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ABSTRACT

Imitation learning allows agents to learn complex behaviors from demonstrations.
However, learning a complex vision-based task may require an impractical num-
ber of demonstrations. Meta-imitation learning is a promising approach towards
enabling agents to learn a new task from one or a few demonstrations by lever-
aging experience from learning similar tasks. In the presence of task ambiguity
or unobserved dynamics, demonstrations alone may not provide enough informa-
tion; an agent must also try the task to successfully infer a policy. In this work, we
propose a method that can learn to learn from both demonstrations and trial-and-
error experience with sparse reward feedback. In comparison to meta-imitation,
this approach enables the agent to effectively and efficiently improve itself au-
tonomously beyond the demonstration data. In comparison to meta-reinforcement
learning, we can scale to substantially broader distributions of tasks, as the demon-
stration reduces the burden of exploration. Our experiments show that our method
significantly outperforms prior approaches on a set of challenging, vision-based
control tasks.

1 INTRODUCTION

Imitation learning enables autonomous agents to learn complex behaviors from demonstrations,
which are often easy and intuitive for users to provide. However, learning expressive neural net-
work policies from imitation requires a large number of demonstrations, particularly when learning
from high-dimensional inputs such as images. Meta-imitation learning has emerged as a promising
approach for allowing an agent to leverage data from previous tasks in order to learn a new task
from only a handful of demonstrations (Duan et al., 2017; Finn et al., 2017b; James et al., 2018).
However, in many practical few-shot imitation settings, there is an identifiability problem: it may
not be possible to precisely determine a policy from one or a few demonstrations, especially in a
new situation. And even if a demonstration precisely communicates what the task entails, it might
not precisely communicate how to accomplish it in new situations. For example, it may be difficult
to discern from a single demonstration where to grasp an object when it is in a new position or how
much force to apply in order to slide an object without knocking it over. It may be expensive to col-
lect more demonstrations to resolve such ambiguities, and even when we can, it may not be obvious
to a human demonstrator where the agent’s difficulty is arising from. Alternatively, it is easy for
the user to provide success-or-failure feedback, while exploratory interaction is useful for learning
how to perform the task. To this end, our goal is to build an agent that can first infer a policy from
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Figure 1: Each column displays the first and last frame of an episode top-to-bottom. After watching one
demonstration (left), the scene is re-arranged. With one trial episode (middle), our method can learn to solve
the task (right) by leveraging both the demo and trial-and-error experience.

one demonstration, then attempt the task using that policy while receiving binary user feedback, and
finally use the feedback to improve its policy such that it can consistently solve the task.

This vision of learning new tasks from a few demonstrations and trials inherently requires some
amount of prior knowledge or experience, which we can acquire through meta-learning across a
range of previous tasks. To this end, we develop a new meta-learning algorithm that incorporates
elements of imitation learning with trial-and-error reinforcement learning. In contrast to previous
meta-imitation learning approaches that learn one-shot imitation learning procedures through imita-
tion (Duan et al., 2017; Finn et al., 2017b), our approach enables the agent to improve at the test task
through trial-and-error. Further, from the perspective of meta-RL algorithms that aim to learn effi-
cient RL procedures (Duan et al., 2016; Wang et al., 2016; Finn et al., 2017a), our approach also has
significant appeal: as we aim to scale meta-RL towards broader task distributions and learn increas-
ingly general RL procedures, exploration and efficiency becomes exceedingly difficult. However,
a demonstration can significantly narrow down the search space while also providing a practical
means for a user to communicate the goal, enabling the agent to achieve few-shot learning of be-
havior. While the combination of demonstrations and reinforcement has been studied extensively in
single task problems (Kober et al., 2013; Sun et al., 2018; Rajeswaran et al., 2018; Le et al., 2018),
this combination is particularly important in meta-learning contexts where few-shot learning of new
tasks is simply not possible without demonstrations. Further, we can even significantly improve
upon prior methods that study this combination using meta-learning to more effectively integrate
the information coming from both sources.

The primary contribution of this paper is a meta-learning algorithm that enables learning of new
behaviors with a single demonstration and trial experience. After receiving a demonstration illus-
trating a new goal, the meta-trained agent can learn to accomplish that goal through a small amount
of trial-and-error with only binary success-or-failure labels. We evaluate our algorithm and several
prior methods on a challenging, vision-based control problem involving manipulation tasks from
four distinct families of tasks: button-pressing, grasping, pushing, and pick and place. We find that
our approach can effectively learn tasks with new, held-out objects using one demonstration and a
single trial, while significantly outperforming meta-imitation learning, meta-reinforcement learning,
and prior methods that combine demonstrations and reward feedback. To our knowledge, our exper-
iments are the first to show that meta-learning can enable an agent to adapt to new tasks with binary
reinforcement signals from raw pixel observations, which we show with a single meta-model for a
variety of distinct manipulation tasks. We have published videos of our experimental results1 and
the experiment model code2.

2 RELATED WORK

Learning to learn, or meta-learning, has a long-standing history in the machine learning litera-
ture (Thrun & Pratt, 1998; Schmidhuber, 1987; Bengio et al., 1992; Hochreiter et al., 2001). We
particularly focus on meta-learning in the context of control. Our approach builds on and signifi-

1 https://sites.google.com/view/watch-try-learn-project
2https://github.com/google-research/tensor2robot/tree/master/research/

vrgripper
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cantly improves upon meta-imitation learning (Duan et al., 2017; Finn et al., 2017b; James et al.,
2018; Paine et al., 2018) and meta-reinforcement learning (Duan et al., 2016; Wang et al., 2016;
Mishra et al., 2018; Rakelly et al., 2019), extending contextual meta-learning approaches. Unlike
prior work in few-shot imitation learning (Duan et al., 2017; Finn et al., 2017b; Yu et al., 2018;
James et al., 2018; Paine et al., 2018), our method enables the agent to additionally improve upon
trial-and-error experience. In contrast to work in multi-task and meta-reinforcement learning (Duan
et al., 2016; Wang et al., 2016; Finn et al., 2017a; Mishra et al., 2018; Houthooft et al., 2018; Sung
et al., 2017; Nagabandi et al., 2019; Sæmundsson et al., 2018; Hausman et al., 2017), our approach
learns to use one demonstration to address the meta-exploration problem (Gupta et al., 2018; Stadie
et al., 2018). Our work also requires only one round of on-policy data collection, collecting only
1, 500 trials for the vision-based manipulation tasks, while nearly all prior meta-learning works re-
quire thousands of iterations of on-policy data collection, amounting to hundreds of thousands of
trials (Duan et al., 2016; Wang et al., 2016; Finn et al., 2017a; Mishra et al., 2018).

Combining demonstrations and trial-and-error experience has long been explored in the machine
learning and robotics literature (Kober et al., 2013). This ranges from simple techniques such as
demonstration-based pre-training and initialization (Peters & Schaal, 2006; Kober & Peters, 2009;
Kormushev et al., 2010; Kober et al., 2013; Silver et al., 2016) to more complex methods that incor-
porate both demonstration data and reward information in the loop of training (Taylor et al., 2011;
Brys et al., 2015; Subramanian et al., 2016; Hester et al., 2018; Sun et al., 2018; Rajeswaran et al.,
2018; Nair et al., 2018; Le et al., 2018). The key contribution of this paper is an algorithm that can
learn how to learn from both demonstrations and rewards. This is quite different from RL algorithms
that incorporate demonstrations: learning from scratch with demonstrations and RL involves a slow,
iterative learning process, while fast adaptation with a meta-trained policy involves extracting in-
herently distinct pieces of information from the demonstration and the trials. The demonstration
provides information about what to do, while the small number of RL trials can disambiguate the
task and how it s refinement. As a result, we get a procedure that significantly exceeds the efficiency
of prior approaches, requiring only one demonstration and one trial to adapt to a new test task, even
from pixel observations, by leveraging previous data. In comparison, single-task methods for learn-
ing from demonstrations and rewards typically require hundreds or thousands of trials to learn tasks
of comparable difficulty (Rajeswaran et al., 2018; Nair et al., 2018).

3 META-LEARNING FROM DEMONSTRATIONS AND REWARDS

We first introduce some meta-learning preliminaries, then formalize our particular problem state-
ment before finally describing our approach and its implementation.

3.1 PRELIMINARIES

Meta-learning, or learning to learn, aims to learn new tasks from very little data. To achieve this
a meta-learning algorithm can first meta-train on a set of tasks {Ti}, called the meta-train tasks.
We then evaluate how quickly the meta-learner can learn an unseen meta-test task Tj . We typi-
cally assume that the meta-train and meta-test tasks are drawn from some unknown task distribution
p(T ) (Finn, 2018). Through meta-training, a meta-learner can learn some common structure be-
tween the tasks in p(T ) which it can use to more quickly learn a new meta-test task.

We define a task Ti as a finite-horizon Markov decision process (MDP), {S,A, ri, Pi, H}, with
continuous state space S , continuous action space A, reward function ri : S × A → R, unknown
dynamics Pi(st+1|st, at), and horizonH . In our manipulation experiments we will restrict the tasks
to sparse binary rewards ri : S → {0, 1}. The state space S, reward ri, and dynamics Pi may vary
across tasks.

3.2 PROBLEM STATEMENT

Our goal is to meta-train an agent such that can quickly learn a new test task Tj in two phases:

Phase I: The agent observes and learns from k = 1, ...,K task demonstrations D∗j := {dj,k}. It
can then attempt the task in ` = 1, · · · , L trial episodes {τj,`}, for which it receives reward labels.

Phase II: The agent learns from those trial episodes and the original demos to succeed at Tj .
A demonstration is a trajectory d = {(st, at)} of T states-action tuples that succeeds at the task,
while a trial episode is a trajectory τ = {(st, at, ri(st, at))} that also contains reward information.
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3.3 LEARNING TO IMITATE AND TRY AGAIN

With the aforementioned problem statement in mind, we aim to develop a method that can learn to
learn from both demonstration and trial-and-error experience. We wish to (1) meta-learn a Phase
I policy that is suitable for gathering information about a task given demonstrations, and (2) meta-
learn a Phase II policy which learns from both demonstrations and trials produced by the Phase I
policy. Like prior few shot meta-learning works (Finn et al., 2017b; Duan et al., 2017), we hope to
achieve few shot success on a task by explicitly meta-training our Phase I and Phase II policies to
learn from very little demonstration and trial data.

We write the Phase I policy as πI
θ(a|s, {di,k}), where θ represents all the learnable parame-

ters. πI conditions on the task demonstrations {di,k} which helps it infer what the unknown
task is before attempting the trials. We condition the Phase II policy on both demonstration and
trial data and write it as πII

φ(a|s, {di,k}, {τi,`}), with parameters φ. One simple yet naive ap-
proach would be to use a single model across both phases: e.g., using a single MAML (Finn
et al., 2017a) policy that sees the demonstration, executes trial(s) in the environment and then
adapts its own weights from them. However, a key challenge in meta-training such a single
model is that updates based on Phase II behavior (after the trials) will also change Phase I be-
havior (during the trials). Thus each meta-training update changes the distribution of trial tra-
jectories τi,` ∼ πI

θ(a|s, {di,k}) that the Phase II policy learns from. Prior meta-reinforcement
learning work (Duan et al., 2016; Finn et al., 2017a) have addressed the issue of a changing
trial distribution by re-collecting on-policy trial trajectories from the environment after every
gradient step during meta-training, but this can be difficult in real-world problem settings with
broad task distributions, where it is impractical to collect large amounts of on-policy experience.

Figure 2: Meta-training Overview: First, we meta-train πI
θ

according to Eq. 2. Next, we collect L trial trajectories per
meta-training task Ti in the environment using our trained πI

θ .
We denote the trial {τi,`} ∼ πI

θ(a|s, {di,k}), and store the
resulting demo-trial pairs {({di,k}, {τi,j})} in a new dataset
(blue). Finally, we meta-train πII

φ according to Eq. 4.

Instead, we represent and train πI
θ, π

II
φ sep-

arately, decoupling their optimization. In
particular, we train πI

θ first, freeze its
weights, and collect trial data {τi,`} from
the environment for each meta-training
task Ti. We then train πII

φ using our col-
lected trial data. Crucially, θ and φ are
separate so training πII

φ will not change
πI
θ behavior, and the distribution of trial

data {τi,l} for each task remains station-
ary. How do we train each of these
policies with off-policy demonstration and
trial data? πI must be trained in a way
that will provide useful exploration for in-
ferring the task. One simple and effec-
tive strategy for exploration is posterior or
Thompson sampling (Russo et al., 2018;
Rakelly et al., 2019), i.e. greedily act ac-
cording to the policy’s current belief of
the task. To this end, we train πI using
a meta-imitation learning setup, where for
each task Ti we assume access to a set of
demonstrations D∗i . πI conditions on K
demonstrations {di,k} ⊂ D∗i and aims to
maximize the likelihood of the actions under another demonstration of the same task dtest

i ∈ D∗i (the
test demo is distinct from the conditioning demos). This gives the following Phase I loss for Ti:

LI(θ,D∗i ) = E{di,k}∼D∗
i
Edtest

i ∼D∗
i \{di,k}E(st,at)∼dtest

i

[
− log πI

θ(at|st, {di,k})
]

(1)

Then we can meta-train πI
θ by minimizing Eq. 1 across the set of meta-train tasks {Ti}:

min
θ

1

|{Ti}|
∑
Ti∈{Ti}

LI(θ,D∗i ) (2)

We train πII in a similar fashion, but additionally condition on L trial trajectories {τi,`}, which are
the result of executing πI in the environment. Suppose for any task Ti, we have a set of demo-trial
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Algorithm 1 Watch-Try-Learn: Meta-training
1: Input: Training tasks {Ti}
2: Input: Demo data D∗i = {di} per task Ti
3: Input: Number of training steps N
4: Randomly initialize θ, φ
5: for step = 1, · · · , N do
6: Sample meta-training task Ti
7: Update θ with∇θLI(θ,D∗i ) (see Eq. 1)
8: end for
9: for Ti ∈ {Ti} do

10: Initialize empty Di for demo-trial pairs.
11: while not done do
12: Sample K demonstrations {di,k} ∼ D∗i
13: Collect L trials {τi,l} ∼ πTθ (a|s, {di,k})
14: Update Di ← Di ∪ {({di,k}, {τi,l})}
15: end while
16: end for
17: for step = 1, · · · , N do
18: Sample meta-training task Ti
19: Update φ with∇φLII(φ,Di,D∗i ) (see Eq. 3)
20: end for
21: return θ, φ

Algorithm 2 Watch-Try-Learn: Meta-
testing

1: Input: Test tasks {Tj}
2: Input: Demo data D∗j for task Tj
3: for Tj ∈ {Tj} do
4: Sample K demonstrations

{dj,k} ∼ D∗j
5: Collect L trials {τj,l} with policy

πI
θ(a|s, {dj,k})

6: Perform task with re-trial policy
πII
φ(a|s, {dj,k}, {τj,l})

7: end for

pairs Di = {({di,k}, {τi,j})}. Then the Phase II objective for Ti is:

LII(φ,Di,D∗i )=E({di,k},{τi,`})∼Di
Edtest

i ∼D∗
i \{di,k}E(st,at)∼dtest

i

[
− log πII

φ(at|st, {di,k}, {τi,`})
]

(3)
Eq. 3 encourages πII to use and improve upon the trial experience {τi,`}, which includes reward
information. If a trial has high reward, then πI likely inferred the task correctly from demonstration
alone, and πII should reinforce that high reward trial behavior. If a trial has low reward, then πI

probably inferred the task incorrectly and πII should avoid that low reward trial behavior. Hence
even failed trials can help πII correctly infer the task by showing it what not to do. Note that since
Eq. 3 evaluates log likelihood at states and actions from the held out demonstration dtest

i , πII cannot
simply copy behavior from high reward trials in {τi,`} but instead must generalize from the trials to
a new instance of the same task. We meta-train πII

φ by minimizing Eq. 3 across the meta-train tasks:

min
φ

1

|{Ti}|
∑
Ti∈{Ti}

LII(φ,Di,D∗i ) (4)

We refer to our approach as Watch-Try-Learn (WTL), and describe our meta-training and meta-test
procedures in detail in Alg. 1 and Alg. 2, respectively. We also illustrate the meta-training flow in
Fig. 2. In practice we meta-train πI

θ and πII
θ by solving Eqs. 2 and 4 using stochastic gradient descent

or some variant. We iteratively sample (minibatches of) tasks Ti to compute gradient updates on θ
or φ, respectively. At meta-test time, for any test task Tj we receive demonstrations {dj,k} and
obtain the demo-conditioned Phase I policy πI

θ(a|s, {dj,k}). We collect trial(s) {τj,l} using πI
θ in

the environment. Then we obtain the Phase II policy πII
φ(a|s, {dj,k}, {τj,l}). Finally, we execute

the πII
φ in the environment to solve the task.

3.4 WATCH-TRY-LEARN IMPLEMENTATION

WTL and Alg. 1 allow for general representations of the Phase I policy πI
θ(a|s, {di,k}) so long as it

conditions on the task demonstrations {di,k}. Similarly, the Phase II policy πII(a|s, {di,k}, {τi,`})
must condition on both {di,k} and the trials {τi,`}. Hence a variety of adaptation mechanisms could
be used.

We choose to implement this conditioning in each policy by embedding the demonstration data
and (for Phase II) the trial data into context vectors using neural networks. Figure 3 illustrates the
πII
φ architecture assuming a single demonstration and trial. The embedding network first applies a
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Figure 3: Our vision-based Phase II architecture: Upper left: we pass the RGB observation for each timestep
through a 4-layer CNN with ReLU activations and layer normalization, followed by a spatial softmax layer
that extracts 2D keypoints (Levine et al., 2016). We flatten the output keypoints and concatenate them with
the current gripper pose, gripper velocity, and context embedding. Upper Right: We pass the resulting vector
through the actor network, which predicts the parameters of a Gaussian mixture over the commanded end-
effector position, axis-angle orientation, and finger angle. Lower left: To produce the context embedding, the
embedding network applies a vision network to 40 ordered observations sampled randomly from the demo and
trial trajectories. We concatenate the demo and trial outputs with the trial episode rewards along the embedding
feature dimension, then apply a 10x1 convolution across the time dimension, flatten, and apply a MLP to
produce the final context embedding. The Phase I policy architecture (Appendix Fig. 8) is the same as shown
here, but omits the concatenation of trial embeddings and trial rewards.

vision network to each demonstration and trial trajectory image st, producing demo and trial feature
matrices (respectively) where each row corresponds to one timestep’s features. We concatenate the
demo and trial feature matrices together on the feature (horizontal) dimension, along with the trial
episode rewards to produce a single matrix combining demo and trial observation information and
trial reward information. We then apply a 1-D convolution along the time (vertical) dimension of this
matrix and flatten to obtain a single vector that integrates and aggregates information across time.
Finally we apply a small MLP to produce the context embedding vector which contains information
about both the demos {di,k} and the trials {τi,`}. The Phase I policy πI

θ, illustrated in Appendix
Figure 8, produces a similar context embedding but only uses demonstration data. This architectural
design resembles prior contextual meta-learning works (Duan et al., 2016; Mishra et al., 2018; Duan
et al., 2017; Rakelly et al., 2019), which have previously considered how to meta-learn efficiently
from one modality of data (trials or demonstrations), but not how to integrate multiple sources,
including off-policy trial data.

Since each policy is additionally conditioned on the current state s, we concatenate the context
embedding with the current state features before feeding both as input to an actor network, which
produces a Gaussian mixture distribution (Bishop, 1994) over actions. The current state features in-
clude visual features produced by another vision network, distinct from the one used to produce the
context embedding. Both vision networks use a fairly standard convolutional neural network archi-
tecture with a final spatial softmax layer that extracts keypoints (Levine et al., 2016). The entire πII

φ

architecture, illustrated in Figure 3, is trainable end-to-end using backpropagation on Eq. 4, where
the parameters φ represent the collective weights of all layers. Similarly, the entire πI

θ architecture
depicted in Appendix Figure 8 is trained by backpropagation on Eq. 2 where θ represents the set
of weights across all layers. Note that since each neural network architecture is fixed and shared
across tasks, we expect the input state dimensions to be the same across tasks, though the content
(for example, the objects in the scene) may vary.

4 EXPERIMENTS

In our experiments, we aim to evaluate our method on challenging few-shot learning domains that
span multiple task families, where the agent must use both demonstrations and trial-and-error to
effectively infer a policy for the task. Prior meta-imitation benchmarks (Duan et al., 2017; Finn
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Figure 5: Illustration of example episodes in four distinct task families: button pressing, grasping, sliding,
and pick-and-place. Each column shows the first and last frames of an episode top-to-bottom. We meta-train
each model on hundreds of tasks from each of these task families. For each task within a task family, we use a
unique pair of kitchenware objects sampled from a set of nearly one hundred different objects.

et al., 2017b) generally contain only a few tasks, and these tasks can be easily disambiguated given
a single demonstration. Meanwhile, prior meta-reinforcement learning benchmarks (Duan et al.,
2016; Finn et al., 2017a) tend to contain fairly similar tasks that a meta-learner can solve with little
exploration and no demonstration at all. Motivated by these shortcomings, we design two new
problems where a meta-learner can leverage a combination of demonstration and trial experience:
a toy reaching problem and a challenging multitask gripper control problem, described below. We
evaluate how the following methods perform in those environments:

BC: A behavior cloning method that does not condition on either demonstration or trial-and-error ex-
perience, trained across all meta-training data. We train BC policies using maximum log-likelihood
with expert demonstration actions.

MIL (Finn et al., 2017b; James et al., 2018): A meta-imitation learning method that conditions
on demonstration data, but does not leverage trial-and-error experience. We train MIL policies to
minimize Eq. 1 similar to the WTL Phase I policy, but MIL methods lack a Phase II step. To perform
a controlled comparison, we use the same architecture for both MIL and WTL.

WTL: Our Watch-Try-Learn method, which conditions on demonstration and trial experience. In
all experiments, the agent receives K = 1 demonstration and can take L = 1 trial.

Figure 4: Average return of each method on held
out meta-test tasks in the reaching environment, after
one demonstration and one trial. Our Watch-Try-Learn
(WTL) method is quickly able to learn to imitate the
demonstrator. Each line shows the average over 5 sepa-
rate training runs with identical hyperparameters, eval-
uated on 50 randomly sampled meta-test tasks. Shaded
regions indicate 95% confidence intervals.

BC + SAC: In the gripper environment we
study how much trial-and-error experience soft
actor critic (SAC) (Haarnoja et al., 2018), a
state of the art reinforcement learning algo-
rithm, would require to solve a single task.
While WTL meta-learns a single model that
needs just one trial episode per meta-test task,
in “BC + SAC” we fine-tune a separate RL
agent for each meta-test task and analyze how
much trial experience it needs to match WTL’s
single trial performance. We pre-train a policy
similar to BC, then fine-tune for each meta-test
task using SAC.

4.1 REACHING
ENVIRONMENT EXPERIMENTS

To first verify that our method can actually
leverage demonstration and trial experience in a
simplified problem domain, we begin with toy
planar reaching tasks inspired by Finn et al. (2017b) and illustrated in Appendix Fig 7. A demon-
strator shows which of two objects to reach towards, but the agent’s dynamics are randomized per
task and may not match the demonstrator’s. This simulates a domain adaptive setting such as a robot
imitating a video of a human. Since the demonstrations {di,k} do not help identify the unknown

7
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Figure 6: The average success rate of different methods in the gripper control environment, for both state
space (non-vision) and vision based policies. The leftmost column displays aggregate results across all task
families. Our Watch-Try-Learn (WTL) method significantly outperforms the meta-imitation (MIL) baseline,
which in turn outperforms the behavior cloning (BC) baseline. We conducted 5 training runs of each method
with identical hyperparameters and evaluated each run on 40 held out meta-test tasks. Error bars indicate 95%
confidence intervals.

task dynamics, the agent must use trial episodes to successfully reach the target object. During
meta-training, WTL meta-learns from demonstrations with the correct dynamics (dtest

i in Eq. 3) how
to adapt to unknown dynamics in new tasks. To obtain expert demonstration data, we first train a re-
inforcement learning agent using normalized advantage functions (Gu et al., 2016), where the agent
receives oracle observations that show only the true target. With our trained expert demonstration
agent, we collect 2 demonstrations per task for 10000 meta-training tasks and 1000 meta-test tasks.
For these toy experiments we use simplified versions of the architecture in Fig. 3 as described in
Appendix C.

The results in Fig 4 show WTL is able to quickly learn to imitate the expert, while methods that do
not leverage trial information struggle due to the uncertainty in the task dynamics.

4.2 GRIPPER ENVIRONMENT EXPERIMENTS

The gripper environment is a realistic 3-D simulation as shown in Figure 5. Gripper tasks fall into
four broad task families: button pressing, grasping, pushing, and pick and place. Within a task
family, each task involves a different pair of kitchenware objects sampled from a set of nearly one
hundred. Unlike prior meta-imitation learning benchmarks, tasks of the same family that are qual-
itatively similar still have subtle but consequential differences. Some pushing tasks might require
the agent to always push the left object towards the right object, while others might require the
agent to always push, for example, the cup towards the teapot. The agent controls a free floating
gripper with 7-D action space. The vision based policies receive image observations and gripper
state, while state-space policies receive a vector of the gripper state and poses for all non-fixed ob-
jects in the scene. Gripper environment episodes have a maximum length of 5 seconds and contain
sparse binary rewards. In an HTC Vive virtual reality setup, a human demonstrator recorded 1536
demonstrations for 768 distinct tasks involving 96 distinct sets of kitchenware objects. We held out
40 tasks corresponding to 5 sets of kitchenware objects for our meta-validation dataset, which we
used for hyperparameter selection. Similarly, we selected and held out 5 object sets of 40 tasks for
our meta-test dataset, which we used for final evaluations. Refer to Appendix A for a more detailed
description of the scene setup, task families, and reward functions.

We trained and evaluated MIL, BC, and WTL policies with both state-space observations and vision
observations. Appendix C describes hyperparameter selection using the meta-validation tasks and
Appendix C.3 analyzes the sample and time complexity of WTL. The MIL policy uses an identical
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architecture and objective to the WTL trial policy, while the BC policy architecture is the same as
the WTL trial policy without the any embedding components. For vision based models, we crop and
resize image observations from 300× 220 to 100× 100 before providing them as input.

We show the meta-test task success rates in Fig. 6. Overall, in both state space and vision domains,
we find that WTL outperforms MIL and BC by a substantial margin, indicating that it can effectively
leverage information from the trial and integrate it with that of the demonstration in order to achieve
greater performance.

Finally, for the BC + SAC comparison we pre-trained an actor with behavior cloning and fine-tuned
4 RL agents per task with identical hyperparameters using the TFAgents (Guadarrama et al., 2018)
SAC implementation. Table 1 shows that BC + SAC fine-tuning typically requires thousands of
trial episodes per task to reach the same performance our meta-trained WTL method achieves after
one demonstration and a single trial episode. Appendix C.4 shows the BC + SAC training curves
averaged across the different meta-test tasks.

5 DISCUSSION AND FUTURE WORK

METHOD SUCCESS RATE

BC .09± .01
MIL .30± .02
WTL, 1 TRIAL (OURS) .42± .02
RL FINE-TUNING WITH SAC

BC + SAC, 1500 TRIALS .11± .07
BC + SAC, 2000 TRIALS .29± .10
BC + SAC, 2500 TRIALS .39± .11

Table 1: Average success rates across meta-test tasks
using state space observations. For BC + SAC we pre-
train with behavior cloning and use RL to fine-tune a
separate agent on each meta-test task. The table shows
BC + SAC performance after 1500, 2000, and 2500 tri-
als per task.

We proposed a meta-learning algorithm that al-
lows an agent to quickly learn new behavior
from a single demonstration followed by trial
experience and associated (possibly sparse) re-
wards. The demonstration allows the agent to
infer the type of task to be performed, and the
trials enable it to improve its performance by
resolving ambiguities in new test time situa-
tions. We presented experimental results where
the agent is meta-trained on a broad distribution
of tasks, after which it is able to quickly learn
tasks with new held-out objects from just one
demonstration and a trial. We showed that our
approach outperforms prior meta-imitation ap-
proaches in challenging experimental domains.

As illustrated in our qualitative failure analysis
(Appendix D), one area of future improvement
involves improving the informativeness of even
failed trial trajectories generated by πI. In future work, we hope to explore alternatives to pos-
terior sampling that produce more informative trials while maintaining sample and computational
efficiency. We also plan to explore ways of extending our approach to be meta-trained on a much
broader range of tasks, testing the performance of the agent on completely new held-out tasks rather
than on held-out objects.

The Watch-Try-Learn (WTL) approach enables a natural way for non-expert users to train agents
to perform new tasks: by demonstrating the task and then observing and critiquing the performance
of the agent on the task if it initially fails. WTL achieves this through a unique combination of
demonstrations and trials in the inner loop of a meta-learning system, where the demonstration
guides the exploration process for subsequent trials, and the use of trials allows the agent to learn
new task objectives which may not have been seen during meta-training. We hope that this work
paves the way towards more practical and general algorithms for meta-learning behavior.
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A GRIPPER ENVIRONMENT DETAILS

A.1 SCENE SETUP

We created the gripper environment using the Bullet physics engine (Coumans & Bai, 2016). The
agent controls a floating gripper that can move and rotate freely in space (6 DOFs), and 2 symmetric
fingers that open and close together (1 DOF). For vision-based policies, the environment provides
300 × 220 RGB image observations and the 7-D gripper position vector at each timestep. For
state-space policies it provides the 7-D gripper state and the 6-D poses (translation + rotation) of
all non-fixed objects in the scene. The virtual scene is set up with the same viewpoint and table as
in Figure 5 with random initial positions of the gripper, as well as two random kitchenware objects
and a button panel that are placed on the table. The button panel contains two press-able buttons
of different colors. One of the two kitchenware objects is placed onto a random location on the left
half of the table, and the other kitchenware object is placed onto a random location on the right half
of the table. After the demonstration episode of each task, the kitchenware objects and button panel
are repositioned: a kitchenware object on the left half of the table moves to a random location on the
right half of the table, and vice versa. Similarly, the two colored buttons in the button panel swap
positions. Swapping the lateral positions of objects and buttons after the demonstration is crucial
because otherwise, for example, the difference between the two types of pushing tasks would be
meaningless.

A.2 TASK FAMILIES

Our gripper environment has four broad task families: button pressing, grasping, sliding, and pick
and place. But tasks in each family may come in one of two types:

• Button pressing 1: the demonstrator presses the left (respectively, right) button, and the
agent must press the left (respectively, right) button.
• Button pressing 2: the demonstrator presses one of the two buttons, and the agent must

press the button of the same color.
• Grasping 1: the demonstrator grasps and lifts the left (respectively, right) object. The agent

must grasp and lift the left (respectively, right) object.
• Grasping 2: the demonstrator grasps and lifts one of the two objects. The agent must grasp

and lift that same object.
• Sliding 1: the demonstrator pushes the left object into the right object (respectively, the

right object into the left object). The agent must push the left object into the right object
(respectively, the right object into the left object).
• Sliding 2: the demonstrator pushes one object (A) into the other (B). The agent must push

object A into object B.
• Pick and Place 1: the demonstrator picks up one of the objects and places it on the near

(respectively, far) edge of the table. The agent must pick up the same object and place it on
the near (respectively, far) edge of the table.
• Pick and Place 2: the demonstrator picks up one of the objects and places it on the left

(respectively, right) edge of the table. The agent must pick up the same object and place it
on the left (respectively, right) edge of the table.

A.3 EPISODES AND REWARDS

A gripper environment episode has a maximum length of 50 timesteps, or 5 seconds real time. At
each timestep the environment returns a reward of +1 if the agent successfully completes the task,
or 0 otherwise. The episode ends immediately upon success, so only the terminal timestep can have
nonzero reward. Computing success (and hence the reward) depends on the current task’s family.
For each task family, the environment determines success at the current timestep if:

• Button pressing: the gripper is in contact with the correct button.
• Grasping: the correct object’s vertical position is a certain threshold above the table.
• Sliding: the two objects are in contact, and object A has moved more than object B.
• Pick and Place: the correct object touches the correct edge of the table, and has cleared

some vertical threshold at some prior point in the episode.
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Figure 7: Our reaching toy environment with 2 target objects and 2 degrees of freedom (DOFs),
with per-task randomized dynamics.

B REACHER ENVIRONMENT DETAILS

Figure 7 depicts our reaching toy environment. The agent controls a 2 degree of freedom (DOF)
arm and should reach to one of the two randomly positioned objects. Crucially, the agent’s dy-
namics are unknown and randomized at the start of each task: each of the two joints may have
reversed orientation with 50% probability, and the agent’s joint orientations may not match that of
the task demonstration di,k. This simulates a domain adaptive setting, for example the discrepancy
in dynamics when a robot imitates from a human video demonstration. Since simply observing the
demonstration is not sufficient to identify the task dynamics, the agent must use its own trials to
identify the task dynamics and successfully reach the target object. Following (Brockman et al.,
2016), the environment returns a reward at each timestep which penalizes the reacher’s distance to
the target object and the magnitude of its control inputs at that timestep. Precisely, let φ : S → R3

map the agent’s state to the reacher tip position, and xi ∈ R3 be the true target object’s position.
Then:

ri(s, a) = −||φ(s)− xi|| − ||a||2 (5)

C EXPERIMENTAL DETAILS

We trained all policies using the ADAM optimizer (Kingma & Ba, 2015), on varying numbers of
Nvidia Tesla P100 GPUs. Whenever there is more than 1 GPU, we use synchronized gradient
updates and the batch size refers to the batch size of each individual GPU worker.

C.1 REACHER ENVIRONMENT MODELS

For the reacher toy problem, every neural network in both the WTL policies and the baselines
policies uses the same architecture: two hidden layers of 100 neurons each, with ReLU activations
on each layer except the output layer, which has no activation.

Rather than mixture density networks, our BC and MIL policies are deterministic policies trained by
standard mean squared error (MSE). The WTL Phase II policy πII is also deterministic and trained
by MSE, while the Phase I policy πI policy is stochastic and samples actions from a Gaussian dis-
tribution with learned mean and diagonal covariance (equivalently, it is a simplification of the MDN
to a single component). We found that a deterministic policy works best for maximizing the MIL
baseline’s average return, while a stochastic WTL trial policy achieves lower returns itself but fa-
cilitates easier learning in Phase II. Embedding architectures are also simplified: the demonstration
“embedding” is simply the state of the last demonstration trajectory timestep, while the trial em-
bedding architecture replaces the temporal convolution and flatten operations with a simple average
over per-timestep trial embeddings.

We trained all policies for 50000 steps using a batch size of 100 tasks and a .001 learning rate, using
a single GPU operating at 25 gradient steps per second.
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Figure 8: Our vision-based Phase I architecture. This is identical to the architecture in Figure 3, except that
there are no trial embeddings or trial rewards to concatenate in the conditioning network.

Table 2: Best Model Hyperparameters for Gripper Environment Experiments

METHOD LEARNING RATE MDN COMPONENTS

VISION MODELS

WTL 9.693× 10−4 20
MIL 9.397× 10−4 20
BC 1.093× 10−3 20

STATE-SPACE MODELS

WTL 2.138× 10−3 20
MIL 2.659× 10−3 20
BC 2.138× 10−3 20

C.2 GRIPPER ENVIRONMENT MODELS

Algorithm 3 Demonstration and Trial Subsampling
1: Input: Demonstration d = {(st, at)}Tt=1 (or WLOG, trial τ ), for T > 2
2: Input: Output length U = 40

3: Initialize d̂ = {(s1, a1), (sT , aT )}
4: for step = 1, · · · , U − 2 do
5: Sample i uniformly at random from {2, · · · , T − 1}, with replacement.
6: d̂← d̂ ∪ {(si, ai)}
7: end for
8: return sort(d̂)

The gripper environment policies illustrated in Figure 3 and Figure 8 produce context embeddings
from demonstrations and (for Phase II) trial trajectories. The demonstrations and trials are variable
length sequential data, since each gripper environment episode will terminate early if successful.
To avoid dealing with variable sized inputs, we subsample 40 timesteps with replacement from any
demonstration or trial trajectory to provide as input to our policies. We describe the subsampling
process in Alg. 3. Since our gripper environment rewards are sparse and only nonzero on the final
timestep, the subsampling process always selects the first and last timesteps. It selects the remaining
38 timesteps uniformly at random from the noninitial and nonterminal timesteps of the original
demonstration or trial. It returns the 40 selected timesteps in sorted order for temporal consistency.

For each state-space and vision method we ran a simple hyperparameter sweep. We tried K = 10
and K = 20 MDN mixture components, and for each K we sampled 3 learning rates log-uniformly
from the range [.001, .01] (state-space) or [.0001, .01] (vision), leading to 6 hyperparameter exper-
iments per method. We selected the best hyperparameters by average success rate on the meta-
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validation tasks, see Table 2. We trained all gripper models with a 11 GPU workers and a batch
size of 8 tasks for 500000 (state-space) and 60000 (vision) steps. Training the WTL trial and re-trial
policies on the vision-based gripper environment takes 14 hours each.

C.3 ALGORITHMIC COMPLEXITY OF WTL

WTL’s trial and re-trial policies are trained off-policy via imitation learning, so only two phases
of data collection are required: the set of demonstrations for training the trial policy, and the set
of trial policy rollouts for training the re-trial policy. The time and sample complexity of data
collection is linear in the number of tasks, for which only one demo and one trial is required per
task. Furthermore, because the optimization of trial and re-trial policies are de-coupled into separate
learning stages, the sample complexity is fixed with respect to hyperparameter sweeps. A fixed
dataset of demos is used to obtain a good trial policy, and a fixed dataset of trials (from the trial
policy) is used to obtain a good re-trial policy.

The forward-backward pass of the vision network is the dominant factor in the computational cost of
training the vision-based Phase II architecture. Thus, the time complexity for a single SGD update
to WTL is O(T ), where T is the number of sub-sampled frames used to compute the demo and
trial visual features for forming the contextual embedding. However, in practice the model size and
number of sub-sampled frames T = 40 are small enough that computing embeddings for all frames
in demos and trials can be vectorized efficiently on GPUs.

C.4 BC + SAC BASELINE TRAINING CURVE

Figure 9: For “BC+SAC”, we pre-train agents with behavior cloning and use RL to fine-tune on each meta-
test task. By comparison, WTL uses a demo and a single trial episode per task (< 50 environment steps).
X-axis (log-scale) shows environment experience steps collected per task. Error bars indicate 95% confidence
intervals.

D FAILURE ANALYSIS

We performed a qualitative failure analysis of our vision-based WTL method on meta-test tasks by
manually inspecting videos of Phase I and Phase II policy behavior. Table 3 shows a matrix of
different outcomes, where each episode is classified into one of three categories: 1) successfully
completing the task, 2) performing the task but on the wrong object or location, 3) moves toward the
correct object but misses (often comes close but gets stuck). One common failure mode is when the
agent reaches towards but misses the correct object in Phase I, which does not provide the Phase II
policy with enough information to disambiguate the correct task.
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Table 3: WTL outcome matrix in the vision-based gripper environment. This table shows frequen-
cies of outcomes after Phase I (rows) and after Phase II (columns) over 100 meta-test tasks.

Phase II

Phase I
Missed Object Wrong Object Success

Missed Object 23 12 15
Wrong Object 5 11 8

Success 6 3 20
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