
GENO – GENeric Optimization
for Classical Machine Learning

Sören Laue
Friedrich-Schiller-Universität Jena

&
Data Assessment Solutions GmbH
soeren.laue@uni-jena.de

Matthias Mitterreiter
Friedrich-Schiller-Universität Jena

Germany
matthias.mitterreiter@uni-jena.de

Joachim Giesen
Friedrich-Schiller-Universität Jena

Germany
joachim.giesen@uni-jena.de

Abstract

Although optimization is the longstanding algorithmic backbone of machine learn-
ing, new models still require the time-consuming implementation of new solvers.
As a result, there are thousands of implementations of optimization algorithms
for machine learning problems. A natural question is, if it is always necessary
to implement a new solver, or if there is one algorithm that is sufficient for most
models. Common belief suggests that such a one-algorithm-fits-all approach can-
not work, because this algorithm cannot exploit model specific structure and thus
cannot be efficient and robust on a wide variety of problems. Here, we challenge
this common belief. We have designed and implemented the optimization frame-
work GENO (GENeric Optimization) that combines a modeling language with a
generic solver. GENO generates a solver from the declarative specification of an
optimization problem class. The framework is flexible enough to encompass most
of the classical machine learning problems. We show on a wide variety of classical
but also some recently suggested problems that the automatically generated solvers
are (1) as efficient as well-engineered specialized solvers, (2) more efficient by
a decent margin than recent state-of-the-art solvers, and (3) orders of magnitude
more efficient than classical modeling language plus solver approaches.

1 Introduction

Optimization is at the core of machine learning and many other fields of applied research, for instance
operations research, optimal control, and deep learning. The latter fields have embraced frameworks
that combine a modeling language with only a few optimization solvers; interior point solvers in
operations research and stochastic gradient descent (SGD) and variants thereof in deep learning
frameworks like TensorFlow, PyTorch, or Caffe. That is in stark contrast to classical (i.e., non-deep)
machine learning, where new problems are often accompanied by new optimization algorithms
and their implementation. However, designing and implementing optimization algorithms is still a
time-consuming and error-prone task.

The lack of an optimization framework for classical machine learning problems can be explained
partially by the common belief, that any efficient solver needs to exploit problem specific structure.
Here, we challenge this common belief.
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We introduce GENO (GENeric Optimization), an optimization framework that allows to state op-
timization problems in an easy-to-read modeling language. From the specification an optimizer
is automatically generated by using automatic differentiation on a symbolic level. The optimizer
combines a quasi-Newton solver with an augmented Lagrangian approach for handling constraints.

Any generic modeling language plus solver approach frees the user from tedious implementation
aspects and allows to focus on modeling aspects of the problem at hand. However, it is required
that the solver is efficient and accurate. Contrary to common belief, we show here that the solvers
generated by GENO are (1) as efficient as well-engineered, specialized solvers at the same or better
accuracy, (2) more efficient by a decent margin than recent state-of-the-art solvers, and (3) orders of
magnitude more efficient than classical modeling language plus solver approaches.

Related work. Classical machine learning is typically served by toolboxes like scikit-learn [47],
Weka [23], and MLlib [39]. These toolboxes mainly serve as wrappers for a collection of well-
engineered implementations of standard solvers like LIBSVM [11] for support vector machines or
glmnet [24] for generalized linear models. A disadvantage of the toolbox approach is a lacking of
flexibility. An only slightly changed model, for instance by adding a non-negativity constraint, might
already be missing in the framework.

Modeling languages provide more flexibility since they allow to specify problems from large problem
classes. Popular modeling languages for optimization are CVX [14, 29] for MATLAB and its Python
extension CVXPY [3, 17], and JuMP [20] which is bound to Julia. In the operations research
community AMPL [22] and GAMS [9] have been used for many years. All these languages take an
instance of an optimization problem and transform it into some standard form of a linear program
(LP), quadratic program (QP), second-order cone program (SOCP), or semi-definite program (SDP).
The transformed problem is then addressed by solvers for the corresponding standard form. However,
the transformation into standard form can be inefficient, because the formal representation in standard
form can grow substantially with the problem size. This representational inefficiency directly
translates into computational inefficiency.

The modeling language plus solver paradigm has been made deployable in the CVXGEN [38],
QPgen [26], and OSQP [4] projects. In these projects code is generated for the specified problem
class. However, the problem dimension and sometimes the underlying sparsity pattern of the data
needs to be fixed. Thus, the size of the generated code still grows with a growing problem dimension.
All these projects are targeted at embedded systems and are optimized for small or sparse problems.
The underlying solvers are based on Newton-type methods that solve a Newton system of equations
by direct methods. Solving these systems is efficient only for small problems or problems where the
sparsity structure of the Hessian can be exploited in the Cholesky factorization. Neither condition is
typically met in standard machine learning problems.

Deep learning frameworks like TensorFlow [1], PyTorch [46], or Caffe [33] are efficient and fairly
flexible. However, they target only deep learning problems that are typically unconstrained problems
that ask to optimize a separable sum of loss functions. Algorithmically, deep learning frameworks
usually employ some form of stochastic gradient descent (SGD) [50], the rationale being that
computing the full gradient is too slow and actually not necessary. A drawback of SGD-type
algorithms is that they need careful parameter tuning of, for instance, the learning rate or, for
accelerated SGD, the momentum. Parameter tuning is a time-consuming and often data-dependent
task. A non-careful choice of these parameters can turn the algorithm slow or even cause it to diverge.
Also, SGD type algorithms cannot handle constraints.

GENO, the framework that we present here, differs from the standard modeling language plus solver
approach by a much tighter coupling of the language and the solver. GENO does not transform
problem instances but whole problem classes, including constrained problems, into a very general
standard form. Since the standard form is independent of any specific problem instance it does not
grow for larger instances. GENO does not require the user to tune parameters and the generated code
is highly efficient.

2 The GENO Pipeline

GENO features a modeling language and a solver that are tightly coupled. The modeling language
allows to specify a whole class of optimization problems in terms of an objective function and
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Table 1: Comparison of approaches/frameworks for optimization in machine learning.

handwritten TensorFlow, Weka, CVXPY GENOsolver PyTorch Scikit-learn

flexible 7 3 7 3 3
efficient 3 3 3 7 3
deployable / stand-alone 3 7 7 7 3
can accommodate constraints 3 7 3 3 3
parameter free (learning rate, ...) 7/3 7 3 3 3
allows non-convex problems 3 3 3 7 3

constraints that are given as vectorized linear algebra expressions. Neither the objective function nor
the constraints need to be differentiable. Non-differentiable problems are transformed into constrained,
differentiable problems. A general purpose solver for constrained, differentiable problems is then
instantiated with the objective function, the constraint functions and their respective gradients. The
gradients are computed by the matrix calculus (automatic differentiation) algorithm that has been
recently published in [36]. The tight integration of the modeling language and the solver is possible
only because of this recent progress in computing derivatives of vectorized linear algebra expressions.

Generating a solver takes only a few milliseconds. Once it has been generated the solver can be used
like any hand-written solver for every instance of the specified problem class. An interface to the
GENO framework can be found at http://www.geno-project.org.

2.1 Modeling Language

A GENO specification has four blocks (cf. the example to the right
that shows an `1-norm minimization problem from compressed
sensing where the signal is known to be an element from the
unit simplex.): (1) Declaration of the problem parameters that can
be of type Matrix, Vector, or Scalar, (2) declaration of the op-
timization variables that also can be of type Matrix, Vector, or
Scalar, (3) specification of the objective function in a MATLAB-
like syntax, and finally (4) specification of the constraints, also in a
MATLAB-like syntax that supports the following operators and func-
tions: +, -, *, /, .*, ./, ∧, .∧, log, exp, sin, cos,
tanh, abs, norm1, norm2, sum, tr, det, inv. The set of
operators and functions can be expanded when needed.

parameters
Matrix A
Vector b

variables
Vector x

min
norm1(x)

st
A*x == b
sum(x) == 1
x >= 0

Note that in contrast to instance-based modeling languages like CVXPY no dimensions have to be
specified. Also, the specified problems do not need to be convex. In the non-convex case, only a local
optimal solution will be computed.

2.2 Generic Optimizer

At its core, GENO’s generic optimizer is a solver for unconstrained, smooth optimization problems.
This solver is then extended to handle also non-smooth and constrained problems. In the following
we first describe the smooth, unconstrained solver before we detail how it is extended to handling
non-smooth and constrained optimization problems.

Solver for unconstrained, smooth problems. There exist quite a number of algorithms for uncon-
strained optimization. Since in our approach we target problems with a few dozen up to a few million
variables, we decided to build on a first-order method. This still leaves many options. Nesterov’s
method [43] has an optimal theoretical running time, that is, its asymptotic running time matches the
lower bounds in Ω(1/

√
ε) in the smooth, convex case and Ω(log(1/ε)) in the strongly convex case

with optimal dependence on the Lipschitz constants L and µ that have to be known in advance. Here
L and µ are upper and lower bounds, respectively, on the eigenvalues of the Hessian. On quadratic
problems quasi-Newton methods share the same optimal convergence guarantee [32, 42] without
requiring the values for these parameters. In practice, quasi-Newton methods often outperform
Nesterov’s method, although they cannot beat it in the worst case. It is important to keep in mind that
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theoretical running time guarantees do not always translate into good performance in practice. For
instance, even the simple subgradient method has been shown to have a convergence guarantee in
O(log(1/ε)) on strongly convex problems [28], but it is certainly not competitive in general.

Hence, we settled on a quasi-Newton method and implemented the well-established L-BFGS-B
algorithm [10, 54] that can also handle box constraints on the variables. It serves as the solver for
unconstrained, smooth problems. The algorithm combines the standard limited memory quasi-Newton
method with a projected gradient path approach. In each iteration, the gradient path is projected onto
the box constraints and the quadratic function based on the second-order approximation (L-BFGS)
of the Hessian is minimized along this path. All variables that are at their boundaries are fixed and
only the remaining free variables are optimized using the second-order approximation. Any solution
that is not within the bound constraints is projected back onto the feasible set by a simple min/max
operation [40]. Only in rare cases, a projected point does not form a descent direction. In this case,
instead of using the projected point, one picks the best point that is still feasible along the ray towards
the solution of the quadratic approximation. Then, a line search is performed for satisfying the strong
Wolfe conditions [52, 53]. This ensures convergence also in the non-convex case. The line search
also removes the need for a step length or learning rate that is usually necessary in SGD, subgradient
algorithms, or Nesterov’s method. Here, we use the line search proposed in [41] which we enhanced
by a backtracking line search in case the solver enters a region where the function is not defined.

Solver for unconstrained non-smooth problems. Machine learning often entails non-smooth
optimization problems, for instance all problems that employ `1-regularization. Proximal gradient
methods are a general technique for addressing such problems [48]. Here, we pursue a different
approach. All non-smooth convex optimization problems that are allowed by our modeling language
can be written as minx{maxi fi(x)} with smooth functions fi(x) [44]. This class is flexible enough
to accommodate most of the non-smooth objective functions encountered in machine learning. All
problems in this class can be transformed into constrained, smooth problems of the form

min
t,x

t s. t. fi(x) ≤ t.

The transformed problems can then be solved by the solver for constrained, smooth optimization
problems that we describe next.

Solver for smooth constrained problems. There also quite a few options for solving smooth,
constrained problems, among them projected gradient methods, the alternating direction method
of multipliers (ADMM) [8, 25, 27], and the augmented Lagrangian approach [30, 49]. For GENO,
we decided to follow the augmented Lagrangian approach, because this allows us to (re-)use our
solver for smooth, unconstrained problems directly. Also, the augmented Lagrangian approach
is more generic than ADMM. All ADMM-type methods need a proximal operator that cannot be
derived automatically from the problem specification and a closed-form solution is sometimes not
easy to compute. Typically, one uses standard duality theory for deriving the prox-operator. In [48],
prox-operators are tabulated for several functions.

The augmented Lagrangian method can be used for solving the following general standard form of an
abstract constrained optimization problem

min
x

f(x)

s. t. h(x) = 0
g(x) ≤ 0,

(1)

where x ∈ Rn, f : Rn → R, h : Rn → Rm, g : Rn → Rp are differentiable functions, and the
equality and inequality constraints are understood component-wise.

The augmented Lagrangian of Problem (1) is the following function

Lρ(x, λ, µ) = f(x) +
ρ

2

∥∥∥∥h(x) +
λ

ρ

∥∥∥∥2 +
ρ

2

∥∥∥∥∥
(
g(x) +

µ

ρ

)
+

∥∥∥∥∥
2

,

where λ ∈ Rm and µ ∈ Rp≥0 are Lagrange multipliers, ρ > 0 is a constant, ‖·‖ denotes the Euclidean
norm, and (v)+ denotes max{v, 0}. The Lagrange multipliers are also referred to as dual variables.
In principle, the augmented Lagrangian is the standard Lagrangian of Problem (1) augmented with a
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quadratic penalty term. This term provides increased stability during the optimization process which
can be seen for example in the case that Problem (1) is a linear program.

The Augmented Lagrangian Algorithm 1 runs in iterations. In each iteration it solves an unconstrained
smooth optimization problem. Upon convergence, it will return an approximate solution x to the
original problem along with an approximate solution of the Lagrange multipliers for the dual problem.
If Problem (1) is convex, then the algorithm returns the global optimal solution. Otherwise, it
returns a local optimum [5]. The update of the multiplier ρ can be ignored and the algorithm still
converges [5]. However, in practice it is beneficial to increase it depending on the progress in
satisfying the constraints [6]. If the infinity norm of the constraint violation decreases by a factor less
than τ = 1/2 in one iteration, then ρ is multiplied by a factor of two.

Algorithm 1 Augmented Lagrangian Algorithm
1: input: instance of Problem 1
2: output: approximate solution x ∈ Rn, λ ∈ Rp, µ ∈ Rm≥0
3: initialize x0 = 0, λ0 = 0, µ0 = 0, and ρ = 1
4: repeat
5: xk+1 := argminx Lρ(x, λ

k, µk)
6: λk+1 := λk + ρh(xk+1)
7: µk+1 :=

(
µk + ρg(xk+1)

)
+

8: update ρ
9: until convergence

10: return xk, λk, µk

3 Limitations

While GENO is very general and efficientit also has some limitations that we discuss here. For small
problems, i.e., problems with only a few dozen variables, Newton-type methods with a direct solver
for the Newton system can be even faster. GENO also does not target deep learning applications,
where gradients do not need to be computed fully but can be sampled.

Some problems can pose numerical problems, for instance problems containing an exp operator
might cause an overflow/underflow. However, this is a problem that is faced by all frameworks. It is
usually addressed by introducing special operators like logsumexp.

Furthermore, GENO does not perform sanity checks on the provided input. Any syntactically correct
problem specification is accepted by GENO as a valid input. For example, log(det(xx>)), where x
is a vector, is a valid expression. But the determinant of the outer product will always be zero and
hence, taking the logarithm will fail. It lies within the responsibility of the user to make sure that
expressions are mathematically valid.

4 Experiments

We conducted a number of experiments to show the wide applicability and efficiency of our approach.
For the experiments we have chosen classical problems that come with established well-engineered
solvers like logistic regression or elastic net regression, but also problems and algorithms that have
been published at NeurIPS and ICML only within the last few years. The experiments cover smooth
unconstrained problems as well as constrained, and non-smooth problems. To prevent a bias towards
GENO, we always used the original code for the competing methods and followed the experimental
setup in the papers where these methods have been introduced. We ran the experiments on standard
data sets from the LIBSVM data set repository, and, in some cases, on synthetic data sets on which
competing methods had been evaluated in the corresponding papers.

Specifically, our experiments cover the following problems and solvers: `1- and `2-regularized logistic
regression, support vector machines, elastic net regression, non-negative least squares, symmetric
non-negative matrix factorization, problems from non-convex optimization, and compressed sensing.
Among other algorithms, we compared against a trust-region Newton method with conjugate gradient
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descent for solving the Newton system, sequential minimal optimization (SMO), dual coordinate
descent, proximal methods including ADMM and variants thereof, interior point methods, accelerated
and variance reduced variants of SGD, and Nesterov’s optimal gradient descent.

Our test machine was equipped with an eight-core Intel Xeon CPU E5-2643 and 256GB RAM. We
used Python 3.6, along with NumPy 1.16, SciPy 1.2, and scikit-learn 0.20. In some cases the original
code of the competing methods was written and run in MATLAB R2019.

Figure 1: The regularization path of `1-regularized logistic regression for the Iris data set using
SAGA, GENO, CVXPY, and LIBLINEAR. The four coefficients of each model are plotted as a
regularization path from strong regularization, where all coefficients are 0 to looser regularization,
where coefficients can attain non-zero values.

4.1 Regularization Path for `1-regularized Logistic Regression

Logistic regression is probably the most popular linear, binary classification method. It is given by
the following unconstrained optimization problem

min
w

λ · r(w) + 1
m

∑
i log(exp(−yiXiw) + 1),

where X ∈ Rm×n is a data matrix, y ∈ {−1,+1}m is a label vector, r : R → R is the regularizer,
and λ ∈ R is the regularization parameter. The regularizer r is usually chosen to be the the `1-norm
or the `2-norm.

Computing the regularization path of the `1-regularized logistic regression problem [13] is a clas-
sical machine learning problem, and only boring at a first glance. The problem is well suited for
demonstrating the importance of both aspects of our approach, namely flexibility and efficiency. As a
standard problem it is covered in scikit-learn. The scikit-learn implementation features the SAGA
algorithm [16] for computing the whole regularization path that is shown in Figure 1. This figure
can also be found on the scikit-learn website 1. However, when using GENO, the regularization
path looks different, see also Figure 1. Checking the objective functions values reveals that the
precision of the SAGA algorithm is not enough for tracking the path faithfully. GENO’s result can be
reproduced by using CVXPY except for one outlier at which CVXPY did not compute the optimal
solution. LIBLINEAR [21, 56] can also be used for computing the regularization path, but also fails
to follow the exact path. This can be explained as follows: LIBLINEAR also does not compute
optimal solutions, but more importantly, in contrast to the original formulation, it penalizes the bias
for algorithmic reasons. Thus, changing the problem slightly can lead to fairly different results.

1https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_path.html
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CVXPY, like GENO, is flexible and precise enough to accommodate the original problem formulation
and to closely track the regularization path. But it is not as efficient as GENO. On the problem used in
Figure 1 SAGA takes 4.3 seconds, the GENO solver takes 0.5 seconds, CVXPY takes 13.5 seconds,
and LIBLINEAR takes 0.05 seconds but for a slightly different problem and insufficient accuracy.

4.2 `2-regularized Logistic Regression

Since it is a classical problem there exist many well-engineered solvers for `2-regularized logistic
regression. The problem also serves as a testbed for new algorithms. We compared GENO to
the parallel version of LIBLINEAR and a number of recently developed algorithms and their
implementations, namely Point-SAGA [15], SDCA [51], and catalyst SDCA [37]). The latter
algorithms implement some form of SGD. Thus their running time heavily depends on the values for
the learning rate (step size) and the momentum parameter in the case of accelerated SGD. The best
parameter setting often depends on the regularization parameter and the data set. We have used the
code provided by [15] and the parameter settings therein.

For our experiments we set the regularization parameter λ = 10−4 and used real world data sets
that are commonly used in experiments involving logistic regression. GENO converges almost as
rapidly as LIBLINEAR and outperforms any of the recently published solvers by a good margin, see
Figure 2.
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Figure 2: Running times for different solvers on the `2-regularized logistic regression problem.

On substantially smaller data sets we also compared GENO to CVXPY with both the ECOS [19] and
the SCS solver [45]. As can be seen from Table 2, GENO is orders of magnitude faster.

Table 2: Running times in seconds for different general purpose solvers on small instances of the
`2-regularized logistic regression problem. The approximation error is close to 10−6 for all solvers.

Solver Data sets

heart ionosphere breast-cancer australian diabetes a1a a5a

GENO 0.005 0.013 0.004 0.014 0.006 0.023 0.062
ECOS 1.999 2.775 5.080 5.380 5.881 12.606 57.467
SCS 2.589 3.330 6.224 6.578 6.743 16.361 87.904
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4.3 Symmetric Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) and its many variants are standard methods for recom-
mender systems [2] and topic modeling [7, 31]. It is known as symmetric NMF, when both factor
matrices are required to be identical. Symmetric NMF is used for clustering problems [35] and known
to be equivalent to k-means kernel clustering [18]. Given a target matrix T ∈ Rn×n, symmetric NMF
is given as the following optimization problem

min
U

∥∥T − UU>∥∥2Fro s. t. U ≥ 0,

where U ∈ Rn×k is a positive factor matrix of rank k. Note, the problem cannot be modeled and
solved by CVXPY since it is non-convex. It has been addressed recently in [55] by two new methods.
Both methods are symmetric variants of the alternating non-negative least squares (ANLS) [34] and
the hierarchical ALS (HALS) [12] algorithms.

We compared GENO to both methods. For the comparison we used the code and same experimental
setup as in [55]. Random positive-semidefinite target matrices X = Û Û> of different sizes were
computed from random matrices Û ∈ Rn×k with absolute value Gaussian entries. As can be seen in
Figure 3, GENO outperforms both methods (SymANLS and SymHALS) by a large margin.
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Figure 3: Convergence speed on the symmetric non-negative matrix factorization problem for different
parameter values. On the left, the times for m = 50, k = 5, in the middle for m = 500, k = 10, and
on the right for m = 2000, k = 15.

4.4 Further Experiments

Further experiments on support vector machines, elastic net regression, non-negative least squares,
problems from non-convex optimization, and compressed sensing along with the GENO models for
all experiments can be found in the supplemental material.

5 Conclusions

While other fields of applied research that heavily rely on optimization, like operations research,
optimal control, and deep learning, have adopted optimization frameworks, this is not the case for
classical machine learning. Instead, classical machine learning methods are still mostly accessed
through toolboxes like scikit-learn, Weka, or MLlib. These toolboxes provide well-engineered
solutions for many of the standard problems, but lack the flexibility to adapt the underlying models
when necessary. We attribute this state of affairs to a common belief that efficient optimization for
classical machine learning needs to exploit the problem structure. Here, we have challenged this
belief. We have presented GENO, the first general purpose framework for problems from classical
machine learning. Using recent results in automatic differentiation, GENO combines an easy-to-read
modeling language with a general purpose solver. Experiments on a variety of problems from classical
machine learning demonstrate that GENO is as efficient as established, well-engineered solvers and
often outperforms recently published state-of-the-art solvers by a good margin. It is as flexible as
state-of-the-art modeling language and solver frameworks, but outperforms them by a few orders of
magnitude.
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