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ABSTRACT

Despite its empirical success, the theoretical underpinnings of the stability, con-
vergence and acceleration properties of batch normalization (BN) remain elusive.
In this paper, we attack this problem from a modeling approach, where we perform
a thorough theoretical analysis on BN applied to a simplified model: ordinary least
squares (OLS). We discover that gradient descent on OLS with BN has interest-
ing properties, including a scaling law, convergence for arbitrary learning rates for
the weights, acceleration effects, as well as insensitivity to the choice of learn-
ing rates. We then demonstrate numerically that these findings are not specific
to the OLS problem and hold qualitatively for more complex supervised learning
problems. This points to a new direction towards uncovering the mathematical
principles that underlies batch normalization.

1 INTRODUCTION

Batch normalization (Ioffe & Szegedy| |2015) (BN) is one of the most important techniques for
training deep neural networks and has proven extremely effective in avoiding gradient blowups dur-
ing back-propagation and speeding up convergence. In its original introduction (loffe & Szegedy,
2015)), the desirable effects of BN are attributed to the so-called “reduction of covariate shift”. How-
ever, it is unclear what this statement means in precise mathematical terms. To date, there lacks a
comprehensive theoretical analysis of the effect of batch normalization.

In this paper, we study the convergence and stability of gradient descent with batch normalization
(BNGD) via a modeling approach. More concretely, we consider a simplified supervised learning
problem: ordinary least squares regression, and analyze precisely the effect of BNGD when applied
to this problem. Much akin to the mathematical modeling of physical processes, the least-squares
problem serves as an idealized “model” of the effect of BN for general supervised learning tasks. A
key reason for this choice is that the dynamics of GD without BN (hereafter called GD for simplicity)
in least-squares regression is completely understood, thus allowing us to isolate and contrast the
additional effects of batch normalization.

The modeling approach proceeds in the following steps. First, we derive precise mathematical re-
sults on the convergence and stability of BNGD applied to the least-squares problem. In particular,
we show that BNGD converges for any constant learning rate ¢ € (0, 1], regardless of the condition-
ing of the regression problem. This is in stark contrast with GD, where the condition number of the
problem adversely affect stability and convergence. Many insights can be distilled from the analysis
of the OLS model. For instance, we may attribute the stability of BNGD to an interesting scaling law
governing € and the initial condition; This scaling law is not present in GD. The preceding analysis
also implies that if we are allowed to use different learning rates for the BN rescaling variables (g,)
and the remaining trainable variables (¢), we may conclude that BNGD on our model converges for
any £ > 0 as long as &, € (0, 1]. Furthermore, we discover an acceleration effect of BNGD and
moreover, there exist regions of € such that the performance of BNGD is insensitive to changes in
€, which help to explain the robustness of BNGD to the choice of learning rates. We reiterate that
contrary to many previous works, all the preceding statements are precise mathematical results that
we derive for our simplified model.

The last step in our modeling approach is also the most important: we need to demonstrate that these
insights are not specific features of our idealized model. Indeed, they should be true characteristics,
at least in an approximate sense, of BNGD for general supervised learning problems. We do this
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by numerically investigating the convergence, stability and scaling behaviors of BNGD on various
datasets and model architectures. We find that the key insights derived from our idealized analysis
indeed correspond to practical scenarios.

1.1 RELATED WORK

Batch normalization was originally introduced in (Ioffe & Szegedyl [2015) and subsequently studied
in further detail in (loffel 2017). Since its introduction, it has become an important practical tool
to improve stability and efficiency of training deep neural networks (He et al., 2016} [Bottou et al.,
2018)). Initial heuristic arguments attribute the desirable features of BN to concepts such as “co-
variate shift”, which lacks a concrete mathematical interpretation and alternative explanations have
been given (Santurkar et al.,[2018). Recent theoretical studies of BN includes (Ma & Klabjan, 2017)),
where the authors proposed a variant of BN, the diminishing batch normalization (DBN) algorithm
and analyzed the convergence of the DBN algorithm, showing that it converges to a stationary point
of the loss function. More recently, (Bjorck et al.l | 2018) demonstrated that the higher learning rates
of batch normalization induce a regularizing effect. Another related work is (Kohler et al. |2018),
where the authors also considered the convergence properties of BNGD on linear networks (similar
to the least-squares problem), as well as other special problems, such as learning halfspaces and
extensions. In the OLS case, the authors showed that for a particularly adaptive choice of dynamic
learning rate schedule, which can be seen as a fixed effective step size in our terminology (see equa-
tion (11)) and the discussion that immediately follows), BNGD converges linearly if A, is known.
Moreover, the analysis also requires setting the rescaling parameter a every step to satisfy a sta-
tionarity condition, instead of simply performing gradient descent on a, as is done in the original
BNGD.

The present research differs from these previous analysis in an important way - we study the BNGD
algorithm itself, and not a special variant. More specifically, we consider constant learning rates
(without knowledge of properties of the OLS loss function) and we perform gradient descent on
rescaling parameters. We prove that the convergence occurs for even in this case (and in fact, for
arbitrarily large learning rates for ¢, as long as 0 < ¢, < 1). This poses more challenges in the
analysis and contrasts our work with previous analysis on modified versions of BNGD. This is an
important distinction; While a decaying or dynamic learning rate is sometimes used in practice, in
the case of BN it is critical to analyze the non-asymptotic, constant learning rate case, precisely
because one of the key practical advantages of BN is that a bigger learning rate can be used than that
in GD. Hence, it is desirable, as in the results presented in this work, to perform our analysis in this
regime.

Finally, through the lens of the least-squares example, BN can be viewed as a type of over-
parameterization, where additional parameters, which do not increase model expressivity, are in-
troduced to improve algorithm convergence and stability. In this sense, this is related in effect
to the recent analysis of the implicit acceleration effects of over-parameterization on gradient de-
scent (Arora et al., 2018)).

1.2  ORGANIZATION

Our paper is organized as follows. In Section[2] we outline the ordinary least squares (OLS) problem
and present GD and BNGD as alternative means to solve this problem. In Section 3] we demonstrate
and analyze the convergence of the BNGD for the OLS model, and in particular contrast the results
with the behavior of GD, which is completely known for this model. We also discuss the important
insights to BNGD that these results provide us with. We then validate these findings on more general
supervised learning problems in Section[d] Finally, we conclude in Section [5]

2 BACKGROUND

Consider the simple linear regression model where € R¢ is a random input column vector and y is
the corresponding output variable. Since batch normalization is applied for each feature separately,
in order to gain key insights it is sufficient to the case of y € R. A noisy linear relationship is
assumed between the dependent variable 4 and the independent variables z, i.e.y = 27w + noise
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where w € R is the parameters. Denote the following moments:

H := E[zz”], g¢:=Elzy], c¢:= E[?]. (1)
To simplify the analysis, we assume the covariance matrix I of z is positive definite and the mean
E[z] of x is zero. The eigenvalues of H are denoted as \;(H),i = 1,2,...d,. Particularly, the
maximum and minimum eigenvalue of H is denoted by A4, and A,,;, respectively. The condition
number of H is defined as k := i\""i Note that the positive definiteness of H allows us to define

the vector norms ||.|| ;7 and ||.|| z1 by ||z||% = 2T Ha and ||z]|2,_, = T H 'z respectively.

2.1 ORDINARY LEAST SQUARES

The ordinary least squares (OLS) method for estimating the unknown parameters w leads to the
following optimization problem
min Jo(w) 1= 5By yl(y — 27w)*] = § — g"w + ju Huw. 2)
weR
The gradient of Jy with respect to w is V,,Jo(w) = Hw — g, and the unique minimizer is w =
u := H~'g. The gradient descent (GD) method (with step size or learning rate ¢) for solving the
optimization problem (2) is given by the iterating sequence,

w41 = Wy, — eV Jo(wy) = (I — eH)wy, + g, 3)
which converges if 0 < € < ﬁ = €maa, and the convergence rate is determined by the spectral
radius p. := p(I — eH) = max;{|1 — e\;(H)|} with

[u — i1l < pellu — wyl]. )

It is well known (for example see Chapter 4 of (Saad, 2003)) that the optimal learning rate is €, =

ﬁ, where the convergence estimate is related to the condition number «(H ):
lu = wia || < E5gllw = wil]- (5)

2.2 BATCH NORMALIZATION

Batch normalization is a feature-wise normalization procedure typically applied to the output, which

in this case is simply z = 27 w. The normalization transform is defined as follows:
T

Npn(z) = S = 22w, (©6)

Var[z] g

where o := vVwT Hw. After this rescaling, Npx(z) will be order 1, and hence in order to reintro-
duce the scale (Ioffe & Szegedyl 2015), we multiply Ngy (z) with a rescaling parameter a (Note
that the shift parameter can be set zero since E[w” z|w] = 0). Hence, we get the BN version of the
OLS problem (2):
; 1 T, W21 _ ¢ _ w” 1.2

we%}ilgeR J(a,w) : = §EIU[(y —aNpn(z w)) ] =5—"a+5a". @)
The objective function J(a,w) is no longer convex. In fact, it has trivial critical points,
{(a*,w*)|a* = 0,w*T g = 0}, which are saddle points of J(a,w).
We are interested in the nontrivial critical points which satisfy the relations,

a”* = sign(s)VuT Hu, w* = su, for some s € R\ {0}. 3

It is easy to check that the nontrivial critical points are global minimizers, and the Hessian matrix at
each critical point is degenerate. Nevertheless, the saddle points are strict (Details can be found in

Appendix), which typically simplifies the analysis of gradient descent on non-convex objectives (Lee
et al.,|2016; |Panageas & Piliouras),|2017).

Consider the gradient descent method to solve the problem (7), which we hereafter call batch nor-
malization gradient descent (BNGD). We set the learning rates for a and w to be ¢, and ¢ respec-
tively. These may be different, for reasons which will become clear in the subsequent analysis. We
thus have the following discrete-time dynamical system

wi'g
ag+1 = Akt Ea| & — Ok ), )

T
whir = w, + 2 (g - b2 Huy ). (10)

We now begin a concrete mathematical analysis of the above iteration sequence.
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3 MATHEMATICAL ANALYSIS OF BNGD oN OLS

In this section, we discuss several mathematical results one can derive concretely for BNGD on
the OLS problem (7). First, we establish a simple but useful scaling property, which an important
ingredient in allowing us to prove a linear convergence result for arbitrary constant learning rates.
We also derive the asymptotic properties of the “effective” learning rate of BNGD (to be precisely
defined subsequently), which shows some interesting sensitivity behavior of BNGD on the chosen
learning rates. Detailed proofs of all results presented here can be found in the Appendix.

3.1 SCALING PROPERTY

In this section, we discuss a straightforward, but useful scaling property that the BNGD iterations
possess. Note that the dynamical properties of the BNGD iteration are governed by a set of numbers,
or a configuration { H, u, ag, wo,€q, € }-

Definition 3.1 (Equivalent configuration). Two configurations, {H,u,ag,wp,eq,€} and
{H', v, ap,w(, €, €'}, are said to be equivalent if for iterates {wy}, {w},} following these con-
figurations respectively, there is an invertible linear transformation T and a nonzero constant t such

that wj, = Twy, a}, = tay for all k.

The scaling property ensures that equivalent configurations must converge or diverge together, with
the same rate up to a constant multiple. Now, it is easy to check the system has the following scaling
law.

Proposition 3.2 (Scaling property). Suppose 1 # 0,y # 0,7 # 0,QTQ = I, then

(1) The configurations {/,LQTHQ,%Qu,vao,’wao,ea,s} and {H,u,aq,wo,Eq,€} are
equivalent.

(2) The configurations {H, u,ag,wo,€q, €} and {H, u, ag, rwo, 4, 72} are equivalent.

It is worth noting that the scaling property (2) in Proposition originates from the batch-
normalization procedure and is independent of the specific structure of the loss function. Hence,
it is valid for general problems where BN is used (Lemma[A.9). Despite being a simple result, the
scaling property is important in determining the dynamics of BNGD, and is useful in our subsequent
analysis of its convergence and stability properties (see the sketch of the proof of Theorem [3.3).

3.2 BATCH NORMALIZATION CONVERGES FOR ARBITRARY STEP SIZE

We have the following convergence result.

Theorem 3.3 (Convergence for BNGD). The iteration sequence (ay, wy) in equation (9)-(10) con-
verges to a stationary point for any initial value (ag,wo) and any € > 0, as long as ¢, € (0, 1].
Particularly, we have the following sufficient conditions of converging to global minimizers.

(1) IfaowOTg > 0 (orag =0, wOTg #0), e, € (0,1] and € is sufficiently small (the smallness
is quantified by Lemma , then (ay, wy) converges to a global minimizer.

(2) Ifeq = L and € > 0, then (ay,wy) converges to global minimizers for almost all initial
values (ag, wp).

Sketch of Proof.

We first prove that the algorithm converges for any &, € (0, 1] and small enough &, with any initial
value (ag, wo) such that [Jwo|| > 1 (Lemmal[A.13). Next, we observe that the sequence {||wy|} is
monotone increasing, and thus either converges to a finite limit or diverges. The scaling property is
then used to exclude the divergent case if {||wy||} diverges, then at some % the norm ||wyg|| should
be large enough, and by the scaling property, it is equivalent to a case where ||wg||=1 and € is small,
which we have proved converges. This shows that ||wy || converges to a finite limit, from which the
convergence of wy and the loss function value can be established, after some work. The proof is
fully presented in Theorem and preceding Lemmas.
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In addition, using the ’strict saddle point’ arguments in (Lee et al., |2016; Panageas & Piliouras,
2017), we can prove the set of initial value for which (ax,wy) converges to saddle points has
Lebesgue measure 0, provided some conditions, such as when ¢, = 1, > 0 (Lemma . It
is important to note that BNGD converges for all step size € > 0 of wy, independent of the spectral
properties of H. This is a significant advantage and is in stark contrast with GD, where the step
size is limited by Apax(H), and the condition number of H intimately controls the stability and
convergence rate. Although we only prove the almost sure convergence to global minimizer for the
case of ¢, = 1, we have not encountered convergence to saddles in the OLS experiments even for
€q € (0,2) with initial values (ag, wp) drawn from typical distributions.

3.3 CONVERGENCE RATE, ACCELERATION AND ASYMPTOTIC SENSITIVITY

Now, let us consider the convergence rate of BNGD when it converges to a minimizer. Compared
with GD, the update coefficient before Hwy, in equation (I0) changed from ¢ to a complicated term
which we named as the effective step size or learning rate £j,

T
2 o ok Wi 9
€k i=€55 gl an

and the recurrence relation in place of u — wy, is

R D o
U wir1 = (I —éH)(u o7 Wk ). (12)

2
T

Consider the dynamics of the residual ey, := u — (w} g/o?)wy, which equals 0 if and only if wy, is
a global minimizer. Using the property of H-norm (see section[A.I)), we observe that the effective
learning rate £, determines the convergence rate of e, via
T
lewsallar < |[u— "5wpsa | < oI = cHDllexll, (13)

5
T

where p(I —£€j H) is spectral radius of the matrix I —£; H. The inequality shows that the conver-
gence of ey, (and hence the loss function, see Lemma is linear provided &x € (9, 2/ A\ naz — 9)
for some positive number 6. In fact, if we enforce £ = 1/\,4, for each k, which is done in the
analysis in|Kohler et al.| (2018)), then one immediately obtains the same linear convergence rate. But
this requires knowledge of A\, 4, (problem-dependent) and a modification the BNGD algorithm. We
instead focus our analysis on the original BNGD algorithm.

Next, let us discuss below an acceleration effect of BNGD over GD. When (ay, wy) is close to a
minimizer, we can approximate the iteration (9)-(I0) by a linearized system. The Hessian matrix for
BNGD at a minimizer (a*, w*) is diag(1, H* /||w*]|?), where the matrix H* is
T
H*=H — 4 1 (14)
The matrix H* is positive semi-definite (H*u = 0) and has better spectral properties than H, such

.. A .
as a lower pseudo-condition number k* = es <R, where \* and \* . are the maximal

. max min
and minimal nonzero eigenvalues of H* respégbt?vely. Particularly, k* < k for almost all u (see
section ). This property leads to acceleration effects of BNGD: When ||ey || is small, the
contraction coefficient p in (I3)) can be improved to a lower coefficient. More precisely, we have the
following result:

Proposition 3.4. For any positive number 6 € (0, 1), if (ar, wy) is close to a minimizer, such that

)‘"%f‘ak‘”ek”]{ < 4, then we have
k
lewsillr < min{ I (7 — o H) ey, (15)
where p*(I — é,H) = max{|1 — ExA5 0], 11 — ExAlanl}

min

Generally, we have p*(I — é,H*) < p(I — éH) provided £, > 0, and the optimal rate is

Popt = Z*—H < 2—1} =: popt, Where the inequality is strict for almost all u. Hence, the esti-
mate (I5) indicates that the optimal BNGD could have a faster convergence rate than the optimal

GD, especially when «* is much smaller than .

Finally, we discuss the dependence of the effective learning rate é; (and by extension, the effective
convergence rate (I3) or (I3)) on €. This is in essence a sensitivity analysis on the performance
of BNGD with respect to the choice of learning rate. The explicit dependence of £; on ¢ is quite
complex, but we can nevertheless give the following asymptotic estimates.
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T
Proposition 3.5. Suppose e, € (0,1],apwi g > 0, and ||g||* > “%% g™ Huwy, then
0

(1) When ¢ is small enough, ¢ < 1, the effective step size has a same order with ¢, i.e. there
are two positive constants, C, Co, independent on € and k, such that C; < & /e < Cs.

(2) When ¢ is large enough, € >> 1, the effective step size has order O(e1), i.e. there are two
positive constants, C1, Cy, independent on € and k, such that Cy < épe < Ch.

Observe that for finite k, £y, is a differentiable function of €. Therefore, the above result implies, via
the mean value theorem, the existence of some g5 > 0 such that déj /de|.—., = 0. Consequently,
there is at least some small interval of the choice of learning rates € where the performance of BNGD
is insensitive to this choice. In fact, empirically this is one commonly observed advantage of BNGD
over GD, where the former typically allows for a variety of (large) learning rates to be used without
adversely affecting performance. The same is not true for GD, where the convergence rate depends
sensitively on the choice of learning rate. We will see later in Section [4] that although we only have
a local insensitivity result above, the interval of this insensitivity is actually quite large in practice.

4 EXPERIMENTS

Let us first summarize our key findings and insights from the analysis of BNGD on the OLS problem.

1. A scaling law governs BNGD, where certain configurations can be deemed equivalent

2. BNGD converges for any learning rate ¢ > 0, provided that ¢, € (0,1]. In particular,
different learning rates can be used for the BN variables (a) compared with the remaining
trainable variables (w)

3. There exists intervals of € for which the performance of BNGD is not sensitive to the choice
of

In the subsequent sections, we first validate numerically these claims on the OLS model, and then
show that these insights go beyond the simple OLS model we considered in the theoretical frame-
work. In fact, much of the uncovered properties are observed in general applications of BNGD in
deep learning.

4.1 EXPERIMENTS ON OLS

Here we test the convergence and stability of BNGD for the OLS model. Consider a diagonal matrix
H = diag(h) where h = (1, ..., ) is a increasing sequence. The scaling property (Proposition[3.2)
allows us to set the initial value wp having same 2-norm with u, ||wg|| = ||u|| = 1. Of course, one
can verify that the scaling property holds strictly in this case.

Figure [T] gives examples of H with different condition numbers x. We tested the loss function of
BNGD, compared with the optimal GD (i.e. GD with the optimal step size €,,;), in a large range
of step sizes €, and ¢, and with different initial values of ay. Another quantity we observe is the
effective step size €, of BN. The results are encoded by four different colors: whether €, is close
to the optimal step size €,,;, and whether loss of BNGD is less than the optimal GD. The results
indicate that the optimal convergence rate of BNGD can be better than GD in some configurations.
This acceleration phenomenon is ascribed to the pseudo-condition number of H* (discard the only
zero eigenvalue) being less than x(H ). This advantage of BNGD is significant when the (pseudo)-
condition number discrepancy between H and H* is large. However, if this difference is small, the
acceleration is imperceptible. This is consistent with our analysis in section [3.3]

Another important observation is a region such that € is close to &,,;, in other words, BNGD signifi-
cantly extends the range of ‘optimal’ step sizes. Consequently, we can choose step sizes in BNGD at
greater liberty to obtain almost the same or better convergence rate than the optimal GD. However,
the size of this region is inversely dependent on the initial condition ag. Hence, this suggests that
small aq at first steps may improve robustness. On the other hand, small ¢, will weaken the perfor-
mance of BN. The phenomenon suggests that improper initialization of the BN parameters weakens
the power of BN. This experience is encountered in practice, such as (Cooijmans et al.,[2016)), where
higher initial values of BN parameter are detrimental to the optimization of RNN models.
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Figure 1: Compare of BNGD and GD on OLS model. The results are encoded by four different
colors: whether é; is close to the optimal step size €,,; of GD, characterized by the inequality
0.8c0pt < €k < €opt/0.8, and whether loss of BNGD is less than the optimal GD. Parameters: H =
diag(logspace(0,log10(x),100)), u is randomly chosen uniformly from the unit sphere in R'%9, wy
is set to Hu/||Hul|. The GD and BNGD iterations are executed for k£ = 2000 steps with the same
wy. In each image, the range of ¢, (x-axis) is 1.99 * logspace(-10,0,41), and the range of ¢ (y-axis)
is logspace(-5,16,43).

4.2 EXPERIMENTS ON PRACTICAL DEEP LEARNING PROBLEMS

We conduct experiments on deep learning applied to standard classification datasets: MNIST (Le-
Cun et al., |1998)), Fashion MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky & Hinton, [2009).
The goal is to explore if the key findings outlined at the beginning of this section continue to hold for
more general settings. For the MNIST and Fashion MNIST dataset, we use two different networks:
(1) a one-layer fully connected network (784 x 10) with softmax mean-square loss; (2) a four-
layer convolution network (Conv-MaxPool-Conv-MaxPool-FC-FC) with ReL.U activation function
and cross-entropy loss. For the CIFAR-10 dataset, we use a five-layer convolution network (Conv-
MaxPool-Conv-MaxPool-FC-FC-FC). All the trainable parameters are randomly initialized by the
Glorot scheme (Glorot & Bengiol [2010) before training. For all three datasets, we use a minibatch
size of 100 for computing stochastic gradients. In the BNGD experiments, batch normalization is
performed on all layers, the BN parameters are initialized to transform the input to zero mean/unit
variance distributions, and a small regularization parameter ¢ =1le-3 is added to variance Vo2 + ¢
to avoid division by zero.

Scaling property Theoretically, the scaling property holds for any layer using BN. However,
it may be slightly biased by the regularization parameter e. Here, we test the scaling property in
practical settings. Figure [2] gives the loss of network-(2) (2CNN+2FC) at epoch=1 with different
learning rate. The norm of all weights and biases are rescaled by a common factor . We observe
that the scaling property remains true for relatively large n. However, when 7 is small, the norm
of weights are small. Therefore, the effect of the e-regularization in /o2 + € becomes significant,
causing the curves to be shifted.

Stability for large learning rates We use the loss value at the end of the first epoch to characterize
the performance of BNGD and GD methods. Although the training of models have generally not
converged at this point, it is enough to extract some relative rate information. Figure[3]shows the loss
value of the networks on the three datasets. It is observed that GD and BNGD with identical learning
rates for weights and BN parameters exhibit a maximum allowed learning rate, beyond which the
iterations becomes unstable. On the other hand, BNGD with separate learning rates exhibits a much
larger range of stability over learning rate for non-BN parameters, consistent with our theoretical
results in Theorem 3.3

Insensitivity of performance to learning rates Observe that BN accelerates convergence more sig-
nificantly for deep networks, whereas for one-layer networks, the best performance of BNGD and
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Figure 2: Tests of scaling property of the 2CNN+2FC network on MNIST dataset. BN is performed
on all layers, and e=1e-3 is added to variance /o2 + €. All the trainable parameters (except the BN
parameters) are randomly initialized by the Glorot scheme, and then multiplied by a same parameter
n.

GD are similar. Furthermore, in most cases, the range of optimal learning rates in BNGD is quite
large, which is in agreement with the OLS analysis (Proposition [3.3)). This phenomenon is poten-
tially crucial for understanding the acceleration of BNGD in deep neural networks. Heuristically, the
“optimal” learning rates of GD in distinct layers (depending on some effective notion of “condition
number”) may be vastly different. Hence, GD with a shared learning rate across all layers may not
achieve the best convergence rates for all layers at the same time. In this case, it is plausible that the
acceleration of BNGD is a result of the decreased sensitivity of its convergence rate on the learning
rate parameter over a large range of its choice.
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Figure 3: Performance of BNGD and GD method on MNIST (network-(1), 1FC), Fashion MNIST
(network-(2), 2CNN+2FC) and CIFAR-10 (2CNN+3FC) datasets. The performance is characterized
by the loss value at ephoch=1. In the BNGD method, both the shared learning rate schemes and
separated learning rate scheme (learning rate Ir_a for BN parameters) are given. The values are
averaged over 5 independent runs.

5 CONCLUSION AND OUTLOOK

In this paper, we adopted a modeling approach to investigate the dynamical properties of batch
normalization. The OLS problem is chosen as a point of reference, because of its simplicity and
the availability of convergence results for gradient descent. Even in such a simple setting, we saw
that BNGD exhibits interesting non-trivial behavior, including scaling laws, robust convergence
properties, acceleration, as well as the insensitivity of performance to the choice of learning rates.
Although these results are derived only for the OLS model, we show via experiments that these are
qualitatively valid for general scenarios encountered in deep learning, and points to a concrete way
in uncovering the reasons behind the effectiveness of batch normalization.

Interesting future directions include the extension of the results for the OLS model to more general
settings of BNGD, where we believe the scaling law (Proposition[3.2) should play a significant role.
In addition, we have not touched upon another empirically observed advantage of batch normaliza-
tion, which is better generalization errors. It will be interesting to see how far the current approach
takes us in investigating such probabilistic aspects of BNGD.
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A PROOF OF THEOREMS

A.1 GRADIENTS AND HESSIAN MATRIX
The objective function in problem (/) has an equivalent form:

J(a,w) = 2(u— 2w)TH(u— 2w) = Lu|} — “la+ La?, (16)
where u = H™1g.

The gradients are:

91 — _1(w Hu— 2w Hw) = —LuwTg + a, (7
94 — —2(Hu— 2Huw) + &(w"Hu— 20" Ho)Hw = =29+ % (w g)Hw.  (18)

The Hessian matrix is

( 24 a%;iu>< 1 A) (19)
puda  out An Ax
where
Az = & (" g) [H + s (Hw)g" + g(Hw)") = & (Hw)(Hw)" |, (20)
A = —l(g — %(w g)Hw) (21)
The objective function J(a,w) has trivial critical points, {(a*, w*)|[a* = 0,w*Tg = 0}. It is

obvious that a* is the minimizer of J(a, w*), but (a*, w*) is not a local minimizer of .J(a, w) unless
g = 0, hence (a*,w*) are saddle points of J(a,w). The Hessian matrix at those saddle points has
at least a negative eigenvalue, i.e. the saddle points are strict. In fact, the eigenvalues at the saddle

point (a*, w™*) are {%(1 +4/1+ 40 ),0, ..., 0} which contains d — 2 repeated zero, a positive

w*T Hw*

and a negative eigenvalue.

On the other hand, the nontrivial critical points satisfies the relations,
a* = +vuT Hu,w" [[u, (22)

where the sign of a* depends on the direction of u, w*, i.e. sign(a*) = sign(uTw*). It is easy to
check that the nontrivial critical points are global minimizers. The Hessian matrix at those minimiz-
ers is diag(1, H* /|w*||?) where the matrix H* is

ulT Hu

which is positive semi-definite and has a zero eigenvalue corresponding to the eigenvector u,
i.e. H*u = 0. The following lemma, similar to the well known Cauchy interlacing theorem, gives
an estimate of eigenvalues of H*.

Lemma A.1. If H is positive definite and H* is defined as H* = H — }i ’;“Hu then the eigenvalues
of H and H* satisfy the following inequalities:

0=X(H") <A(H) <X (H") < X(H) < ... < Xa(H") < Aa(H). 24)

Here \;(H) means the i-th smallest eigenvalue of H.

Proof. (1) According to the definition, we have H*u = 0, and for any x € R4,

2TH*x =2THx — @;@132 € (0,27 Ha), (25)

which implies H* is semi-positive definite, and A;(H*) > A (H*) = 0. Furthermore, we have the
following equality:

T r7* : 2
Hz = — tul|%. 26
o H'z = min ||z —tuly (26)

10



Under review as a conference paper at ICLR 2019

(2) We will prove A\;(H*) < \;(H) for all i, 1 < i < d. In fact, using the Min-Max Theorem, we
have

. T e
N(H*) = min max &2 < min max 22 = \,(H).
dimV=i zev 17l dimV=i €V H [

(3) We will prove \;(H*) > A\;—1(H) forall i, 2 < i < d. In fact, using the Max-Min Theorem, we
have
aTH s _ llz—tu||%

Ni(H™) = max min R = max min min I
dimV=n—i+1z€V z dsz n—i+1l,ulV zeV teR z

t
min min lz—tullyy

ma. Tull2
— dimV=n— z+1 wlV zeV ter llz—tu]

=  max min ‘h”“'lg Yy =1x—tu
T dimV=n— i+1yespan{V, u}
> max min < =XN_1(H),

dimV=n—(i—1)4+1yeV ”yH

where we have used the fact that x | u, ||z — tul|? = ||z||? + t2||u||® > ||z||%. O

There are several corollaries related to the spectral property of H*. We first give some definitions.
Since H* is positive semi-definite, we can define the H *-seminorm.

Definition A.2. The H*-seminorm of a vector x is defined as || z|| g+ == 2T H*z. ||z| g~ = 0 if and
only if x is parallel to u.

Definition A.3. The pseudo-condition number of H* is defined as k*(H*) := %

Definition A.4. For any real number ¢, the pseudo-spectral radius of the matrix I — e H* is defined
as p*(I —eH*) := Jnax |1 —eXi(H")|

The following corollaries are direct consequences of Lemma|[A.T] hence we omit the proofs.

Corollary A.5. The pseudo-condition number of H* is less than or equal to the condition number
of H :

KY(H") == 340 < 34 = w(H), 27)

where the equality holds up if and only if u 1 span{vi,vq}, v; is the eigenvector of H correspond-
ing to eigenvalue \;(H ).

Corollary A.6. For any vector x € RY and any real number ¢, we have ||(I — eH*)z|/ g+ <
p*(I —eH”)||lz| -

Corollary A.7. For any positive number € > 0, we have
p*(I —eH*) < p(I —eH), (28)
where the inequality is strict if u”v; # 0 fori = 1,d.

It is obvious that the inequality in (27) and (28) is strict for almost all u.

A.2 SCALING PROPERTY

The dynamical system defined in equation (9)-(T0) is completely determined by a set of configura-
tions { H, u, ag, wo, €4, €}. It is easy to check the system has the following scaling property:

Lemma A.8 (Scaling property). Suppose pn # 0,y # 0,7 # 0,QTQ = I, then

(1) The configurations {uQTHQ,ﬁQu,'yao,’wag,ea,e} and {H,u,ag,wp,eq,€} are
equivalent.

(2) The configurations {H, u, ag, wo, €q, €} and {H, u, ag, rwo, q, 72} are equivalent.

11
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The scaling property is valid for general loss functions provided batch normalization is used. Con-
sider a general problem

min Jo(w) := By y[f(y, 2 w)], (29)
weRd
and its BN version
. L T
weﬁldlgeﬂ% J(a,w) : = By y[f(y,aNpn(a"w))]. (30)

Then the gradient descent method gives the following iteration,
ak+1 = Ak +an,{h (3D

Ok )
"Huy,), (32)

T
Wy
2

Wht1 = Wk +£g—’;(ﬁ— -
k
where h = h(azwy /o), and h is the gradient of original problem:
h(w) := By [z f5(y, 27 w)]. (33)
It is easy to check the general BNGD has the following property:

Lemma A.9 (General scaling property). Suppose r # 0, then the configurations {wo,e,*} and
{rwo, r2e, x} are equivalent. Here the sign * means other parameters.

A.3 PROOF OF THEOREM [3.3]

Recall the BNGD iterations

T
_ wig
Q41 —ak+€a( - _ak)7

T
Wgt1 = Wk + 6%’; (g — wakggHwk).
The scaling property simplify our analysis by allowing us to set, for example, ||u|| = 1 and ||wq]| =

1. In the rest of this section, we only set ||u| = 1.

For the step size of a, it is easy to check that aj tends to infinity with €, > 2 and initial value
ag = 1,wg = u. Hence we only consider 0 < £, < 2, which make the iteration of a; bounded by
some constant C,,.

Lemma A.10 (Boundedness of ay). If the step size 0 < €, < 2, then the sequence ay, is bounded
Sfor any € > 0 and any initial value (ag, wy).

T
k

Proof. Define o, := <=2 which is bounded by |ax| < Vu® Hu =: C, then

Ok

ak+1 = (1 —eq)ag + g

=(1- ga)k“ao +(1— Ea)ksaao + oo+ (1 —eo)eap—1 + a0tk
Since |1 — g, < 1, we have |ag+1| < |ao| + QC’ZLO 1 —e4]* < |ag| + 2Cﬁ. O

According to the iterations (34), we have

u— “;égwkﬂ = (I - E%%H) (u - wégwk)- (34)
Define
on = “’;ggwm (35)
@ 1= u Hu = L = ey} > 0, (36)
R (37)

12
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9 = argmin|lu — tw|| gz, and the property of H-norm, we have
t

2
aein < || | =11 = extenly < plI = ecH)qs. (38)

Therefore we have the following lemma to make sure the iteration converge:

Lemma A.11. Let 0 < g, < 2. If there are two positive numbers €~ and €+, and the effective step
size €y satisfies

(39)

Amaz

O<Hw B <€k<6 <x

for all k large enough, then the iterations ([34) converge to a minimizer.

Proof. Without loss of generality, we assume Hw H2 < /\ and the inequality is satisfied for

all k£ > 0. We will prove ||wy|| converges and the direction of wy, converges to the direction of w.

(1) Since ||wg]| is always increasing, we only need to prove it is bounded. We have,

wisr [|* = [Jwr ]| +62“k |Hex|? (40)
2
= [Jwoll? +622%||Hei\|2 (41)
i=0
k 2
< HwOH2 + 82)\77“11' Z %Qi (42)
1=0
k

2 Amaz

Amin

< Jlwoll* +¢

(43)

The inequality in last lines are based on the fact that || He; ||2 < Mmazlleil|% and |ag| are bounded
by a constant C,. Next, we will prove >_>° HUEIW < 00, which implies ||wy|| are bounded.

According to the estimate (38), we have

Q1 < maX{|1 — &N - HwkH2| Fax (44)

< max{l -7 71 - Hwk\|2n }Qk, 45)

where 1 — v = max; {|1 — € \;|?} € (0, 1). Using the definition of g, we have

min + w 2 min
Qk — Qk+1 = ly HHU?JJH 2 } qr = nglﬁz >0 (46)
Since gy, is bounded in [0, u” Hu], summing both side of the inequality, we get the bound of the

.. . _ o H
infinite series > ”u‘fﬁ < w oo,

(2) Since ||wg|| is bounded, we denote £~ Hg, and define p := max{|1 —&EN|} € (0,1),

then the inequality (38) implies gx+1 < p®qx. As a consequence, gy, tends to zero, which implies
the direction of wy, converges to the direction of .

= Hw

(3) The convergence of ay, is a consequence of wj, converging.

O

Since ay is bounded, we assume |ag| < CoVuT Hu, C, > 1, and define ¢ := ﬁ The

following lemma gives the convergence for small step size.

Lemma A.12. [f the initial values (ag,wq) satisfies apwlg > 0, and step size satisfies ¢, €
(0,1],¢/||wo|?* < €0, then the sequence (ay,wy) converges to a global minimizer.

13
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T

Remark 1: If we set ag = 0, then we have w; = wy,a; = &, w;()g
T

wy g # 0.

Remark 2: For the case of ¢, € (1,2), if the initial value satisfies an additional condition 0 <

, hence a;w¥'g > 0 provided

wT e .
lag| < Ea%, then we have (ax, wy) converges to a global minimizer as well.

Proof. Without loss of generality, we only consider the case of ag > 0,wd g > 0, ||wo| > 1.
lgll

(1) We will prove aj, > 0, wk g > 0 for all k. Denote y, := w,C g,0 = 4—.
On the one hand, if ax > 0,0 < yi < 26, then

Yer1 = Yo T EGE Z Y- 47

On the other hand, when ax > 0,yx > 0, < €9, we have

Yr+ 1>6’““”“’“ +yk(1—€?§ngHg) > Sk, (48)
ak+1 > minfag, yx/ok }- (49)
As a consequence, we have a; > 0,y > 6, := min{yo, d} for all k by induction.
(2) We will prove the effective step size &, satisfying the condition in Lemmal[A.TT]

Since aj is bounded, € < g¢, we have

A . _a ng sé’a)\ma,,
fe=egr e S Mot S 0o =€ <gx 0
and
R 2 R
Get1 < (L= Exdmin)“qr < (1 — Exdmin)ak < Q- (51)

T T T
Wy 1G9 [ .
RS > Zed > D09 Fyrthermore, we have aj > min{ao,
Ok41 Ok g0

positive constant e~ > 0 such that

T
woog }, and there is a

which implies -

T
Ep > e—Ar __Wi8 > e (52)

= “Xmazllwel? o = Jwil?

(3) Employing the Lemma[A.11] we conclude that (ag, wy ) converges to a global minimizer. O

Lemma A.13. If step size satisfies e, € (0,1],¢/||wo||* < €0, then the sequence (ay,wy,) con-
verges.

Proof. Thanks to Lemma we only need to consider the case of akwg g < 0 for all k, and we
will prove the iteration converges to a saddle point in this case. Since the case of a;, = 0 or w% g=20
is trivial, we assume azwi g < 0 below. More specifically , we will prove |aj41| < 7|ay| for some
constant € (0, 1), which implies convergence to a saddle point.

(1) If ay, and ag41 have same sign, hence different sign with wkTg, then we have |agy1| = |1 —
eallar] — ealwigl/on <1 —callarl.

(2) If ag, and ag4; have different signs, then we have

Bisl < e (|lg)2 - “h2g" Hu ) < 2ekAmar < 1. (53)

Consequently, we get
“ll(’;;rlll € \Isf&i‘l — (1 —€4) <260k maz — (1 —€4) < g4 < 1. (54)
(3) Setting  := max(|1 — &4/, 2e€4KkAmaz — (1 — €4)), we finish the proof. O

To simplify our proofs for Theorem we give two lemmas which are obvious but useful.

14



Under review as a conference paper at ICLR 2019

Lemma A.14. [f positive series fi,, hy satisfy fr+1 < 7fix + h,7 € (0,1) and klim hr = 0, then
— 00

i £ =0

Proof. 1t is obvious, because the series by, defined by by1 = rbg, + hg, by > 0, tends to zeros. [J

Lemma A.15 (Separation property). For &y small enough, the set S := {w|y?q < &, ||w| > 1}

is composed by two separated parts: Sy and Ss, dist(S1,S2) > 0, where in the set Sy one has

y? < 61,q > 69, and in Sy one has q < §a,y* > 8, for some §; > 0,63 > 0. Here y := w' g, q :=
2

T 2
T _ (w"Huw)® _ T _ y
u” Hu wTHw U Hu wT Hw"

Proof. The proof is based on H being positive. The geometric meaning is illustrated in Figure 4]
O

- (WTHuU)? i
Y wihw %

Figure 4: The geometric meaning of the separation property

Corollary A.16. If lim |jwy1 —wi| = 0, and lim (wf g)%qx = 0, then either lim (wi g)? =0
k— o0 k— o0 k— o0
or lim ¢, = 0.
k—o0

Proof. Denote yj, := w} g. According to the separation property (Lemma .15:, we can chose a
8o > 0 small enough such that the separated parts of the set S := {w|y?q < do, ||w|| > 1}, S1 and
Sa, have dist(S1, S2) > 0.

Because yZ gy tends to zero, we have wy, belongs to S for k large enough, for instance k > k1. On
the other hand, because ||wyy1 — wg|| tends to zero, we have ||wyr1 — wi|| < dist(Sy,S2) for k
large enough, for instance k > k. Then consider k& > k3 := max(k1, k2), we have all wy, belongs
to the same part S7 or So.

If wg, € Sq, (gx > d2), for all k& > k3, then we have lim (wkTg)2 =0.

k—o0

On the other hand, if w;, € S, (yi > ¢71), for all k£ > k3, then we have klim qr = 0.
—00
O

Theorem A.17. Let ¢, € (0,1] and € > 0. The sequence (ay,wy) converges for any initial value
(ao, wo).

Proof. We will prove ||wy|| converges, then prove (ag, wy,) converges as well.

(1) We will prove that ||wg|| is bounded and hence converges.

In fact, according to the Lemma|A.13| once ||wy||? > &/g¢ for some , the rest of the iteration will
converge, hence ||wg|| is bounded.

(2) We will prove lim [Jwy41 — wg|| =0, and lim (wf g)%qx = 0.
k—o0 k—o0

15
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The convergence of ||wy|| implies Y, afgy is summable. As a consequence,
lim aZpy =0, lim agpe;, = 0, (55)
k—oo k—o0
and lim ||wgt+1 — wg| = 0. In fact, we have
k—oo

2 2
[wir1 — wi||? = €25 | Hex|® < 22=ajq, — 0. (56)
man

Consider the iteration of series |ay, — wi g/oy,

s

w5+19 < walg w1?+19 wg+1g
CLk+1 o Ok+1 - akJrl o Ok Ok o Ok+1
T T T
wy 9 larg” Heg| |wk+19‘
S(I—Ea) ak—a—k‘—&-s 52 +(akak+1)|0k+1_ak|
T T
_ _ wpg gl llakek |l m [0k 119] _Amas
< (1—eq)|ag == te — T Groo & o llarer|l
wig
<(1—ea) a,fa—k‘ + 20 |awen]| s (57)

EAmaz ||ullu
)‘7nin|"wflu2 !

The constant C' in lb can be chosen as C' =
use Lemma to get lim |ay — wlg/ox| = 0. Combine the equation lb then we have
k—o0

Since ||axex|| g tends to zero, we can

lim (wfg)?pr = 0.

k—o0

(3) According to the Corollary , we have either lim y? = 0, or lim gz = 0. In the former
k—o0 k—o0

case, the iteration of (aj,wy) converges to a saddle point. However, in the latter case, (aj,wy)
converges to a global minimizer. In both cases we have (ax, wy) converges.

O

To finish the proof of Theorem [3.3] we have to demonstrate the special case of £, = 1 where the
set of initial values such that BN iteration converges to saddle points is Lebeguse measure zero. We
leave this demonstration in next section where we consider the case of ¢, > 1.

A.4 IMPOSSIBILITY OF CONVERGING TO STRICT SADDLE POINTS

In this section, we will prove the set of initial values such that BN iteration converges to saddle points
is (Lebeguse) measure zero, as long as €, > 1. The tools in our proof is similar to the analysis
of gradient descent on non-convex objectives (Lee et al.l 2016; Panageas & Piliouras, |2017). In
addition, we used the real analytic property of the BN loss function (16).

For brevity, here we denote z := (a,w) and let £, = &, then the BN iteration can be rewrote as
Tny1 = T(xp) :=xp — eVJI(2y).

Lemma A.18. If A C T(R9/{0}) is a measure zero set, then the preimage T~1(A) is of measure
zero as well.

Proof. Since T is smooth enough, according to Theorem 3 of (Ponomarev, [1987), we only need
to prove the Jacobian of T'(x) is nonzero for almost all z € R? In other words, the set {z :
det(I — eV2J(x)) = 0} is of measure zero. This is true because the function det(I — eV?2.J(x))
is a real analytic function of z € R?/{0}. (Details of properties of real analytic functions can be
found in (Krantz & Parks| 2002} for instance).

O

Lemma A.19. Let f : X — R be twice continuously differentiable in an open set X C R? and
x* € X be a stationary point of f. If e > 0, det(I — eV? f(z*)) # 0 and the matrix V? f (z*) has
at least a negative eigenvalue, then there exist a neighborhood U of x* such that the following set
B has measure zero,

B:={x0 €U :xp41 =2x, —eVf(x,) €U Vn >0} (58)

16
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Proof. The detailed proof is similar to (Lee et al., 2016} [Panageas & Piliouras}, [2017).

Define the transform function as F/(z) := x — eV f(z). Since det(I — eV?f(2*)) # 0, accorded
to the inverse function theorem, there exist a neighborhood U of * such that 7" has differentiable
inverse. Hence T is a local C* diffeomorphism, which allow us to use the central-stable manifold
theorem (Shub, 2013). The negative eigenvalues of V2 f(x*) indicates \qz (I — eV2f(z*)) > 1
and the dimension of the unstable manifold is at least one, which implies the set B is on a lower
dimension manifold hence B is of measure zero.

O

Lemma A.20. If e, = € > 1, then the set of initial values such that BN iteration converges to
saddle points is of Lebeguse measure zero.

Proof. We will prove this argument using Lemma and Lemma Denote the saddle points
setas W := {(a*,w*) : a* = 0,w*T g = 0}. The basic point is that the saddle point z* := (a*, w*)

of the BN loss function || has eigenvalues {%(1 +4/14+4 llgll® ),0, ..., 0} of the Hessian

w*T Hw*

matrix.

(1) For each saddle point z* := (a*,w*) of BN loss function, £ > 1 is enough to allow us to use
Lemma [A.T9] Hence there exist a neighborhood Uy~ of z* such that the following set B, is of
measure zero,

By« i ={xg € Uy : &, € Uy, ¥n > 1}. (59)

(2) The neighborhoods U, of all z* € W forms a cover of W, hence, accorded to Lindel6f’s open
cover lemma, there are countable neighborhoods {U; : i = 1,2, ...} cover W,i.e. U := U;U; D W.
As a consequence, the following set Ag is of measure zero,

Ay =U;B; = Ui{l‘o eU;:x, €U;,Vn > 1}. (60)

(3) Define A, 11 := T~ (A,,) = {x € R : T(x) € A,,},m > 0. According to Lemma|A.18} we
have all A,,, and U,,, A,,, are of measure zero.

(4) Since each initial value x( such that the iteration converges to a saddle point must be contained
in some set A,,,, we finish the proof.

O

Combine the results of Lemma[A.20] scaling property [3.2] and the convergence theorem we
have the following theorem directly.

Theorem A.21. If¢, = 1, > 0, then the BN iteration (9)-(I0) converges to global minimizers for
almost all initial values.

A.5 CONVERGENCE RATE

T
In the last section, we encountered the following estimate for e;, = u — w;’gg W
k
lextille < p(I — éxH)llek n- (61)

We can improve the convergence rate of the above if H* has better spectral property. This is the
content of Proposition and the following lemma is enough to prove it.

Lemma A.22. The following inequality holds,
(L= 6)lexsalli < (p°(L = EcH") + 8¢ ) lewll ()

where 6y, == 7’\’”“;?%‘ lexlm-

17



Under review as a conference paper at ICLR 2019

Proof. The case of w} g = 0 is trivial, hence we assume w} g # 0 in the following proof. Rewrite
the iteration on wy, as the following equality,

= (I —épH)ep = (I — & H")ep — & (1— S59° ) 63
(I —éuH)er = (I — ExH")er, — & > | Hu. (63)

ul Huo}

Then we will use the properties of H *-seminorm to prove our argument.

(1) Estimate the H*-seminorm on the right hand of equation (63).

Irightllsr- < 1 = &xH")epllr- + |2l (1 = 25 ) | Hullr- (64)
< p (I = e H) el + 2zl ey |13 (65)
= (I = &k H") ikt x| g + 2zl oy | (66)
= 7\/%% (P*(I — & H") + 5k) llew | a- (67)

(2) Estimate the H*-seminorm on the left hand of equation @) Using the H-norm on the iteration
of wy,, we have

Ore1 = |wp + 2 Hep|| g > op — e2mezlttljiey | . (68)

Consequently, we have

wr Ok41 wr
eftl| - = Al —ZEttleg || > B2 — (1 = 61l exsall - (69)
(3) Combining (1) and (2), we finish the proof. L]

Now, we turn to the convergence of the loss function which can be rewritten as .J;, = 3||é||%; with
€ = u — gEwy. There is an useful equality between ||é, 1% and ||ex||%:

T 2
elE = llewl + (ax — 222)". (70)
Recalling the inequality (57) and the boundedness of aj, we have a constant Cjy such that

T
Wr419
Ok+1

< |1 — &4

’ak+1 - ap — 7’ + Collex ||, (71)

which indicates that we can use the convergence of ey, to estimate the convergence of the loss value
Ji. In fact we have the following lemma.

Lemma A.23. If |le || g < Cp* for some constant C and p € (0,1), e, € (0, 1], then we have
2
el < C2p% + (Ca(1 = ea) + Caky*) (72)
where v = max(p, 1 — €,), C1 = |ag — wi g/oo| and Cy = CC,.

Proof. According to the inequality (7T)), we have

k-1
T . .
‘ak - wfkg‘ SOl =) +Co Y (1—ea)'p" " < Cr(1 = £a)* + Cokin®. (73)
1=0

Put it in the equality (70), then we finish the proof.
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A.6 ESTIMATING THE EFFECTIVE STEP SIZE

Accorded to Lemma|A.12] the effective step size &5 has same order with —=— provided aguwi g >

||w I
0,¢/]|wo|| < €o. In fact, we have
T
Cie — apowgy g £ < g < T Cgae . Cse
Tanl® = ~ o0 Xoaalwr? = €k S VUl Huxooe = i (74)

Hence, to prove the Proposition[3:3] we only need to estimate the norm of wy,.

proof of Proposition[3.3] According to the BNGD iteration, we have (see the proof of Lemmal[A.TT)

k

2
lwis|® < llwoll? + e Amaz Y Zqs. (75)
=0

(1) When W < gg (gg is defined in Lemma , the sequence ¢y, satisfies gp+1 < (1 —
€k Amin)qk- Hence the norm of wy, is bounded by

o0
lwg]|* < flwo|* + > (g — gi1) < Jlwoll* + Ce, (76)
i=0
for some constant C. As a consequence,
Cie = L e < 2”2 =: Che. (77)

lwoll?(1+Ce0) =

(2) When ¢ is large enough, the increment of the norm ||wy || at the first step is large as well. In fact,
we have

2
lwal|* = lwol|* = €* 3§ | Heo||* = C3e”. (78)

T
Since ||g]|? > “%%¢T Hwy, we have a;wlg > ajwl g > 0. Choose ¢ to be larger than some value
0

€1 such that Hw T
two constants, C', C5, such that

> < €0, then we can use the argument in (1) on (a1, w1 ). More precisely, there are

< é < 12 (79)

Cl{f
w1 [?

Plugging the equation (78) into it, we have

/\

Claf Cie? Coe? Ca
Moo+ Coe? = TwolP G = €kE < Tupfrcher < G5 (80)

O
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B MODIFIED BNGD

Through our analysis, we discovered that a modification of the BNGD, which we call MBNGD,
becomes much easier to analyze and possesses better convergence properties. Note that the results
in the main paper do not depend on the results in this section.

T
The modification is simply to enforce ay = “~ at every iteration, which yields the modified
iterations:
Wit = Wi +e7257 (9 — 72 Huwy ). (81)

In a sense, one can view the above as a limiting version of BNGD where the BN rescaling variable a
is adjusted every step to the optimal value based on the current value of the weights w. The MBNGD
iterations is governed by the variables: H,u, ag, wo, €, where the scaling properties (Lemma [3.2]
omit the parameter £, now) remains. More importantly, we find the iteration will converge to a
saddle point if and only if it exactly meets the saddle point at a finite step. More precisely, we have
the convergence theorem:

Theorem B.1 (Convergence for modified BNGD). The iteration sequence wy, in equation con-
verges for any initial value wqg and any step size € > 0. It converges to a global minimizer almost
sure, in the sense that the set of initial values such that wj, converges to a saddle point is of Lebesgue
measure zero. Furthermore, It converges to a saddle point if and only if w} g = 0 for some k.

2
FParticularly, if e < 5 2Jwo] wd' g # 0, then wy, converges to a global minimizer.

mazk|lul]??

In the following, we assume ||u|| = 1.

B.1 PROOF

Lemma B.2. Ifwl'g # 0and =5 < o :=

ool —2__ then the sequence wy, converges to a global
max

KA
minimizer.

Proof. Similar to the proof of LemmalA.12] but here the effective step size is always nonnegative
which is defined as

A _(wlg\2 ek ek _. ot
i=e(H) < pip S e = < (82)

Amaz

(wkT;rlg)Q > (wkTQg)z > (onZg)z' As

The inequality immediately gives qx+1 < gk, which implies > >
k1 Tk 90

a consequence, the effective step size has a lower bound

A (wg 9) 1 _. e~
N v I il e (83)
Employing the Lemma[A.TT] we conclude that wy, converges to a global minimizer. O

Lemma B.3. Ifwl'g 0 for all k, then Y~ [wig| = > e (wi g)* = <.

Proof. Without loss of generality, we assume ||wg|| > 1, denote yx, := w{ g and set § = %. From

the iteration of wy, we have

yeer = i+ €% (Jlgl? = Zrg” Huy). (84)
If 0 < |wig| < 26, then we have the inequality:
lgll* = 2" Hwi > [lgll* — 2y lurl > 3llg]*, (85)
then
il = (14 5 145 sl > [l > 0. (86)

As a consequence, limy,_, o w} g = 0 is not possible unless w g = 0 for some k, which implies the
results we want.

O
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Theorem B.4. The iteration sequence wy, in equation converges for any initial value wy and

any step size € > 0. Furthermore, wy, will converge to a global minimizer unless wg g = 0 for some
k.

Proof. Obviously, if w,{g = 0 for some k = ko, then wy, = wy, for all £k > ko, hence wy, converges
to wy,. Without losing generality, we consider wy g # 0 for all k and ||wg|| > 1 below.

(1) Firstly, we will prove that ||wy|| is bounded and hence converges.

In fact, according to the Lemma[B.2] once [|wy||? > ¢/2o for some k, the rest of the iteration will
converge, hence ||wy|| is bounded.

(2) Secondly, we will prove w;, converges to a vector parallel to u.

w

L9

Denote yj, := w g, 2z, := 2. The convergence of ||w || indicates that Y~ " | 22qy is summable,
and then ZI?;O y,% qx i1s summable as well. Therefore we have

2
2 _ _2(wig)® i 2,2
w1 —we|® =€ %Hg - %"HWH < Nnax€” 2jeqn (87)
and the above tends to zero, i.e. limg o0 [|[wr+1 — wi| = 0.

According to the separation property (Lemmal[A.15)), we can chose a dy, > 0 small enough such that
the separated parts of the set S := {w|y?q < do, Jw|| > 1}, S1 and Sa, have dist(Sy, S2) > 0.

Because yZ gy, tends to zero, we have wy, belongs to S for k large enough, for instance k > k;. On
the other hand, because ||wyy1 — wg|| tends to zero, we have ||wi+1 — wi|| < dist(Sy,S2) for k
large enough, for instance k& > ko. Then consider k& > k3 := max(kq, k2), we have all wy, belongs
to the same part S or Ss.

However, Lemma says Z;C:o yi = 00, hence wi, € S7 (g > d2) for all k& > k3 is not true.
Therefore wy, € Sy (y; > 1) forall £ > k3. Consequently, we can claim that ZZO:O qi is summable
and wj, converges to a vector parallel to u.

O

B.2 EXPERIMENT

Here we test the convergence and stability of MBNGD for OLS model. Consider the diagonal matrix
H = diag(h), where h = (1, ..., k) is an increasing sequence. The scaling property allows us to set
the initial value wq having same 2-norm with u, ||wo|| = |Ju|| = 1.

Figure [5] gives an example of a 5-dimensional H with condition number x = 2000. The GD and
MBNGD iteration are executed k£ = 5000 times where u and wq are randomly chosen from the unit
sphere. The values of effective step size, loss ||ex|%; and error ||e) || are plotted. Furthermore, to
explore the performance of GD and MBNGD, the mean values over 300 random tests are given. It
is worth to note that, the geometric mean (G-mean) is more reliable than the arithmetic mean (A-
mean), where the geometric mean of x can be defined as exp(E(ln z)). Here the reliability means
that the G-mean converges quickly when the number of tests increase, however the A-mean does not
converge as quickly. In this example, the optimal convergence rate of MBNGD is observably better
than GD. This acceleration phenomenon is ascribed to the pseudo-condition number of «*(H*)
being less than «(H ). However, if the difference between (pseudo-)condition number of H and H*
is small, the acceleration is imperceptible.

Another important observation is that the BN significantly extends the range of ‘optimal’ step size,
which is embodied by the effective step size &5, having a large constant C' in ¢ = O(Ce~1). This
means we can chose step size in BN at a large interval to get almost same or better convergence rate
than that of the best choice for GD.

Figure [0] gives an example of 100-dimension H with condition number £ = 2000. Similar results
as those in the 5-dimensional case are obtained. However, the best optimal convergence rate of
MBNGD here has not noticeably improved compared with GD with the optimal learning rate, which
is due to the fact that large d decrease the difference between eigenvalues of H and H*.

Additional tests indicate that:
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Figure 6: Plot of 500 random initial tests. H = diag(linspace(1,2000,100)).

(1) larger dimensions leads to larger intervals of ‘optimal’ step size, (Figure[7)

(2) the effect of condition number on the ‘optimal” interval is small (Figure [g).

——d=100

Effective step size

Effective step size / &

Figure 8: H = diag(linspace(1,cond,100)).
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