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ABSTRACT

Antimalware products are a key component in detecting malware attacks, and their
engines typically execute unknown programs in a sandbox prior to running them
on the native operating system. Files cannot be scanned indefinitely so the engine
employs heuristics to determine when to halt execution. Previous research has
investigated analyzing the sequence of system calls generated during this emulation
process to predict if an unknown file is malicious, but these models require the
emulation to be stopped after executing a fixed number of events from the beginning
of the file. Also, these classifiers are not accurate enough to halt emulation in
the middle of the file on their own. In this paper, we propose a novel algorithm
which overcomes this limitation and learns the best time to halt the file’s execution
based on deep reinforcement learning (DRL). Because the new DRL-based system
continues to emulate the unknown file until it can make a confident decision to stop,
it prevents attackers from avoiding detection by initiating malicious activity after a
fixed number of system calls. Results show that the proposed malware execution
control model automatically halts emulation for 91.3% of the files earlier than
heuristics employed by the engine. Furthermore, classifying the files at that time
improves the true positive rate by 61.5%, at a false positive rate of 1%, compared
to a baseline classifier.

1 INTRODUCTION

Malicious software, or malware, is a serious threat to computer users. As a first line of defense, users
and organizations rely on commercial antimalware (i.e., antivirus) products to detect malware on their
computers, and the antimalware engine is a key component of these malware detection products. Prior
to allowing an unknown file to be executed on the native operating system, the antimalware engine
often tries to detect malware using two main approaches. First, static analysis employs malware
“signatures” (i.e., rules) to scan the unknown file to search for malicious byte sequences in the file
without execution. Next, the engine utilizes one form of dynamic analysis called emulation to execute
the file in a lightweight sandbox. Lightweight emulation does not analyze the unknown file in a full
virtual machine (VM). Instead, the emulator mimics the response of a typical operating system. If the
engine can detect malicious behavior during emulation, the antimalware system blocks the file from
being executed on the native operating system and alerts the user that the file they are trying to install
is malicious. As a result, the user’s computer is not infected.

Previous dynamic analysis research has focused on analyzing the sequence of system application
programming interface (API) calls made by the unknown file during emulation. Typically, the authors
propose a recurrent, deep learning model to discriminate between the behavior of malicious and
benign files. Pascanu et al. (2015) used a recurrent neural network (RNN), or an echo state network
(ESN), in combination with either a logistic regression classifier or a multi-layer perceptron (MLP)
to detect malware. Athiwaratkun & Stokes (2017) replace the RNN with a long short-term memory
(LSTM) recurrent network or a gated recurrent unit (GRU), and they also propose a character-level
convolutional neural network (CNN) to predict if an unknown file is malicious. A CNN followed
by an LSTM is proposed for this task by Kolosnjaji et al. (2016). In all these solutions, the authors
consider a fixed-length input buffer containing the events executed from the beginning of the file. The
length of this pre-defined window, v, varies depending on the study with v € {50, 100, 200, 65000}.

In this paper, we propose a novel algorithm, based on deep reinforcement learning (DRL), to overcome
this limitation and learn the best time to halt the engine’s emulation to predict whether the unknown
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file is malicious or benign. DRL has been used previously to create adversarial samples to attack a
malware classifier (Anderson et al. (2018)). Initially, we tried to train a classifier to halt emulation
based on the previous ¢; (e.g., 200) behavioral events, but the accuracy of this classifier was not
sufficient to effectively halt the emulation. To the best of our knowledge, this is the first paper to
propose using deep reinforcement learning to protect users from malware. This DRL-based neural
network, combined with an event classifier and a file classifier, learns whether to halt emulation after
enough state information has been observed or to continue emulation if more events are needed to
make a highly confident prediction. Unlike previously proposed solutions, the DRL algorithm allows
the engine to decide when to stop on a per file basis.

Results from analyzing a collection of malware and benign files demonstrates a significant improve-
ment in the early stopping of the execution of the file. The DRL-based system halts execution of
91.3% of the files earlier than heuristics used by the production antimalware engine. When the
execution is stopped by the DRL model, the true positive detection rate exhibits a relative increase
of 61.5% at a false positive rate of 1.0% compared to the best performing baseline model proposed
in Athiwaratkun & Stokes (2017). Our contributions include the following: 1) we propose a deep
reinforcement learning-based system which predicts when to stop emulating an unknown file, 2) we
show that the proposed system significantly outperforms several recent neural malware classification
systems and 3) we provide a theorem and prove that the proposed DRL-based model outperforms
these earlier baseline models for malware classification.

2 BACKGROUND

Engine System Call Events. The original data for our research was collected by scanning a large
collection of Windows Portable Executable (PE) files with the anonymized for submission production
antimalware engine. The engine collects behavioral events, e;, observed during emulation. Most of
the events are associated with APIs invoked during execution, but other behavioral events, such as
unexpected instructions or constructs, are also captured. In our data, the engine records 114 event
types, e; € {0,-- -, 113}, ranging from file IO, registry APIs, networking APIs, thread or process
creation and control, inter-process communication, timing, and debugging APIs. The behavioral
events are logged using a special version of the antimalware engine, and the files are labeled with
L € {0,1} where 1 corresponds to a malware file and 0 indicates that the file is benign. Additional
details on emulation and scanning can be found in Appendix A, and the threat model is given in
Appendix B.

Conventional Reinforcement Learning. Conventional Reinforcement learning is normally formu-
lated as a stochastic Markov Decision Process (MDP). There are four main components in a standard
reinforcement learning structure, including States, Actions, Rewards and Policy. Each of them play
a different role in formulating the RL environment. A general interpretation is that reinforcement
learning is a technique to help an agent learn what is the best action and policy to take such that
its expected rewards/penalties can be maximized/minimized under a stochastic MDP environment
(Sutton & Barto (1998)). Conventional reinforcement learning definitions are provided in Appendix C.

3 NEURAL MALWARE CONTROL AND IMPROVED FILE CLASSIFICATION

An overview of the proposed DRL-based system is shown in Figure 1, and it has two main components:
the execution control model and the improved inference model. An unknown file is emulated by the
antimalware engine, and this generates a sequence of behavioral file events, F.

The execution control model processes I and is responsible for controlling the file’s execution.
If the execution control model can make a confident decision that the file is either malicious or
benign, the execution is halted. As it is received, each individual event e; is first processed by an
event classifier which makes a prediction, ¥, indicating whether or not the most recent event
history includes malicious activity. Initially, we tried halting the emulation based solely on the
event classifier’s output, but the classifier’s accuracy was not sufficient to accomplish this task and
motivated the need for deep reinforcement learning. Even though it is a weak signal, y. ¢ is used to
construct a reward signal for the DRL model, which then produces the execution control signal, h;,
indicating if the file execution should be halted or allowed to continue.
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Figure 1: Deep reinforcement learning system in Figure 1. In both figures, the input is e;, and
for halting the execution of an unknown file and the outputs are h; and y ;.
improved malware classification.

The primary purpose of the DRL model is to better control the file’s execution. However, we also
found that it can be used to significantly improve the overall classification of an unknown file. This
improved prediction, yrr, ;, which indicates whether the file is malicious or benign, is generated by
the improved inference model. The improved inference model boosts the weak predictions from
the event classifier, .+, based on h; and the output of a baseline file classifier which offers an initial
estimate of the probability, 1/, that the file is malicious based on the initial 200 events generated by
the file.

4 DEEP EXECUTION CONTROL

The details of the execution control model in Figure 1 are depicted in Figure 2. The input is e;, and
the outputs are h; and y. ; in both figures. As each event is received, it is inserted into the event
queue, a first in, first out (FIFO) queue. The event classifier then predicts ¥, ; for the most recent
subsequence stored in the event queue. Since the output layer of the event classifier is a sigmoid
function, g, ; is the probability that the most recent subsequence of behavioral events corresponds to
malicious activity.

The DRL model depends upon its states, actions, and rewards. The state, s, includes information
related to all the events received up to and including the most recent event. For each e,, the event
classifier’s prediction y. ¢ is used as part of the DRL model’s reward function, ;. The actions for
the DRL model include continuing and halting file execution. Based in part on ¥, ; and s¢, the DRL
model generates separate () values which are the estimated expected discounted rewards associated
with these actions. The () value signals are noisy and cannot be used directly. The action state model
filters the () values to generate the halting signal h;, which is then used by the antimalware engine to
stop the file’s execution.

Event Classification. The recurrent model structure which is used for the event classifier, and later
for the baseline file classifier, is shown in Figure 3. For each new event, the event classifier makes a
prediction, ¥, ;, that the behavior associated with the most recent ¢y behavioral events is malicious.
This event subsequence is stored in the event queue.

Each event in the event queue is input to an embedding layer, and the result is then input to a recurrent
layer. We use a recurrent neural network (RNN) for the recurrent layer. As proposed in Pascanu
et al. (2015), the recurrent layer’s hidden state is input to a max-pool layer which is able to better
detect malicious activity within the subsequence. We next construct a sparse binary, feature vector
consisting of a bag of words (BOW) representation of the event subsequence (114), the final hidden
state of the recurrent layer which is the recurrent layer’s embedding (1500), and the output of the
max-pool layer which is the max-pool embedding (1500). This feature vector is then input to a
shallow neural network in the classifier layer. The output layer of the neural network is a sigmoid
function. Thus, g, ; is the probability that this most recent event history contains malicious activity.

Deep Reinforcement Learning. We next present a deep reinforcement learning model to control
the antimalware engine’s execution of an unknown file. The first task is to choose the type of
reinforcement learning model for our problem. The main feature in our problem is a very large
state space together with a small action space consisting of two actions A € {continue, halt}.
Considering the small action space, we prefer a value-based reinforcement learning technique which
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the baseline file classifier.

compares the value functions of the actions directly, instead of learning another policy estimator to
find the best policy as in policy gradient (Silver et al. (2014); Levine et al. (2016)) or actor-critic-based
approaches (Wawrzynski (2009); Wawrzynski & Tanwani (2013); Lillicrap et al. (2015)).

The action-value function, Q*(s;, a;) = max, E[R|as, s¢, 7|, is the expected reward of taking
action a; at state s; following the policy 7. To calculate this value using a conventional value-based
approach, it is necessary to store all the () values in a table for all the state-action pairs encountered
during training, which is not feasible if the state space or action space is large.

One approach to overcome this difficulty is by training a nonlinear approximator Q(s;, a;|0;), such
as a deep neural network, to estimate Q*(s;, a;) at time step ¢. However, these types of nonlinear
estimators tend to be unstable in practical applications since convergence is not guaranteed. To
address this issue, Mnih et al. (2013; 2015) recently proposed using a replay buffer in the deep )
network (DQN) which demonstrates better convergence properties. Since our problem has a very
large state space, we also use a DQN as our DRL model structure in this paper.

In a DQN-based DRL structure, the deep neural network action-value function estimator Q(s;, a;|0;)
is normally defined at state s; as Q(sy, at|0;) ~ Q*(s¢, a;) by taking the state s; as the input of the
neural network, where 6; represents the neural network parameters. We next describe the state design,
action design, reward design, and training for the DRL model using experience replay.

Design of States. The DRL model’s state, which is illustrated in Figure 5, contains three parts: the
position (i.e., index) of the current event in the file p;, the current event ID, and the histogram of all
the previous events. The current event position in the file will be used later to define the reward r; for
the deep reinforcement learning model. We initially tried to use a one-hot encoding of the event ID,
but found that using the event ID directly provides slightly better performance while reducing the
size of the state. The event ID histogram captures the history of the events which have been observed
so far.

| 3 | 23 | 12,6....,15,0,1,...9] |

Current Position in Filep: Current Event ID Event ID Histogram

Figure 5: State representation, s;, for the DRL model.

Design of Actions. The agent (i.e., antimalware engine) can perform two types of actions a;:
continue, which is labeled as C, and halt, labeled as H. The action indicates whether the agent
should continue or halt the execution of the file. In our deep reinforcement learning model, the
selected action a; for state s, is inferred from the output of the neural network. As shown in the
Figure 2, the outputs of the deep neural network are the estimated action value function Q¢ =
Q*(st,ar = C) = max, E[R¢|ar = C, s¢, 7| for action C at state s; and Qg = Q*(s,ar = H) =
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max, E[R¢|a; = H, s, | for action H at state s;. By comparing the two Q*(s¢, a;) values for
actions H and C, the action with the larger () value is selected and performed.

Design of Rewards. The reward r, at each state s, is designed based on two criteria:

1. We prefer for the DRL network to learn to halt emulation as quickly as possible. Therefore, shorter
emulation sequence lengths are assigned a higher reward and longer sequence lengths are given a
smaller reward.

2. The closer an event prediction is to the true label of the file, the larger the reward should be given
at that state.

Based on the above two criteria, the reward is defined as
re = (0.5 — |ye s — L|)e 7" (1)

where y. . is the event-based prediction generated by the most recent ¢y = 200 events, and L € {0, 1}
is defined as the true label of the training file. The decay factor g is chosen experimentally, and p; is
the position of current event in the file.

DRL Training. Tg train this neural network-based estiIAnator, we use an [ loss function defined
as L(0;) = Es,[(Q(st, ar|0:) — Q(st, at|0;))?] where Q(s;,a¢|6;) is an estimate of Q(sy, az|0;).
Q(st, at|0;) is computed using the current state reward r; together with its neighbors’ estimations
from the neural network in an iterative manner, i.e., Q(st, ag|b;) = e + ymaxg,,, Q(S¢41,ae41(04)
where s, are the neighbors of sy, and a; are the corresponding actions generated by the neural
network.

In Mnih et al. (2013), experience replay is used to train the DRL model. Experience replay helps to
alleviate the potential issues of non-stationary distributions and correlated data and is performed by
randomly sampling the state pairs. Whenever one stochastic step is taken by the agent, the current
state s, obtained reward 7, action taken a, and next state s, are combined as one agent experience
set (S¢,7¢,a4,5¢4+1), and pushed into the replay memory queue M. The reinforcement learning updates
are performed in minibatches of size By, drawing from the replay memory randomly. The algorithm
for training the DRL model using experience replay is provided in Appendix D.

We tested several different stochastic gradient descent optimization methods for training the DRL
model and found that adadelta (Zeiler (2012)) performed best. Furthermore, the convergence of DRL
is not always guaranteed. To help with the convergence, the sum of r; + 7 should be within the
range of [0,1]. It is important to note that we first train the event classifier, as well as the baseline file
classifier in the improved inference model, in isolation prior to training the DRL model — the system
is not trained in an end-to-end fashion. Thus, y. ; in the reward r; is generated by the pre-trained
event classifier, and the reward function has the same value for the same event sequence. Otherwise,
the DRL’s reward function can become non-stationary.

Action State Model. The final block in Figure 2 is the action state model which generates the halting
signal h;. The () value signal is noisy and cannot be used directly to compute h;. The halting signal
is a binary signal which is initialized to have a value of 0 and remains O for each e; until Qg > Q¢
for K consecutive events. At that point, the value of h; transitions to 1 and continues to maintain that
value if any additional events are processed.

5 IMPROVED INFERENCE

The purpose of the improved inference model in Figure 1 is used to generate a better DRL-based
prediction, y gy, ¢, of whether or not an unknown file is malicious. The details of improved inference
model are depicted in Figure 4. This model has three inputs, namely the events generated by the
file (e), the most recent event predictions (y. ), and the execution control signal (h;). The most
recent K values of ¥, ; are stored in the event prediction queue, which is another FIFO queue. After
h; signals that the file execution has been halted, the improved file score model evaluates the event
predictions in the queue to generate Yry, ;.

The individual y. ; values, stored in the event prediction queue, are noisy and can be difficult to
analyze. In some cases, only setting yry, + to be the most recent y. , value can lead to an incorrect
prediction that the file is malicious. To overcome this issue, the improved inference model also
employs an additional baseline file classifier to improve the accuracy of ygy, ;. To accomplish this
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task, the initial £ (e.g., 200) events generated by the file are stored in the initial events buffer, and
these are processed by the baseline file classifier to produce an initial prediction that the file is
malicious, y/¢.

Baseline File Classifier. The baseline file classifier also utilizes the structure shown in Figure 3 and
follows Athiwaratkun & Stokes (2017). The input event subsequence in Figure 3 corresponds to
the first ¢y events for each file stored in the initial events buffer (Figure 4). Here, t; is the same
value which denotes the length of the event classifier’s input event queue. An LSTM is used for the
recurrent layer, and the classifier layer uses logistic regression for the file’s prediction 3. Similar to
the event classifier, y; is the initial estimate of the probability that the file is malicious based on the
initial behavior of the file.

Improved File Score. We can now combine y; with the y. ; history stored in the event prediction
queue to compute the final improved file classifier score, yry, ;. Since the initial estimates of the y. ¢
are noisy, we process the most recent K event predictions from the event prediction queue. Formally
if h; is equal to 1,
Yrot = max{Yet— K11, - ,Yer} ifys>0.5
Yot = Min{ye k41, , Yt} ifyr <05

where y. ; is the event classifier’s prediction at step ¢, and y gy, is the improved inference model’s
output, i.e., the prediction probability that the unknown file is malicious.

2

It is important to provide mathematical insight why (2) provides better performance compared to the
baseline model which only uses a deep learning-based classifier to process the first £ events. The
intuition is that our new model provides a closer prediction to the true label (e.g., malware or benign)
compared to a single deep learning file classifier.

Theorem 1. Let E; . [Rt,] be the expected reward obtained at the state si, corresponding to event
et,, where ty is the fixed number of events used to train the baseline file classifier and is also the
number of the most recent events used to train the event classifier. Eg«[R*] is the expected reward
obtained at the halting state s* where s* is selected by the improved inference model when hy
transitions from 0 to 1. If all models are fully trained and the decay factor ( defined in reward is

small enough, Es, [Ri;] < Ee[R*] and ly* — L] < 3 where y* € [0, 1] is the predicted probability

of a file being malicious using the improved inference model, and L is the true label of the given file.
Then,

lyr —L|>|y*—L| 3)

where y is the predicted malware probability using a baseline file classifier.

This theorem is proved in Appendix E.

Evasion of adversarial learning-based attacks is another important aspect to consider. Evasion of the
model discussed in Appendix F.

6 EXPERIMENTAL RESULTS

We next present the results for the proposed neural malware control model. We first describe the
datasets which were collected for our experiments. Next, we present the experimental setup. We then
evaluate how quickly the DRL-based model halts the execution of a file. Finally, we compare the
final prediction that the file is malicious or benign to the results from several baseline file classifiers.

Datasets. We collected a dataset of 75 thousand files which had been evaluated by a production
antimalware engine. These files were equally split between the malware and benign classes. First,
we discarded any files whose event sequences were shared between these two classes and which
contained less than 50 events. Furthermore, we ensured that all the event sequences in the datasets
were distinct. This requirement ensured that we did not overfit to one particular set of events. We then
split the overall dataset into separate training, validation, and test sets with 50, 10, and 15 thousand
files, respectively. Again, we maintained an equal split between the two classes for each of the
individual datasets. The event and file classifiers were trained with the training and validation sets,
while the DRL-model was trained with 2000 files from the training set. The results presented below
are based on evaluating the model on the hold out test set.
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Setup. We implemented the proposed neural malware control model using Keras (Chollet et al.
(2015)) with Theano (Al-Rfou et al. (2016)) as the backend deep learning framework. Several
hyperparameters were tuned on smaller datasets. The decay factor in the DRL model’s reward
function is v = 0.01. The DRL model uses 3 hidden layers and is trained with a minibatch size
Bprr, = 50. The replay memory is initialized with a size p = 50000.

How does the DRL-based model’s stopping performance compare to the antimalware engine’s
heuristics? The files in our dataset were collected by a production antimalware engine, and the
number of events recorded for each file represents the performance of the heuristics employed by the
engine to halt emulation. Thus, by measuring how often the DRL-based model halts execution prior
to reaching the end of the file, we can compare the performance between our model and the engine’s
heuristics. In cases where the DRL model reaches the end of the file without halting execution,
we can infer that the proposed model was not confident enough to make a decision, and the DRL
based-model would have continued to execute the file.

The results of this evaluation are presented in Table 1 and depend on two values: the number of
training files (i.e., epochs) N and the number of consecutive events where Qg > Q¢ denoted by K.
The fraction of files where the DRL-model halts execution before the end of the file, «, is computed
as: « = (Total number of early halted files)/(Total number of files).

We make two observations from the results presented in the table. First, the percentage of files
whose execution is halted by the DRL model earlier than engine’s heuristics continues to increase as
the number of training file NV increases. Better training allows the engine to halt execution earlier.
Second, the percentage of files which are halted early decreases with K. The value of K is a proxy
for the DRL model’s confidence in the decision to halt the file’s execution. It is not surprising
that the execution of fewer files is halted early as we require more confidence (i.e., higher value of
K) in the decision. Even so, the results show that over 91% of the files in the test set are halted
early compared to the engine’s heuristics after training with only 2000 files. This indicates that the
engine’s heuristics may be overly cautious when emulating a file. In addition, requiring less time for
scanning an individual file leads to better performance when scanning all the files on the hard drive.
A histogram which indicates the percentage of events which were executed before the DRL model
halted execution is provided in Appendix G.

| [K=10 [ K=I5 [K=20 |
N=30 71.5% 64.1% 58.3%
N=200 82.9% 75.2% 69.2%
N=2000 98.2% 95.1% 91.3%

Table 1: The fraction of files, «, in % where emulation is halted earlier by the proposed deep
reinforcement learning model compared to heuristics used by the antimalware engine.

Can DRL improve file classification? While the results in Table 1 indicate that emulation of the
majority of the files can be stopped earlier than the heuristics employed in the engine, it is important
to understand how early halting affects the detection performance. To measure this, we first compute
the receiver operating characteristic (ROC) curves for a range of models in Figure 6 for the baseline
file classifier depicted in Figure 3. The models include LSTM Athiwaratkun & Stokes (2017),
RNN Pascanu et al. (2015), gated recurrent unit (GRU) Athiwaratkun & Stokes (2017), convolutional
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neural network (CNN) Kolosnjaji et al. (2016) and a simple, single hidden layer, feedforward neural
network. We also include the echo state network (ESN) counterparts for the LSTM and GRU. All
models use logistic regression (LR) for the classifier, because these slightly outperformed a shallow
neural network for this dataset. All models use max-pooling as shown in Figure 3. These results
indicate that the performance of none of the models we investigated dominated all of the other models.
In particular, the ESN version of the GRU offers better performance and low false positive rates
(FPRs) while the LSTM outperforms all other models above an FPR > 1.2%.

We next compare the two best performing baseline file classifiers to the proposed DRL-based models
for K € {10,15,20} in Figure 7. The figure clearly indicates that all the DRL-based models offer
significantly better performance compared to the baseline file classifiers. In particular, the DRL-based
model with K = 20 offers a relative improvement of 61.5% for the true positive rate (TPR) at an
FPR of 1% compared to the GRU-ESN-based baseline file classifier. The relative improvement of the
TPR is 65.7% at an FPR of 1% for the LSTM.

7 RELATED WORK

Deep Reinforcement Learning. Conventional reinforcement learning has been widely studied in
the fields of machine learning and system control for over three decades (Sutton (1984); Williams
(1992); Littman (1994); Kaelbling et al. (1996); Sutton & Barto (1998)). Recently, Mnih et al. (2013;
2015) successfully applied deep neural network-based Q-learning (DQN) to playing a series of Atari
games, by using a replay buffer to improve the system’s convergence. Also, Silver et al. (2016; 2017)
developed novel algorithms, by applying reinforcement learning to Monte Carlo tree search, to play
the Go game and beat human Go masters. Progress has also been made in improving value-based
(Van Hasselt et al. (2016); Wang et al. (2016)), policy gradient (Schulman et al. (2015); Duan et al.
(2016); Gu et al. (2017); O’Donoghue et al. (2017)), and actor-critic (Lillicrap et al. (2015); Mnih
et al. (2016)) deep reinforcement learning algorithms, in order to find better policies more efficiently
and to deal with a continuous action space.

Despite the success of applying DRL to different types of games, no existing research has studied
malware control and behavioral classification using reinforcement learning. The proposed neural
malware control model is the first to apply a deep reinforcement learning-based algorithm for these
tasks.

Deep Learning for Malware Classification. A number of authors have proposed using DNN for
malware classification tasks. Kephart (1994) employed a shallow neural network in the first paper on
malware classification. Dahl et al. (2013) first investigated the use of a DNN for malware classification
for dynamic analysis. Huang & Stokes (2016) proposed a DNN with multitask learning for dynamic
analysis where the first task was binary (i.e., malware versus benign) and the second task was malware
family classification. Saxe & Berlin (2015) proposed a DNN for the static analysis of malware. A
separate line of research has investigated using recurrent models for malware classification. Pascanu
et al. (2015) first proposed using recurrent neural networks and echo state networks for classifying
malware sequences. Athiwaratkun & Stokes (2017) instead proposed an LSTM, a GRU, and a
character-level CNN for the sequence classification. Kolosnjaji et al. (2016) used a CNN followed by
an LSTM for this task.

8 CONCLUSION

We present a novel, neural malware control model which learns when to halt the execution of an
unknown file based on deep reinforcement learning. This model is the first to use deep reinforcement
learning to protect customers from malware. Fast scanning is an important feature for users when
installing software, reading emails with attachments, and searching a hard drive for files which were
maliciously dropped during a drive-by download. Our results indicate that the proposed model halts
execution earlier than a production antimalware engine for more than 91% of the files in the test set.
More importantly, we show a relative improvement of over 61% in the true positive detection rate of
malware at a false positive rate of 1% compared to a number of baseline malware classifiers reported
in the literature. Thus, the proposed model offers significantly better protection with less delay.
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APPENDIX A: EMULATION AND SCANNING DETAILS

In some cases, unknown files are evaluated in a protected sandbox environment to determine if they
are malicious or benign prior to running them on the native operating system. This method of testing
unknown files is called dynamic analysis, and there are two main modes of performing dynamic
analysis: virtualization and emulation.

Virtualization involves running an unknown file in an instrumented version of a virtual machine
(VM) which implements a full operating system. Performing analysis in a VM is the preferred
method of analysis because it can fully implement all of the functionality required by the unknown
file. Virtualization is often used in backend security services to protect customers. Advanced
email services scan email attachments before allowing them to be displayed in the user’s inbox.
Antimalware companies also scan unknown files in full VMs in order to create new signatures and
labeled malware files for training machine learning classifiers.

Emulation is often performed in antimalware engines running on the endpoint computer or cell phone.
Emulation is similar to virtualization in that it tries to induce an unknown malware file into revealing
its malicious behavior. However, emulation tends to be more restricted because it needs to run much
faster and consume less resources compared to the execution of the file in a virtual machine. Thus,
emulation can also be run in backend services to quickly analyze significantly larger numbers of
unknown files compared to virtualization. If the antimalware engine does not detect that a file is
malicious during emulation, it is then allowed to be installed and executed on the native operating
system.

The data analyzed in this study was generated using emulation in a production antimalware engine.
This data was generated in a production emulation scanning environment of a major antimalware
computer, instead of by client computers located in the wild. The behavior revealed in our data is
similar to that which would be encountered by the file running on the client computer’s operating
system except for one main difference. The antimalware engine does not allow the files to have
internet access because this may lead to the infection of other computers in the network.

For emulation or virtualization, the behavioral event sequence corresponding to the system APIs
called by the file are typically recorded. Attackers often use polymorphic tactics to avoid detection.
In polymorphism, they rearrange or rewrite their code in different ways which appear to be different
but accomplish the same task. To deal with polymorphism, our antimalware engine maps multiple
low-level API calls into a single high-level event. For example, the attacker may use a user mode API
(CreateFile), a kernel mode API (ZwCreateFile), or the C++ API (ofstream::open) to create a file. All
of these events are mapped into the same high-level FileCreate event. As a result, the 114 behavior
events represent many individual low-level API calls.

The labels utilized in this study correspond to production labels used by our antimalware product
partners to train malware classifiers that identify malware targeting Windows computers. Benign
files are identified as those which are known to be safe. For example, these might be files belonging
to software products which are purchased by users (e.g. Microsoft Office) or downloaded from the
internet from sites which are known to be legitimate (e.g. Adobe Acrobat Reader, Google Chrome).
Other benign files are determined to be safe by professional analysts. Labels for malware files are
also generated by manual inspection by professional analysts. In addition, all unknown files received
by the company are scanned by over 20 additional production antimalware engines. If eight or more
of these anti-malware engines detect that a file is malicious, these files will also be determined to be
malicious.

APPENDIX B: THREAT MODEL

We next specify the threat model which defines the assumptions which are made about the proposed
detection system and the attacker. For our system, we require that the computer has not been
previously infected, and the trusted computing boundary includes the user account, operating system,
and antimalware detection system. Otherwise, the attacker can alter the detection system’s results
and avoid detection. We also assume that the behavior observed in the antimalware engine’s emulator
without internet access is similar to that observed when the file is executed on the native operating
system of the user’s computer. Some malware tries to identify whether or not it is being emulated
or virtualized. If the malware detects it is being emulated or virtualized, it may disable any further

12
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malicious activity (i.e., cloaking). Based on our current datasets, our system may fail to detect any
malware which successfully employs these cloaking mechanisms.

APPENDIX C: CONVENTIONAL REINFORCEMENT LEARNING DEFINITIONS

In this appendix, we provide definitions of the elements in conventional reinforcement learning.

1. Agent and States (s;). An agent interacts with its environment by moving from the current state s;
at time ¢ to another state s;; at time ¢ 4 1. Each state is normally defined by the useful information
from the interaction between an agent and its environment.

2. Actions (a;). By taking an action a; at state s;, an agent can transfer from its current state to any
of its connected neighbors at its next state sy with different probabilities, since the agent can only
arrive at one of its neighbors at ¢ + 1.

3. Rewards (r;). The agent receives reward r; at time ¢. The discounted reward R; is defined as
Ry =3 2, 7'~ "or, where v is the discount factor with {0 < < 1}, and ¢, indicates the starting
time step. After reaching a state, an agent obtains the expected discounted reward (E[R:|at, s¢])
by considering the policies from the current state s; to its neighbors s;; and so on. The expected
discounted reward includes both the pre-defined reward at state s; and the accumulated discounted
rewards to be obtained in the future by taking a specific action a;.

4. Policy (7). A policy 7 is a mapping from states to actions. There are three main types of
reinforcement learning: value-based, policy gradient and actor-critic. In this paper, we focus on a
value-based algorithm called Q-learning given the small action space in our problem. The optimal
action-value function in conventional Q-learning is defined as Q*, which is the maximum expected
reward obtained by selecting the best policy 7 at state s

Q*(Shat) = mT?XE[Rt|G/t,St,7T}- (4)

APPENDIX D: A DRL ALGORITHM USING EXPERIENCE REPLAY

The detailed explanation of the DRL algorithm using experience replay in section 4.2 is provided in
Algorithm 1.

APPENDIX E: PROOF OF THEOREM 1

We present a detailed proof of Theorem 1 in this appendix.

Proof. We begin by assuming that both the baseline file classifier and event classifier are fully trained.
By definition, the expected reward Estf [Rq,] obtained at the state s;, corresponding to event e;, can

be calculated as
Estf [Rtf] = ptfrtf + (1 - ptf)EStf+1 [Rthrl] (5)

where ¢ is the fixed number of events processed by the baseline file classifier, p;, is the probability
of remaining at state s; ., and E o [Rt,+1] represents the expected reward to be obtained by leaving
st, for its neighboring state s;, 41 including the ¢ + 1 event. After substituting the reward (1),

]Estf [Rtf] = ptf (05 - |y6,tf - Ll)e_ﬂptf + (1 _ptf)]EStf+1 [Rtf-‘rl] (6)

where y. ¢, is the predicted probability generated by the event classifier using events [e1, - -, e,]

(assuming the file has more than ¢ events). Similarly, Estf +1 [ R, 41] can be written as

By [Bep41] = pep41(0-5 — |ye,ep41 — Lj)e P+t 4+ Cy (7
where Otf+1 = (1 _ptf+1)E3tf+2 [Rtf-l—Q]-

By choosing a small value of 3, we may approximate that e PPts e PP since Ptp+1 = pty + 1.
The event classifier should yield similar predicted probabilities for state s;, and s, in a given file

13
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Algorithm 1 Deep Reinforcement Learning Training

1: Epochs: N < 2000

2: Minibatch Size: Bry, + 50

3: Decay Factor: 8 < 0.01

4: Initialize a replay memory M with size p <— 50000, DRL model with 3 layers
5: for n=1 — N do
6
7
8

Time step in state space: ¢t < 0
Randomly select an initial state s;
while !End of File do

9: Q(St, at\ﬂt) «— DRL(St)
10 aj=argmax,, Q(s¢,at|0)
11: Perform action a}, generating next state ;41
12: Push tuple (s¢, ¢, aj, s¢+1) into replay memory M
13: for b=1 — Br, do
14: Randomly select a tuple m from M
15: st < m(0), ry < m(1), sg11 + m(3)
16: Q(St, at|9t) < DRL(St)
17: Q(St+1, at+1 |9t) < DRL(St+1)
18: Input y. ; from Event Classifier
19: 7 <= (0.5 = [ye — L) x e/
20: Update Q)(s¢, at|6:)
21: Update the network by minimizing loss £(6;)
22: end for
23: t+—t+1
24:  end while
25: end for

if the classifier is fully trained, i.e. Ye 1, ~ Ye,t,+1. Using these two approximations and substituting
(7) into (6), (6) can be rewritten as

Es, [Ri;] = (pe; + (1= pe, )pe;41)((0.5 — |yee, — L|)€_ﬁp"f) + (1 =pt,)Cty41. (8)

Since there are only two possible actions (halt, continue), the probability of remaining at a particular
state p; at step ¢ is either O or 1. If the system halts before ¢y events, p;, = py;+1 = 1. Similarly, if
the system continues until at least £y + 1 events, p;, = py,4+1 = 0. Assuming the system does not

transition from continue to halt at event ¢ = ts, p;, + (1 — ps, )P, 41 = 2pe, — p? . = pt,. Under
this weak assumption, (8) can be rewritten as

Estf [Rt‘f] = ptf (05 - |y€,t‘f - L|)e_5ptf + (1 - ptf)ctf+1' (9)

Similarly, E,-[R*], the expected rewards obtained at the halting state s* chosen by the DRL-based
model, can be calculated as
B[R] =p*(05 — |y — L))e " + (1~ p")E . [R"] (10)

where p* is the probability of remaining at state s*, y* is the predicted probability generated by the
event classifier using the most recent ¢y events before the halting state s*, p* is the position of the

event contained in state s*, and E_., [R*,] is the expected reward at state s** which is the next state
after s*. Since s* is an absorbing (i.e., terminal) state, p* = 1. Thus,

E[R*] = (0.5 — |y* — L|)e ", (11)

5*

and the expected reward at s* is larger or equal than those at any other states

E.,, [Ri,] < Eo [R']. (12)

Substituting (9) and (11) into (12),
ptf((0~5 - ‘yeytf o LDe_ﬂpt’f) +(1- ptf)ctf+1 < 05—y - L|)€7ﬁp*- (13)
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Recalling p;, is equal to either 0 or 1 and first considering the case when p;, is equal to 1, (13) can
be further rewritten as

(0.5 = |ye.e, — Le "7 < (0.5 — |y* — L|)e %"

- (14)
0.5 = |ye,, — L] < (0.5 —[y* — L|)ePtees =)

Recall that the decay factor 3 is defined to be positive. If p;, < p*, then 0 < PPty =P") < 1, and
(14) can be rewritten as

0.5 = |ye,e, — L] <0.5—|y* — L

* (15)

[Ye,tp — L > |y* — LI

If p;; > p*, then PPt =) 5 1, and (14) can be rewritten as
0.5 = [yes, — L| < (0.5 = |y* — L|)e s =7 (16)

<0.5— |y* = L| + (P =) —1)(0.5 — |y* — L|).

By choosing small enough 3 such that PPt =P") 5 1, the second term in (16) is approaching zero,
then |ye ¢, — L| > [y* — L|. To prove it strictly, choose a /3 satisfying

—p » 1 *
(P05 105~ Iy~ L) < 5((05  lyes, — I~ (05~ |y L)) (1)
By substituting (17) into (16), we can derive that |y. ¢, — L| > [y* — L|.

1
Given that |y* — L| < 3 (17) can provide an upper bound of /3 as

—p* . 1 -
(7™ —1)(0.5 — |y* — L) < 5((05 — |ye, — LI) = (0.5~ |y — L)

(eﬁ(Ptffp*) _ 1) S (|y* - L| - ye,tf - L|)
2005~y — L) .
eﬂ(ptf—p*) <1+ (ly" —L| - |ye’tf — L|)
1—2[y* —Lj
1 *— Ll —|yes, — L
ﬂ S - ln(l + (|y ‘ |*y,,ff D)
Pty =P 1—2ly* — L]

The proceeding derivation was for the case when p;, = 1. Following (5) for the case when p;, = 0,
we have Esf,f [Rt;] = ]E,;tf+1 [Rt;+1]. Similarly we have ]Es,,erl [Ri;41] = IEster2 [Rt ;42| since
Pt;+1 = 0, and so on. Thus, ]Estf [Ri;] = Estf+n [Rt;+n] Where s;, , is the first halting state after
Sty such that p; F+n is equal to 1. Then we can substitute ¢ ; by ¢y + 7 in our proof in order to show
the same result that |y, ;, — L| > |y* — L| for the case when p;, = 0.

While we have now shown that [y, ;, — L| > |y* — L| for the event classifier, we need to consider the
prediction probability of the baseline file classifier. The predicted probability y. ¢, generated by the
event classifier using the first £y events is an approximation of y ¢, which is the predicted probability
generated by the baseline file classifier also using the first ¢y events, i.e. Y1, ~ Yy, hence we have

lyr — L[~ Yes, —L| >|y" = L |. (19)

It can be concluded that the DRL predicted probability y* is closer to the true label than the baseline
file classifier’s predicted probability y¢. O

APPENDIX F: EVASION

Recently, researchers have begun to investigate adversarial attacks on deep reinforcement learning
models. Since the proposed DRL-based system would be run on a user’s computer or cell phone, it is
particularly vulnerable to adversarial attacks. The basic strategy is to destabilize the DRL network by
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adding a perturbation to a state using a second adversarial agent (Lin et al. (2017); Pinto et al. (2017);
Huang et al. (2017)). This research considers two main scenarios:

1. The attacker knows both the architecture and parameters of a trained neural network policy 7.
Thus, they can compute a perturbation directly based on the policy’s parameters.

2. The attack is a black-box problem assuming the adversary has no access to the target policy, the
training algorithm or the model’s parameters.

One possible defense against adversarial attacks on the client is to either run the DRL model, or the
entire antimalware engine, in a secure enclave, such as SGX (Ohrimenko et al. (2016)). Doing so
prevents the attacker from directly observing the model structure and parameters, and the attacker
must resort to a black-box type of attack (Huang et al. (2017)). Thus, the only way to build an
adversarial agent is through the transferability across training algorithms, by guessing the target
policy 7 from another policy trained using a different dataset.

Protecting a DRL-model running outside of a secure enclave from adversarial attacks is an open
research topic. Some promising approaches include the ensemble defense, feature squeezing or
building a detection model to discover attacks (Tramer et al. (2018); Zantedeschi et al. (2017); Ilyas
et al. (2017)).

APPENDIX G: EARLY STOPPING DISTRIBUTION

In Table 1 in Section 6, we report that with K = 20 and N = 2000, the execution control model
halts the execution of 91.3% of the files earlier than the heuristics used by the antimalware engine.
In Figure 8, we provide the histogram indicating the distribution of the percentage of events which
are executed by the engine prior to the execution control model halting its execution. This figure
indicates that execution is halted much earlier than the heuristics for the majority of the files.

4000

3000

20001

Number of Files

1000

0 20 40 60 80 100
Percentage of Events Executed before

the Execution Control Model Halts Execution (%)

Figure 8: Histogram of the percentage of behavioral events which are executed before the execution
control model halts emulation.
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