w| ≤ 1. Once the weights are outside of this region
they are no longer updated, this is done by clipping weights between {−1, +1}. In that work, they
did not consider binarizing the activation functions. BNN (Hubara et al., 2016) is the first purely
binary network quantizing both the weights and activations. They achieve comparable accuracy to
their prior work on BinaryConnect, and achieve significantly close performance to full-precision, by
using large and deep networks. Although, they performed poorly on large datasets like ImageNet
(Russakovsky et al., 2015). The resulting network presented in their work obtains 32× compression
rate and approximately 7× increase in inference speed.

To alleviate the accuracy drop of BNN on larger datasets, Rastegari et al. (2016) proposed XNOR-
Net, where they strike a trade-off between compression and accuracy through the use of scaling
factors for both weights and activation functions. In their work, they show performance gains com-
pared to BNN on ImageNet classification. The scaling factors for both the weights and activations
are computed dynamically, which slows down training performance. Further, they introduced an ad-
ditional complexity in implementing the convolution operations on the hardware, slightly reducing
compression rate and speed up gains. DoReFa-Net (Zhou et al., 2016) further improves XNOR-Net
by approximating the activations with more bits. The proposed rounding mechanism allows for low
bit back-propagation as well. Although they perform multi-bit quantization, their model still suffers
from large accuracy drop upon quantizing the last layer.

Later in ABC-Net, Tang et al. (2017) propose several strategies, adjusting the learning rate for larger
datasets. They show BNN achieve similar accuracy as XNOR-Net without the scaling overhead by
adding a regularizer term which allows binary networks to generalize better. They also suggest a
modified BNN, where they adopted the strategy of increasing the number of filters, to compensate
for accuracy loss similar to wide reduced-precision networks (Mishra et al., 2017). More recently,
Liu et al. (2018) developed a second-order approximation to the sign activation function for a more
accurate backward update. In addition to this, they pre-train the network in which they want to
binarize in full precision using the hard tangent hyperbolic (htanh) activation, see Figure 2. They
use the pre-trained network weights as an initialization for the binary network to obtain state of the
art performance.

2



Under review as a conference paper at ICLR 2019

3 IMPROVED BINARY TRAINING

Training a binary neural network faces two major challenges: on weights, and on activation func-
tions. As both weights and activations are binary, the traditional continuous optimization methods
such as SGD cannot be directly applied. Instead, a continuous approximation is used for the sign
activation during the backward pass. Further, the gradient of the loss with respect to the weights are
small. So as training progresses weight sign remains unchanged. These are both addressed in our
proposed method. In this section, we present our approach to training 1-bit CNNs in detail.

3.1 BINARY TRAINING

We quickly revisit quantization through binary training as first presented by (Courbariaux et al.,
2015). In (Hubara et al., 2016), the weights are quantized by using the sign function which is +1 if
w > 0 and −1 otherwise.

In the forward pass, the real-valued weights are binarized to wb, and the resulting loss is computed
using binary weights throughout the network. For hidden units, the sign function non-linearity is
used to obtain binary activations. Prior to binarizing, the real weights are stored in a temporary vari-
able w. The variables w are stored because one cannot back-propagate through the sign operation
as its gradient is zero everywhere, and hence disturbs learning. To alleviate this problem the authors
suggest using a straight through estimator (Hinton, 2012) for the gradient of the sign function. This
method is a heuristic way of approximating the gradient of a neuron,

dL(w)

dw
≈ dL

dw

∣∣∣∣
w=wb

1{|w|≤1} (1)

where L is the loss function and 1(.) is the indicator function. The gradients in the backward pass
are then applied to weights that are within [−1,+1]. The training process is summarized in Figure
1. As weights undergo gradient updates, they are eventually pushed out of the center region and
instead make two modes, one at −1 and another at +1. This progression is also shown in Figure 1.

BinarizationWt−1 Wb Forward R(l)

Backward
Parameter
Updates

Wt ∂R(l)

∂W

∂R(l)

Figure 1: Binary training, where arrows indicate operands flowing into operation or block. Repro-
duced from Guo (2018) (left). A convolutional layer depicting weight histogram progression during
the popular binary training. The initial weight distribution is a standard Gaussian (right).

3.2 IMPROVED TRAINING METHOD

Our first modification is on closing the discrepancy between the forward pass and backward pass.
Originally, the sign derivative is approximated using the htanh(x) activation, as in Figure 2. Instead,
we modify the Swish-like activation (Ramachandran et al., 2017; Elfwing et al., 2018; Hendrycks &
Gimpel, 2016), where it has shown to outperform other activations on various tasks. The modifica-
tions are performed by taking its derivative and centering it around 0

SSβ(x) = 2σ(βx) [1 + βx{1− σ(βx)}]− 1, (2)

where σ(z) is the sigmoid function and the scale β > 0 controls how fast the activation function
asymptotes to −1 and +1. The β parameter can be learned by the network or be hand-tuned as a
hyperparameter. As opposed to the Swish function, where it is unbounded on the right side, the
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modification makes it bounded and a valid approximator of the sign function. As a result, we call
this activation SignSwish, and its gradient is

dSSβ(x)

dx
=
β{2− βx tanh(βx2 )}

1 + cosh(βx)
(3)

which is a closer approximation function compared to the htanh activation. Comparisons are made
in Figure 2.

Hubara et al. (2016) noted that the STE fails to learn weights near the borders of −1 and +1. As
depicted in Figure 2, our proposed SignSwish activation alleviates this, as it remains differentiable
near −1 and +1 allowing weights to change signs during training if necessary.

1

−1

sign(x)
1

δ(x)
1

−1

htanh(x)
1

STE(x)

−1

1

SS1(x)

−1

1

dSS1(x)
dx

−1

1

SS5(x) dSS5(x)
dx

Figure 2: Forward and backward approximations. (Top Left) The true forward and backward func-
tions. (Top Right) BNN training approximation. (Bottom Left) Swish function and its derivative.
(Bottom Right) The modified activation, in this case SS(x) is plotted for β = 5.

Note that the derivative d
dxSSβ(x) is zero at two points, controlled by β. Indeed, it is simple to show

that the derivative is zero for x ≈ ±2.4/β. By adjusting this parameter beta, it is possible to adjust
the location at which the gradients start saturating. In contrast to the STE estimators, where it is
fixed. Thus, the larger β is, the closer the approximation is to the derivative of the sign function.

3.2.1 REGULARIZATION FUNCTION

In general, a regularization term is added to a model to prevent over-fitting and to obtain robust
generalization. The two most commonly used regularization terms are L1 and L2 norms. If one
were to embed these regularization functions in binary training, it would encourage the weights to be
near zero; though this does not align with the objective of a binary network. Instead, it is important
to define a function that encourages the weights around −1 and +1. Further, in Rastegari et al.
(2016) they present a scale to enhance the performance of binary networks. This scale is computed
dynamically during training, using the statistics of the weights. To make the regularization term
more general we introduce scaling factors α, resulting in a symmetric regularization function with
two minimums, one at −α and another at +α. As these scales are introduced in the regularization
function and are embedded into the layers of the network they can be learned using backpropagation.

The Manhattan regularization function is defined as

R1(w) = |α− |w||, (4)

whereas the Euclidean version is defined as

R2(w) = (α− |w|)2, (5)
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where α > 0 is the scaling factor. As depicted in Figure 3, in the case of α = 1 the weights are
penalized at varying degrees upon moving away from the objective quantization values, in this case,
{−1,+1}.
The proposed regularizing terms are inline with the wisdom of the regularization function R(w) =
(1 − w2)1{|w|≤1} as introduced in Tang et al. (2017). A primary difference are in introducing a
trainable scaling factor, and formulating it such that the gradients capture appropriate sign updates
to the weights. Further, the regularization introduced in Tang et al. (2017) does not penalize weights
that are outside of [−1,+1]. One can re-define their function to include a scaling factor as R(w) =
(α− w2)1{|w|≤α}. In Figure 3, we depict the different regularization terms to help with intuition.

−3 −2 −1 1 2 3

R1(w)

−3 −2 −1 1 2 3

R2(w)

Figure 3: R1(w) (left) andR2(w) (right) regularization functions for α = 0.5 (solid line) and α = 1
(dashed line). The scaling factor α is trainable, as a result the regularization functions can adapt
accordingly.

3.3 BNN+: TRAINING METHOD

Combining both the regularization and activation ideas, we modify the training procedure by replac-
ing the sign backward approximation with that of the derivative of SSβ activation (2). During train-
ing, the real weights are no longer clipped as in BNN training, as the network can back-propagate
through the SSβ activation and update the weights correspondingly.

Additional scales are introduced to the network, which multiplies into the weights of the layers. The
regularization terms introduced are then added to the total loss function,

J(W, b) = L(W, b) + λ
∑
l

R(Wl, αl) (6)

where L(W, b) is the cost function, W and b are the sets of all weights and biases in the network, Wl

is the set weights at layer l and αl is the corresponding scaling factor. Here,R(.) is the regularization
function (4) or (5). Further, λ controls the effect of the regularization term. To introduce meaningful
scales, they are added to the basic blocks composing a typical convolutional neural network. For
example, for convolutions, the scale is multiplied into the quantized weights prior to the convolution
operation. Similarly, in a linear layer, the scales are multiplied into the quantized weights prior to
the dot product operation. This is made more clear in the training algorithm 1.

The scale α is a single scalar per layer, or as proposed in Rastegari et al. (2016) is a scalar for
each filter in a convolutional layer. For example, given a CNN block with weight dimensionality
(Cin, Cout, H,W ), where Cin is the number of input channels, Cout is the number of output chan-
nels, and H , W , the height and width of the filter respectively, then the scale parameter would be a
vector of dimension Cout, that factors into each filter.

As the scales are learned jointly with the network through backpropagation, it is important to initial-
ize them appropriately. In the case of the Manhattan penalizing term (4), given a scale factor α and
weight filter then the objective is to minimize

min
α

∑
h,w

|α− |Wh,w|| (7)

The minimum of the above is obtained when

α∗ = median(|W |) (8)
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Similarly, in the case of the Euclidean penalty (5) the minimum is obtained when
α∗ = mean(|W |) (9)

The scales are initialized with the corresponding optimal values after weights have been initialized
first. One may notice the similarity of these optimal values with that defined by Rastegari et al.
(2016), whereas in their case the optimal value for the weight filters and activations better matches
the R2(w) goal. A difference is on how these approximations are computed, in our case they are
updated on the backward pass, as opposed to computing the values dynamically.

The final resulting BNN+ training method is defined in Algorithm 1. In the following section, we
present our experimental results and important training details.

Algorithm 1 BNN+ training. L is the unregularized loss function.λ and R1 are the regularization
terms we introduced. SSβ is the SignSwish function we introduced and (SSβ)

′ is its derivative. N is
the number of layers. ◦ indicates element-wise multiplication. BatchNorm() specifies how to batch-
normalize the activation and BackBatchNorm() how to back-propagate through the normalization.
ADAM() specifies how to update the parameters when their gradients are known.
Require: a minibatch of inputs and targets (x0, x∗), previous weightsW , previous weights’ scaling

factors α, and previous BatchNorm parameters θ.
Ensure: updated weights W t+1, updated weights’ scaling factors αt+1 and updated BatchNorm

parameters θt+1.
{1. Forward propagation:}
s0 ← x0W0 {We do not quantize the first layer.}
x1 ← BatchNorm(s0, θ0)
for k = 1 to N − 1 do
xbk ← sign(xk)
W b
k ← sign(Wk)

sk ← αkx
b
kW

b
k {This step can be done using mostly bitwise operations.}

xk+1 ← BatchNorm(sk, θk)
end for

{2. Backward propagation:}
Compute gxN

= ∂L
∂xN

knowing xN and x∗

for k = N − 1 to 1 do
(gsk , gθk)← BackBatchNorm(gxk+1

, sk, θk)

gαk
← gskx

b
kW

b
k + λ∂R1

∂αk

gW b
k
← g>skαkx

b
k

gxb
k
← gskαkW

b
k

{We use our modified straight-through estimator to back-propagate through sign:}
gWk
← gW b

k
◦ (SSβ)′(Wk) + λ ∂R1

∂Wk

gxk
← gxb

k
◦ (SSβ)′(xk)

end for
(gs0 , gθ0)← BackBatchNorm(gx1 , s0, θ0)
gW0 ← gs0x0 {We did not quantize the first layer.}

{3. The update:}
for k = 0 to N − 1 do
θt+1
k ,W t+1

k , αt+1
k ← ADAM(η, θk,Wk, αk, gθk , gWk

, gαk
)

end for

4 EXPERIMENTAL RESULTS

We evaluate our proposed method with the accuracy performance of training using BNN+ scheme
versus other proposed binary networks, Hubara et al. (2016); Rastegari et al. (2016); Tang et al.
(2017). We run our method on CIFAR-10 and ImageNet datasets and show accuracy gains. They
are discussed in their respective sections below.
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4.1 CIFAR-10

The CIFAR-10 data (Krizhevsky & Hinton, 2009) consists of 50,000 train images and a test set of
10,000. For pre-processing the images are padded by 4 pixels on each side and a random crop is
taken. We train both, AlexNet (Krizhevsky et al., 2012), and VGG (Simonyan & Zisserman, 2014)
using the ADAM (Kingma & Ba, 2014) optimizer. The architecture used for VGG is conv(256)→
conv(256) → conv(512) → conv(512) → conv(1024) → conv(1024) → fc(1024) → fc(1024)
where conv(·) is a convolutional layer, and fc(·) is a fully connected layer. The standard 3×3 filters
are used in each layer. We also add a batch normalization layer (Ioffe & Szegedy, 2015) prior to
activation. For AlexNet, the architecture from Krizhevsky (2014) is used, and batch normalization
layers are added prior to activations. We use a batch size of 256 for training. Many learning rates
were experimented with such as 0.1, 0.03, 0.001, etc, and the initial learning rate for AlexNet was set
to 10−3, and 3×10−3 for VGG. The learning rates are correspondingly reduced by a factor 10 every
10 epoch for 50 epochs. We set the regularization parameter λ to 10−6, and use the regularization
term as defined in (4). In these experiments weights are initialized using Glorot & Bengio (2010)
initialization. Further, the scales are introduced for each convolution filter, and are initialized by
sorting the absolute values of the weights for each filter and choosing the 75th percentile value. The
results are summarized in Table 1.

Table 1: Top-1 and top-5 accuracies (in percentage) on CIFAR-10, using Manhattan regularization
function (4) with AlexNet and VGG.

BNN+ Full-Precision

Top-1 86.49% 88.58%AlexNet
Top-5 98.92% 99.73%

Top-1 91.31% 90.89%VGG
Top-5 99.09% 99.76%

4.2 IMAGENET

The ILSVRC-2012 dataset consists of∼ 1.2M training images, and 1000 classes. For pre-processing
the dataset we follow the typical augmentation: the images are resized to 256 × 256, then are
randomly cropped to 224 × 224 and the data is normalized using the mean and standard deviation
statistics of the train inputs; no additional augmentation is done. At inference time, the images are
first scaled to 256× 256, center cropped to 224× 224 and then normalized.

We evaluate the performance of our training method on two architectures AlexNet and Resnet-18
(He et al., 2016). Following previous work, we used batch-normalization before each activation
function. Additionally, we keep the first and last layers to be in full precision, as we lose 2-3%
accuracy otherwise. This approach is followed by other binary methods that we compare to (Hubara
et al., 2016; Rastegari et al., 2016; Tang et al., 2017). The results are summarized in Table 2. In
all the experiments involving R1 regularization we set the λ to 10−7 and R2 regularization to 10−6.
Also, in every network, the scales are introduced per filter in convolutional layers, and per column
in fully connected layers. The weights are initialized using a pre-trained model with htan activation
function as done in Liu et al. (2018). Then the learning rate for AlexNet is set to 2.33 × 10−3 and
multiplied by 0.1 at the 12th, 18th epoch for a total of 25 epochs trained. For the 18-layer ResNet
the learning rate is started from 0.01 and multiplied by 0.1 at 10th, 20th, 30th epoch.

4.3 DISCUSSION

We proposed two regularization terms (4) and (5) and an activation term (2) with a trainable pa-
rameter β. We run several experiments to better understand the effect of the different modifications
to the training method, especially using different regularization and asymptote parameters β. The
parameter β is trainable and would add one equation through back-propagation. However, we fixed
β throughout our experiments to explicit values. The results are summarized in Table 2.

Through our experiments, we found that adding regularizing term with heavy penalization degrades
the networks ability to converge, as the term would result in total loss be largely due to the regu-
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Table 2: Top-1 and top-5 accuracies (in percentage) on ImageNet dataset, of different combinations
of the proposed technical novelties on different architectures.

Regularization Activation AlexNet Resnet-18

SS5 46.11 75.70 - -
R1 SS10 46.08 75.75 51.13 74.94

htanh 41.58 69.90 50.72 73.48

SS5 45.62 70.13 53.01 72.55
R2 SS10 45.79 75.06 49.06 70.25

htanh - - 48.13 72.72

SS5 45.25 75.30 43.23 68.51
None SS10 45.60 75.30 44.50 64.54

SS20 44.03 68.30 44.74 69.62
htanh 39.18 69.88 42.46 67.56

larizing term and not the target cross entropy loss. Similarly, the regularizing term was set to small
values in Tang et al. (2017). As a result, we set λ with a reasonably small value 10−5 − 10−7, so
that the scales move slowly as the weights gradually converge to stable values. Some preliminary
experimentation was to gradually increase the regularization with respect to batch iterations updates
done in training, though this approach requires careful tuning and was not pursued further.

From Table 2, and referring to networks without regularization, we see the benefit of using Swish-
Sign approximation versus the STE. This was also noted in Liu et al. (2018), where their second
approximation provided better results. There is not much difference between using R1 versus R2

towards model generalization although since the loss metric used was the cross-entropy loss, the
order of R1 better matches the loss metric. Lastly, it seems moderate values of β is better than small
or large values. Intuitively, this happens because for small values of β, the gradient approximation is
not good enough and as β increases the gradients become too large, hence small noise could cause
large fluctuations in the sign of the weights.

We did not compare our network with that of Liu et al. (2018) as they introduce a shortcut connection
that proves to help even the full precision network. As a final remark, we note that the learning rate is
of great importance and properly tuning this is required to achieve convergence. Table 3 summarizes
the best results of the ablation study and compares with BinaryNet, XNOR-Net, and ABC-Net.

Table 3: Comparison of top-1 and top-5 accuracies of our method BNN+ with BinaryNet, XNOR-
Net and ABC-Net on ImageNet, summarized from Table 2. The results of BNN, XNOR, & ABC-Net
are reported from the corresponding papers (Rastegari et al., 2016; Hubara et al., 2016; Tang et al.,
2017). Results for ABC-NET on AlexNet were not available, and so is not reported.

BNN+ BinaryNet XNOR-Net ABC-Net Full-Precision

Top-1 46.1% 41.2% 44.2% - 56.6%AlexNet
Top-5 75.7% 65.6% 69.2% - 80.2%

Top-1 53.0% 42.2% 51.2% 42.7% 69.3%Resnet-18
Top-5 72.6% 67.1% 73.2% 67.6% 89.2%

5 CONCLUSION

To summarize we propose three incremental ideas that help binary training: i) adding a regularizer to
the objective function of the network, ii) trainable scale factors that are embedded in the regularizing
term and iii) an improved approximation to the derivative of the sign activation function. We obtain
competitive results by training AlexNet and Resnet-18 on the ImageNet dataset. For future work, we
plan on extending these to efficient models such as CondenseNet (Huang et al., 2018), MobileNets
(Howard et al., 2017), MnasNet (Tan et al., 2018) and on object recognition tasks.
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