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ABSTRACT

Highly expressive models especially deep neural networks (DNNs) have been
widely applied to various applications and achieved increasing success. However,
recent studies show that such machine learning models appear to be vulnerable
against adversarial examples. So far adversarial examples have been heavily ex-
plored for 2D images, while few work has tried to understand the vulnerabilities
of 3D objects which exist in real world, where 3D objects are projected to 2D do-
mains by photo taking for different learning (recognition) tasks. In this paper we
consider adversarial behaviors in practical scenarios by manipulating the shape
and texture of a given 3D mesh representation of an object. Our goal is to project
the optimized “adversarial meshes" to 2D with photo-realistic rendering engine,
and still able to mislead different machine learning models. Extensive experi-
ments show that by generating unnoticeable 3D adversarial perturbation on shape
or texture for a 3D mesh, the corresponding projected 2D instance can either lead
classifiers to misclassify the victim object arbitrary malicious target, or hide any
target object within the scene from state-of-the-art object detectors. We conduct
human studies to show that our optimized adversarial 3D perturbation is highly
unnoticeable for human vision systems. In addition to the subtle perturbation on
a given 3D mesh, we also propose to synthesize a realistic 3D mesh to put in a
scene mimicking similar rendering conditions and therefore attack existing ob-
jects within it. In-depth analysis for transferability among different 3D rendering
engines and vulnerable regions of meshes are provided to help better understand
adversarial behaviors in practice and motivate potential defenses.

1 INTRODUCTION

Machine learning, especially deep neural networks, have achieved great successes in various do-
mains, including image recognition (He et al., 2016), natural language process (Collobert & Weston,
2008), speech to text translation (Deng et al., 2013), and robotics (Silver et al., 2016). Despite the
increasing successes, machine learning models are found vulnerable to adversarial examples. Small
magnitude of perturbation is added to the input, such as an image, and therefore different learning
models can be misled to make targeted incorrect prediction. Such adversarial examples have been
widely studied in 2D domain (Szegedy et al., 2013; Goodfellow et al., 2014; Moosavi-Dezfooli
et al., 2016; Papernot et al., 2016; Carlini & Wagner, 2017; Xiao et al., 2018a;b) , while in practice
directly manipulating pixel values of real world observations is hard. As a result, it is important
to explore the vulnerabilities of 3D meshes in practice. In addition, synthetic datasets have been
widely used to improve the performance of machine learning models for various tasks, including
view point estimation (Su et al., 2015), semantic understanding in street views (Richter et al., 2016),
human pose estimation (Varol et al., 2017; Chen et al., 2015), 3D shape reconstruction (Yang &
Deng, 2018; Massa et al., 2016), and indoor scene understanding (Song et al., 2017; Zhang et al.,
2017; Handa et al., 2016; McCormac et al., 2017). In these tasks, images and videos are captured
through a physically-based rendering system, and such synthetic data are usually generated with
different scene configurations and viewpoints based on the 3D assets are from large-scale datasets
such as ShapeNet (Chang et al., 2015), ModelNet (Z. Wu, 2015) and SUNCG (Song et al., 2017).
Therefore, it is critical to explore the possibilities of manipulating such 3D shape dataset and the
corresponding severe consequences when rendering the “adversarial 3D meshes" for learning tasks.

Physical adversarial examples are studied (Kurakin et al., 2016; Evtimov et al., 2017; Eykholt et al.,
2018; Athalye & Sutskever, 2017) but they do not focus on the 3D object itself or the real-world
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rendering process. In this paper, we propose to generate adversarial perturbation for 3D meshes by
manipulating the shape or texture information, which can be eventually rendered to 2D domain to
attack different machine learning models. We also propose to place a 3D mesh (here we use a bunny)
rendered in physically based scenes to fulfill adversarial goals. We target to attack both classifiers
(Inception-v3 by Szegedy et al. and DenseNet by Huang et al.) and object detectors (Yolo-v3 by
Redmon & Farhadi). Our proposed 3D mesh based attack pipeline is shown in Figure 1. In particular,
we leverage a physically-based rendering engine, which computes screen pixel values by raycasting
view directions and simulating the shape and light interactions with physics models, to project 3D
scenes to 2D domains. First, we propose to either generate perturbation for the shape or texture of a
3D mesh, and guarantee the rendered 2D instance can be misclassified by traditional classifiers into
the targeted class. Here we do not control the rendering conditions (e.g. lighting and viewpoints)
and show that the “3D adversarial mesh" is able to attack the classifier under various rendering
conditions with almost 100% attack success rate. Second, we generate adversarial perturbation for
3D meshes to attack object detector in a synthetic indoor scene and show that by adding a bunny
with subtle perturbation, the detector can mis-detect various existing objects within the scene. Third,
we also propose to place a 3D mesh in a random outdoor scene and render it under similar physical
conditions with existing objects to guarantee its realistic observation. We show that such added
object can lead object detectors to miss the target object within the given real-world scene. To
better evaluate adversarial perturbation on 3D meshes, we propose to use a smoothing loss (Vogel &
Oman, 1996) as measurement metric for shape and report the magnitude of adversarial perturbation
in various settings (best, average, worst) to serve as a baseline for future possible adversarial attacks
on 3D meshes. We conduct user study to allow real humans to identify the categories of the generated
adversarial 3D meshes, and the collected statistical results show that users recognize the adversarial
meshes as ground truth with probability 99.29± 1.96% .

In addition, we analyze transferability upon different types of renders, where perturbation against
one render can be transferred to the other. We show that transferability among different renderers
is high for untargeted attack but low for targeted attacks, which provides in-depth understanding
of properties of different rendering system. The transferability makes black-box attacks possible
against different rendering systems. For instance, attacker can attack the differentiable render and
transfer the perturbation to non-differentiable ones which encounter high computational cost. In our
experiments, we show that we can attack a differentiable render, the neural mesh renderer (Kato
et al., 2018) and transfer the perturbation to the non-differetiable renderer Mitsuba (Jakob, 2010).
Finally, to better understand the attacks the corresponding vulnerable regions for 3D meshes, we
also analyze the manipulation flow for shape based perturbation, and find that the vulnerable regions
of 3D meshes usually lie on the parts that are close to the viewpoint with large curvatures. This
leads to better understanding of adversarial behaviors for real-world 3D objects and provide potential
directions to enhance the model robustness, such as design adaptive attention mechanism or leverage
deformation information to improve machine learning models.

In summary, our contributions are listed below: 1). We propose to generate adversarial perturbation
on shape or texture for 3D meshes and use a physically-based rendering system to project such
adversarial meshes to 2D and therefore attack existing classifiers under various rendering conditions
with 100% attack success rate; 2). We propose to place a 3D mesh and put it in both indoor and
outdoor scenes mimicking the same physical rendering conditions, and show that existing objects
can be missed by object detectors; 3). We evaluate adversarial 3D meshes based on a 3D smoothing
loss and provide a baseline for adversarial attacks on 3D meshes; 4). We evaluate the transferability
for adversarial 3D meshes among different rendering systems and show that untargeted attack can
achieve high transferability; 5). We propose a pipeline for blackbox attack that aims to attack a
differentiable renderer and transfer the perturbation to a non-differentiable renderer in an unknown
environment, by adding perturbation to the estimated environment to improve robustness. 6). We
provide in-depth analysis for the vulnerable regions for 3D meshes and therefore lead to discussion
for potential defenses.

2 3D ADVERSARIAL MESHES

2.1 PROBLEM DEFINITION

Let g be a machine learning model trained in 2D domain. I denotes a 2D image and its corresponding
label is y. g aims to learn a mapping from image domain X to Y where I ∈ X and y ∈ Y . A
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physically based rendering R projects a 2D image I = R(S;P,L) from a 3D mesh S with camera
parameters P and illumination parameters L. A 3D mesh S can be further represented as triangular
meshes which consists of vertices V , texture T and faces F . An attacker aims to generate a “3D
adversarial mesh” Sadv by manipulating the shape (vertices) and texture information for the original
3D meshS , which is eventually rendered to a 2D image to mislead a machine learning model g so
that g(R(Sadv;P,L)) 6= y (untarget attack) or g(R(Sadv;P,L)) = y′ (target attack) where y′ is the
malicious target output and y is the ground truth.

Achieving the above goals is non-trivial with the following challenges. 1. 3D space to 2D space is
complicated: a) 2D image space is largely reduced because we parameterize 2D images as the pro-
duction from 3D shapes/textures/illumination, and such reduction can affect adversarial behaviors;
b) 3D properties (shape/texture/illumination) are entangled together to generate the pixel values in
a 2D image, so perturbing one will affect the other. c) This process in general is not differentiable
unless we make substantial assumptions for the pipeline. 2. 3D space itself is complicated: a)
3D constraints such as physically possible shape geometry and texture are not directly reflected on
2D (Zeng et al., 2017). b) Human perception on objects are based on 3D understandings. Changes of
2D pixel values may not affect 3D features of meshes, but manipulations on 3D meshes can directly
affect 3D features of the meshes, so it is challenging to generated unnoticeable perturbation for 3D
meshes. The detail definition of differentiable rendering is shown in appendix.

2.2 ADVERSARIAL OPTIMIZATION OBJECTIVE

Our objective is to generate a “3D adversarial mesh” by adding subtle perturbation, such that the ma-
chine learning models will make incorrect prediction based on its rendered instance. In the meantime
we hope the adversarial meshes remain perceptually realistic for human vision system. Specifically,
the optimization objective function is as follows:

L(Sadv) = Ladv(Sadv, g, y′) + λLperceptual(S
adv) (1)

In this equation, Ladv is the adversarial loss to fool the model g to predict a specified target y′ (i.e.
g(Iadv) = y′), given the rendered image Iadv = R(Sadv;P,L) . Lperceptual is a loss to keep the
3D adversarial meshes perceptually realistic. λ is a hyper-parameter to balance the losses. Given the
optimization objective, we try to generate the 3D adversarial mesh Sadv by manipulating its shape
and texture respectively. We denote this method as meshAdv.

We evaluate meshAdv on two common tasks: image classification and object detection. We fur-
ther instantiate Ladv and Lperceptual in the next subsections, regarding different tasks and different
perturbation sources (vertices or texture).

2.2.1 ADVERSARIAL LOSSES

Classification For a classification model g, the output is the probability distribution of object cat-
egories, given an image of the object as the input. We use the cross entropy loss (De Boer et al.,
2005) as the adversarial loss for meshAdv:

Ladv(Sadv, g, y′) = y′ log(g(Iadv)) + (1− y′) log(1− g(Iadv)) (2)

Note that image Iadv is the rendered image of Sadv: Iadv = R(Sadv;P,L).

3D Object
Rendering Engine 2D Synthetic Data Machine Learning Models

“car”

...
...

“boat”

3D Adversarial Object

2D Synthetic Data (Adversarial)
Adversarial

shape/texture

g

g

Figure 1: The pipeline of adversarial mesh generation by meshAdv.
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Object Detection For object detection, we choose the state-of-the-art model, Yolo-v3 (Redmon
& Farhadi, 2018), as our target attack model g. It divides the whole input image I into S × S
different grid cells. For each grid cell, Yolo-v3 predicts the locations and label confidence values
of B bounding boxes. Then for each bounding box, it generates 5 values (4 for coordinate and
1 for probability of the bounding box) and a probability distribution over N classes. We use the
disappearance attack loss (Eykholt et al., 2018) as our adversarial loss:

Ladv = max
s∈S2,b∈B

H(s, b, y′, g(Iadv)) (3)

where g(Iadv) is the output of Yolo-v3 by feeding a rendered image Iadv = R(Sadv;P,L). H(·)
is a function to extract the probabilities of the bounding box b in grid cell s labeled as target class y′
from the output g(Iadv).

2.2.2 PERCEPTUAL LOSSES

To keep the “3D adversarial meshes” perceptually realistic, we leverage a smoothing loss similar to
the total variation loss (Vogel & Oman, 1996) as our perceptual loss:

Lperceptual =
∑
i,j

∥∥∥Iadvi+1,j − Iadvi,j

∥∥∥2
2

+
∥∥∥Iadvi,j+1 − Iadvi,j

∥∥∥2
2
, (4)

where i, j are the coordinates of the image Iadv rendered with the adversarial meshes Sadv.

We apply this smoothing loss when generating perturbations of textures for the adversarial meshes
Sadv. However, for shape perturbation, manipulation of vertices may introduce unwanted mesh
topology change, which is reported in (Kato et al., 2018). In our task, we do not want to directly
smooth the vertices, but the displacement of vertices from the original positions instead. Therefore,
we extend our 2D smoothing loss to our 3D vertex flows:

Lperceptual =
∑

vadv
i ∈V adv

∑
vadv
q ∈N (vi)

‖∆vi −∆vq‖22 , (5)

where ∆vi = vadv
i − vi is the displacement of the vertex vadv

i from the position vi in the pristine
object, and N (vi) denotes vertexes which are on the same face (neighbors) with vi.

3 TRANSFERABILITY OF 3D ADVERSARIAL MESHES

By optimizing the aformentioned adversarial objective end-to-end, we obtain the “3D adversarial
meshes ” and fool the network output to our specified target, using the image rendered by the dif-
ferentiable renderer. However, it is particularly interesting to see whether black-box attack against
unknown rendering is possible, and whether we can attack rendering R with low computational cost
and transfer such perturbation to R′ with high computational cost such as industrial-level rendering.
Here we call R′ a photorealistic renderer, because multiple-bounce interreflection, occlusion, high
quality stratified sampling and reconstruction, complicated illumination models are all present in R′

such that the final image is an accurate estimate of real-world physics as being captured by a camera.
We analyze two scenarios for transferring in both known and unknown environments.

Transferability to a Photorealistic Renderer in an Known Environment In this scenario, our
purpose is to test our 3D adversarial meshes directly under the same rendering configuration (light-
ing parameters L, camera parameters P ), only replacing the the differentiable renderer R with the
photorealistic renderer R′. In other words, while Iadv = R(Sadv;P,L) can fool the network g as
expected, we would like to see whether I ′adv = R′(Sadv;P,L) can targeted/untargeted g as well.

Transferability to a Photorealistic Renderer in an Unknown Environment In this scenario, we
would like to attack a non-differentiable system g(R′(S;Lenv, P env)) in a fixed unknown envi-
ronment with a differentiable render R. We still have the access to the shape S and its mask in the
original photorealistic renderingM , and the network g. But the rendering process ofR′ is not differ-
entiable, and we hope to employ the differentiable renderer to generate the adversarial perturbations
and transfer the adversarial behavior to I ′adv = R′(Sadv;Lenv, P env) such that I ′adv will fool g.
To achieve this, we propose the attacking pipeline as follows: 1) Estimate the camera parameters
P by optimizing the difference of the two masks ‖Rmask(S;P,L) −M‖2, where Rmask(S;P,L)
renders the silhouettes of the object S as the object mask; 2) Estimate the lighting parameters L
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using the estimated camera parameters P est by optimizing the difference of the two rendered image
in the masked region: ‖M · (R(S;P est, L) − I ′)‖2; Note that R′ need not have the same light-
ing model as in R, but we still can use simple lighting models in R to estimate the complicated
lighting Lenv; 3) Generate the adversarial meshes Sadv using our adversarial and perceptual losses
with the estimated lighting and camera parameters; here we add randomness to lighting parame-
ters, camera parameters, and the object position to improve the robustness against those variations
since we do not have an exact estimate; 4) Test our adversarial object in the photorealistic renderer:
g(R′(Sadv;Lenv, P env)).

4 EXPERIMENTAL RESULTS

In this section, we first show the 2D examples rendered from “adversarial meshes” generated by me-
shAdv against classifiers under various settings. We then visualize the manipulation flow of vertices
to better understand the vulnerable regions for those 3D objects. In addition, we show examples
of applying meshAdv to object detectors in physically realistic scenes. Finally, We evaluate the
transferability for 3D adversarial meshes from the differentiable renderer to a photorealistic non-
differentiable renderer under known rendering environments and showcase our solution under an
unknown rendering environment.

4.1 EXPERIMENTAL SETUP

In our experiment, we choose DenseNet (Huang et al., 2017) and Inception-v3 (Szegedy et al., 2016)
trained on ImageNet (Deng et al., 2009) as our target attack models for classification, and Yolo-v3
trained on COCO (Lin et al., 2014) for object detection.. We preprocess CAD models in PAS-
CAL3D+ (Xiang et al., 2014) with uniform mesh resampling with MeshLab Cignoni et al. (2008)
to increase the triangle density, and use the processed CAD models as 3D objects to attack. Since
these 3D objects have constant texture values, for texture perturbation we also start from constant
as pristine texture. For the differentiable renderer, we use the off-the-shelf PyTorch implementa-
tion (Paszke et al., 2017; Kolotouros, 2018) of the Neural Mesh Renderer(NMR) (Kato et al., 2018)
to generate “adversarial meshes”. We create a PASCAL3D+ renderings for classification as our
evaluation dataset. The details of creation are shown in appendix. We generate a total of 72 samples
with 7 different classes of 3D objects. We refer to these data as PASCAL3D+ renderings for later
use in this paper. For optimizing the objective, we use Adam (Kingma & Ba, 2014) as our solver.
In addition, we select λ using a binary search method, with 5 rounds of search and 1000 iterations
for each round. If succeeded, we select the “adversarial meshes” with the lowest Lperceptual during
search, for evaluation in the next subsection.

Table 1: Accuracy and attack success rate against different models on pristine data (p) and dversarial
examples generated by meshAdv with PASCAL3D+ renderings. We show the average distance
(mean) and the attack success probabitliy (prob) under different settings.

Adversarial
Type Model Accuracy Best Case Average Case Worst Case

mean prob mean prob mean prob

Shape DenseNet 100% 8.4 ×10−5 100% 1.8×10−4 100% 3.0×10−4 100%
Inception-v3 100% 4.76×10−5 100% 1.2×10−4 99.8% 2.3×10−4 98.6%

Texture DenseNet 100% 3.8×10−3 100% 1.1×10−2 99.8% 2.6×10−2 98.6%
Inception-v3 100% 3.7×10−3 100% 1.3×10−2 100% 3.2×10−2 100%

4.2 MeshAdv ON CLASSIFICATION

In this section, we evaluate quantitative and qualitative performances of meshAdv for classifiers. For
each sample in our PASCAL3D+ renderings, we try to targeted-attack it into the other 6 categories.
Next, for each type (shape and texture) and each model (DenseNet and Inception-v3), we split the
results into three different cases similar to Carlini & Wagner (2017): Best Case means we perform
the attack against all incorrect labels and report on the target class that is easiest to attack. Average
Case means we do the same except we report the performance on all of those targets. Similarly,
Worst case means that we report on the target class that is hardest to attack. Table 1 shows the
attack success rates and their corresponding smoothing loss for adversarial vertex and L2 distance
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(b) Perturbations on texture

Figure 2: Benign images (diagonal) and corresponding adversarial examples generated by meshAdv
on PASCAL3D+ renderings tested on Inception-v3. Adversarial targeted are shown on the top. We
show both perturbations on (a) shape and (b) texture.

for adversarial texture on the PASCAL3D+ images rendered with “adversarial meshes” generated
by meshAdv. The results show that meshAdv can achieve almost 100% attack success rate for both
attacking types.

Figure 2 shows our PASCAL3D+ renderings of the “3D adversarial meshes” for Inception-v3, af-
ter manipulating the vertices and textures respectively, while the diagonal is the images rendered
with the pristine objects. The target class of each adversarial image is shown at the top, and please
see appendix to see the results for DenseNet, which are similar. Note that for each class, we ran-
domly select one sample to show in the image, i.e. these images are not manually curated. It is
also worth noting that the perturbations on object shape or texture, generated by our meshAdv, are
barely noticeable to humans, but have the ability to mislead the classifiers. To help assess the vertex
displacement, we discuss the visualization in the following subsection.
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(a) Rendered view
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(b) Canonical view (c) Flow visualization of an 3D ad-
versarial mesh targeting “bicycle”

Figure 3: Heatmap visualization of vertex flows on Inception-v3.
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Visualizing shape deformation In order to better understand the vulnerable regions of the 3D ob-
jects, in Figure 3, we convert the vertex manipulation flow magnitude to heatmap visualization,
for the shapes corresponding to Figure 2(a). We adopt two viewpoints in this figure: the rendered
view which is the same as the one used for rendering the images, and the canonical view which is
achieved by fixing camera parameters. We observe that the regions that are close to the camera with
large curvature, such as edges, are more vulnerable. This is reasonable, since vertex displacement
in those regions will bring significant change to normals, thus affecting the shading from the light
sources and causing the screen pixel value change more drastically.

Since the heatmap only shows the magnitude of the vertex displacement, and we would also like
to observe their directions as well as their magnitude. Figure 3c shows a close-up 3D quiver plot
of the vertex flows in the vertical stabilizer region of an aeroplane. In this example, the perturbed
aeroplane object is classified to “bicycle” in its rendering. From this figure, we observe that the
adjacent vertices flow towards the similar direction, which illustrates the effect of our smoothing
loss operated on vertex flows.

Human Perceptual Study The detail description of our human study settings is shown in appendix.
In total, we collect 3820 annotations from 49 participants. 99.29 ± 1.96% of trials were classified
correctly, which shows that the our adversarial is highly unnoticeable.

(a) Benign (b) Table | Shape (c) All | Shape (d) Table | Texture (e) All | Texture

Figure 4: 3D adversarial meshes generated by meshAdv in a synthetic scene. (a) represents the
benign rendered image and (b)-(e) represent the rendered images from “adversarial object” by ma-
nipulating the shape or texture. We use the format “adversarial target | adversarial type” to denote
the object aiming to hide and the type of perturbation.

(a) S | - (b) Sadv | Dog (c) S | - (d) Sadv | Bicycle

Figure 5: 3D adversarial meshes generated by meshAdv in an outdoor simulated scene. (a) and (c)
are the corresponding rendered images with “pristine object” as control experiment, while (b) and
(d) contain “adversarial meshes” by manipulating the shape. We use the format “ S/Sadv | target” to
denote the benign/adversarial 3D meshes and the target to hide from the detector.

4.3 MeshAdv ON OBJECT DETECTION

For object detection, we use Yolo-v3 as our detector. In this experiment, we showcase two scenarios
to demonstrate that with our meshAdv, we can attack the object detector with ease.

Indoor Scene The indoor scene is purely synthetic. We compose the scene manually with a desk
and a chair to simulate an indoor environment, and place in the scene a single directional light with
low ambient light. We then put the Stanford Bunny (Turk & Levoy, 1994) object onto the desk, and
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show that by manipulating either the shape or the texture of the adversarial mesh, we can achieve
the goal of removing the table detection or removing all detections, while keep the perturbations
unnoticeable, as is shown in Figure 4.

Outdoor Scene For the outdoor scene, we take a different approach: given a real photo of the
outdoor scene, we first estimate the parameters of a sky lighting model (Hosek & Wilkie, 2012),
using the API provided by Hold-Geoffroy et al., and then estimate a directional light and the ambient
light. With this light estimation, our adversarial mesh will be realistic when being rendered and put
onto the real image. In the real image, we select dog and bicycle as our target objects. Different from
adversarial goals in the synthetic indoor scene, we aims to remove the target objects respectively to
increase the diversity of adversarial targets. In order to removing them respectively, we put our
“adversarial mesh” around the bounding box of the target object. We also successfully fool the
network using meshAdv with barely noticeable perturbations, and the results are shown in Figure 5.

Table 2: Untargeted attack success rate against Mitsuba by transferring adversarial meshes generated
by attacking a differentible rendering targeting on different classes.

model/target aeroplane bicycle boat bottle chair diningtable sofa average
DenseNet 65.2% 69.1% 66.7% 63.0% 37.08% 70.3% 47.9% 59.8%

Inception-v3 67.1% 83.3% 39.6% 76.9% 32.1% 75.0% 52.3% 60.9%

4.4 TRANSFERABILITY TO A PHOTOREALISTIC RENDERER IN KNOWN ENVIRONMENT

We directly render our “adversarial meshes” generated from the section 4.2 using a photorealistic
rendering called Mitsuba (Jakob, 2010), with the same lighting and viewpoints. We then evaluate
the targeted/untargeted attack transferability by feeding the newly rendered images. The results
are shown in Table 2. We observe that the the “adversarial meshes” can be easily transferred to
Mitsuba rendering without any modifications om untargeted attack. The confusion matrices of the
transferability related to targeted attack are shown in appendix. The diagonal is the accuracy of the
classifier on the Mitsuba-rendered images of pristine meshes. Cell(i, j) represents the attack success
rate of the “adversarial meshes” labeled as i and be attacked as target label j on Mitsuba rendering.
Different from the high transferability of untargeted attack, the transferability is pretty low except
for some similar objects.

Viewpoint and lighting estimate
Non-differentiable rendering

“airliner”
Differentiable rendering

(d, θ, φ, ψ)

Transferred to non-differentiable rendering
“hammerhead”

Adversarial perturbations
“hammerhead”

Figure 6: 3D adversarial mesh for classification under unknown environment. We estimate the
viewpoint and lighting parameters with the differentiable renderer, and then use the estimated envi-
ronment to perform targeted attack on classification using the differentiable renderer, and transfer to
the non-differentiable renderer.

4.5 TRANSFERABILITY TO A PHOTOREALISTIC RENDERER IN UNKNOWN ENVIRONMENT

We compose two scenes, for classification and object detection respectively. Following the estima-
tion method in an unknown environment in section 3, we first optimize the camera parameters P est

using the Adam optimizer (Kingma & Ba, 2014), then estimate the lighting Lest using 5 directional
lights and an ambient light. Then we use NMR to manipulate the shape Sadv in the scene until
the image Iadv rendered by NMR sucessfully targeted-attack the classifier or the object detector g
with a high confidence. During this process, we add small random perturbations to the camera P est,
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(a) Benign (b) S | Mitsuba (c) S | NMR (d) Sadv | NMR (e) Sadv | Mitsuba

Figure 7: 3D adversarial meshes against object detectors in photorealistic scenes. we use “S |
renderer" to denote the whether the added object is adversarially optimized and the rendering engine
that we aim to transfer the perturbation to attack against.

lighting Lest and the 3D object position such that our generated “adversarial meshes” Sadv will be
more robust. After successfully generating Sadv, we re-render the original scene with Sadv, and test
the rendering I ′adv = R′(Sadv, P env, Lenv) on the model g.

Transferability for Classification We place an aeroplane object from PASCAL3D+ and put it in
an outdoor sky light, and render it using Mitsuba. As is shown in figure 9, we successfully attacked
the classification system to output the our target “hammerhead” by replacing the pristine object with
our “adversarial meshes”. Note that even we did not have a very accurate lighting estimate, we still
achieve the transferability by adding perturbations in the lighting parameters.

Transferability for Object Detection For object detection, we modified a scene from Bitterli
(2016), and placed the Stanford Bunny object into the scene. Similarly, without an accurate lighting
estimate, our “adversarial meshes” successfully removed the detection prediction for our target chair
(the leftmost one).

5 CONCLUSION

In this paper, we proposed meshAdv to generate “3D adversarial meshes” by manipulating the texture
or the shape information. These “3D adversarial meshes” can be rendered to 2D domain to mislead
different machine learning models. We provide in-depth analysis for the vulnerable regions for
3D objects based on the visualization of the vertex flows and we also analyze the transferability
for 3D adversarial meshes among different renderings systems and show that untargeted attack can
achieve high transferability which is not true for targeted attack, which provides us better understand
adversarial behaviors in practice and motive potential defense.
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APPENDIX

A RELATED WORK

Differentiable 3D rendering system Our method integrates gradient-based optimization with a
differentiable 3D rendering engine integrated into an end-to-end pipeline. There are different 3D
rendering Barron & Malik use a spherical-harmonics-lighting-based differentiable renderer (Ra-
mamoorthi & Hanrahan, 2001) to jointly estimate shape, reflectance and illumination from shading
by optimizing to satisfy the rendering equation. Kato et al. propose the Neural Mesh Renderer for
neural networks and perform single-image 3D mesh reconstruction and gradient-based 3D mesh
editing with the renderer. Genova et al. integrate a differentiable renderer during training, to regress
3D morphable model parameters from image pixels. Mordvintsev et al. show that through differ-
entiable rendering, they can perform texture optimization and style transfer directly in screen space
to achieve better visual quality and 3D properties. These gradient-based optimization methods with
rendering integrated pipelines, along with our work, largely attribute to the readily accessible differ-
entiable renderers such as OpenDR (Loper & Black, 2014), differentiable mesh renderers designed
for neural networks (Kato et al., 2018; Genova et al., 2018), RenderNet (Nguyen-Phuoc et al., 2018),
and the irradiance renderer (Ramamoorthi & Hanrahan, 2001; Barron & Malik, 2015). We exploit
differentiable renderering techniques with a different optimization target: we try to minimize our
modification to 3D contents, while deceiving a machine learning model into misclassification or
misdetection for objects in rendered images.

Adversarial attacks Adversarial examples have been heavily explored in 2D domains (Szegedy
et al., 2013; Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016; Papernot et al., 2016). Physical
adversarial examples are studied by (Kurakin et al., 2016; Evtimov et al., 2017; Athalye & Sutskever,
2017). However, they focus on manipulating the paints color of the objects and do not focus on the
3D object itself. In this work, we aim to explore the adversarial 3D mesh itself. Zeng et al. (2017)
perturbed the physical parameters (normal, illumination and material) for untargeted attacks against
3D shape classification and a visual question answering system. However, they represent the shape
with pixelwise normal map, which still operates on 2D space, and such normal map may not be
physically plausible. A concurrent work (Liu et al., 2018) proposes to manipulate lighting and ge-
ometry to attack 3D rendering engine. However, there are several major differences comparing with
our work: 1) Magnitude of perturbation. The perturbation in Liu et al. (2018) such as lighting
change is visible, while low magnitude perturbation is the most important part in adversarial behav-
iors. In our proposed attacks, we explicitly constraint the perturbation to be of small magnitude,
and we conduct human subject experiments to confirm that the perturbation is unnoticeable. 2) Tar-
geted attack. Based on the objective function and results of the experiments, Liu et al. (2018) can
only mislead objects from one category to other close categories such as jaguar and elephant. In our
work, we explicitly force the object from each class to be targeted attacked into all the rest of classes
with almost 100% attack success rate. 3) Rendering Engine. We perform attacks based on the
state of the art rendering engine (Kolotouros, 2018) which makes our attacks, while Liu et al. (2018)
built a customized rendering engine and it is hard to tell whether such vulnerabilities come from the
customized rendering or the manipulated object. (4). Realistic attacks. Manipulating lighting is
less realistic in open environments. Compared with their attacks on lighting and shape, we proposed
to manipulate shape and texture of meshes which are easier to conduct in practice. In addition, we
evaluate our attacks in random physically realistic scenes to demonstrate the robustness of attacks
under various physical conditions. (5). Victim learning models. We attack both classifier and
object detector, which is widely used in safety-sensitive applications such as autonomous driving,
while Liu et al. (2018) only attacks classifiers. (6). Understandings. We provide in-depth analysis
for the 3D adversarial examples, such as their vulnerable regions, to help build better understanding.

B EXPERIMENT SETTINGS

Creation of PASCAL3D+ renderings data We state the creation of our PASCAL3D+ render-
ings for classification. First, we use NMR to generate synthetic renderings using the objects in
PASCAL3D+ in different settings such as viewpoints and lighting (intensity and direction). Then,
we create a table mapping the object classes in PASCAL3D+ to the corresponding classes in the
ImageNet. Next, we feed the synthetic renderings to DenseNet and Inception-v3 and filter out the
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samples that are misclassified by either network, which means both models have 100% prediction
accuracy on our PASCAL3D+ renderings.

C DIFFERENTIABLE RENDERING FORMULATION

A physically-based rendering engine R computes a 2D image I = R(S;P,L) with camera param-
eters P , 3D mesh S and illumination parameters L by approximating the real world physics, e.g.
the rendering equation (Kajiya, 1986; Immel et al., 1986). A differentiable rendering engine makes
such computation differentiable w.r.t. the input S, P, L by making assumptions on lighting models
and surface reflectance, and simplifying the ray-casting process.

Following common practice, we use 3D triangular meshes for shape representation, Lambertian
surface for surface modeling, directional lighting with a uniform ambientfor illumination, and ignore
interreflection and occlusion. Under these assumptions, if a triangular mesh S has vertices V , faces
F and textures T , given camera parameters P , 3D mesh S and light sources L, the 2D image
produced by the differentiable renderer can be derived as

I = rasterize(P, T · shading(L,normal(V, F ))), (6)
where “normal” computes the normal directions of surfaces, “shading” computes the shading colors
for each face, and “rasterize” maps the colors of faces onto the screen space by raycasting. The above
functions are all differentiable with respect to the inputs, such that the whole rendering process is
differentiable.

We further explain the details regarding 3D object S = (V, F, T ), illumination L and camera pa-
rameters P . For a 3D object S in 3D triangular mesh representation, let V be the set of its n vertices
{v1,v2, · · · ,vn ∈ R3} in 3D space, and F be the indices of its m faces {f1,f2, · · · ,fm ∈ N3}.
For textures, traditionally, they are represented by mapping to 2D images with mesh surface pa-
rameterization. For simplicity, here we attach to each triangular face a single color as its texture:
T = {t1, t2, · · · , tm ∈ R+3}.
For illumination, we use directional light sources plus an ambient light. The lighting directions are
denoted Ldir = {ld1, ld2, · · · ∈ R3}, where ldi , i ∈ N are unit vectors. Similarly, the lighting colors
are denoted Lcolor = {lc1, lc2, · · · } for directional light sources and a for the ambient light, with
li,a ∈ R+3 in RGB color space.

We put the object S = (V, F, T ) at the origin (0, 0, 0), and set up our perspective camera following a
common practice: the camera viewpoint is described by a quadraple P = (d, θ, φ, ψ), where d is the
distance of the camera to the origin, and θ, φ, ψ are azimuth, elevation and tilt angles respectively.
Note that here we assume the camera intrinsics are fixed and we only need gradients for the extrinsic
parameters P .

Human Perceptual Study We conduct a user study on Amazon Mechanical Turk (AMT) in
order to quantify the realism of the adversarial meshes generated by meshAdv. We uploaded the
adversarial images on which DenseNet and Inception-v3 misclassify the object. Participants were
asked to classify those adversarial images to one of the two classes (the ground-truth class and the
target class).
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Figure 8: Benign images and corresponding adversarial examples generated by meshAdv on PAS-
CAL3D+ on DenseNet. (a) presents the “adversarial meshes” by manipulating shape while (b) by
manipulating texture change.

(a) DenseNet (b) Inception-v3

Figure 9: Target attack transferability to mitsuba. (i,j) represents the attack success rate of the
“adversarial meshes” labeled as groundtruth i and attacked as target j on Mitsuba rendering.

15


	Introduction
	3D Adversarial Meshes
	Problem definition
	Adversarial Optimization Objective
	Adversarial Losses
	Perceptual Losses


	Transferability of 3D Adversarial Meshes
	Experimental Results
	Experimental Setup
	MeshAdv on Classification
	MeshAdv on Object Detection
	Transferability to a Photorealistic Renderer in Known Environment
	Transferability to a Photorealistic Renderer in Unknown Environment

	Conclusion
	Related Work
	Experiment Settings
	Differentiable Rendering formulation

