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ABSTRACT

Deep image prior (DIP) (Ulyanov et al.l|[2018)), which utilizes a deep convolutional
network (ConvNet) structure itself as an image prior, has attracted huge attentions
in computer vision community. It empirically shows the effectiveness of ConvNet
structure for various image restoration applications. However, why the DIP works
so well is still unknown, and why convolution operation is useful for image recon-
struction or enhancement is not very clear. In this study, we tackle these questions.
The proposed approach is dividing the convolution into “delay-embedding” and
“transformation (i.e., encoder-decoder)”, and proposing a simple, but essential,
image/tensor modeling method which is closely related to dynamical systems and
self-similarity. The proposed method named as manifold modeling in embedded
space (MMES) is implemented by using a novel denoising-auto-encoder in com-
bination with multi-way delay-embedding transform. In spite of its simplicity, the
image/tensor completion, super-resolution, and deconvolution results of MMES
are quite similar even competitive to DIP in our extensive experiments, and these
results would help us for reinterpreting/characterizing the DIP from a perspective
of “low-dimensional patch-manifold prior”.

1 INTRODUCTION

The most important piece of information for image/tensor restoration would be the “prior” which
usually converts the optimization problems from ill-posed to well-posed, and/or gives some robust-
ness for specific noises and outliers. Many priors were studied in computer science problems such as
low-rank representation (Pearson, |1901; Hotelling, |1933; Hitchcockl, (1927} |Tucker} |1966), smooth-
ness (Grimson, (1981} [Poggio et al., |{1985}; L1, [1994), sparseness (Tibshirani, |1996), non-negativity
(Lee & Seungl|1999; |Cichocki et al., 2009), statistical independence (Hyvarinen et al.,|2004), and so
on. Particularly in today’s computer vision problems, total variation (TV) (Guichard & Malgouyres,
1998; [Vogel & Omanl (1998)), low-rank representation (Liu et al., [2013} J1 et al., |2010; Zhao et al.,
2015; Wang et al., [2017), and non-local similarity (Buades et al., 2005} |[Dabov et al., |2007) priors
are often used for image modeling. These priors can be obtained by analyzing basic properties of
natural images, and categorized as “unsupervised image modeling”.

By contrast, the deep image prior (DIP) (Ulyanov et al., 2018)) has been come from a part of “super-
vised” or “data-driven” image modeling framework (i.e., deep learning) although the DIP itself is
one of the state-of-the-art unsupervised image restoration methods. The method of DIP can be sim-
ply explained to only optimize an untrained (i.e., randomly initialized) fully convolutional generator
network (ConvNet) for minimizing squares loss between its generated image and an observed image
(e.g., noisy image), and stop the optimization before the overfitting. [Ulyanov et al.[(2018)) explained
the reason why a high-capacity ConvNet can be used as a prior by the following statement: Net-
work resists “bad” solutions and descends much more quickly towards naturally-looking images,
and its phenomenon of “impedance of ConvNet” was confirmed by toy experiments. However, most
researchers could not be fully convinced from only above explanation because it is just a part of
whole. One of the essential questions is why is it ConvNet? or in more practical perspective, to
explain what is “priors in DIP” with simple and clear words (like smoothness, sparseness, low-rank
etc) is very important.

In this study, we tackle the question why ConvNet is essential as an image prior, and try to translate
the “deep image prior” with words. For this purpose, we divide the convolution operation into
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Figure 1: Comparison of typical auto-encoder ConvNet and the proposed MMES network.

“embedding” and “transformation” (see Fig. [ in Appendix). Here, the “embedding” stands for
delay/shift-embedding (i.e., Hankelization) which is a copy/duplication operation of image-patches
by sliding window of patch size (7, 7). The embedding/Hankelization is a preprocessing to capture
the delay/shift-invariant feature (e.g., non-local similarity) of signals/images. This “transformation”
is basically linear transformation in a simple convolution operation, and it also indicates some non-
linear transformation from the ConvNet perspective.

To simplify the complicated “encoder-decoder” structure of ConvNet used in DIP, we consider
the following network structure: Embedding H (linear), encoding ¢, (non-linear), decoding ¢,
(non-linear), and backward embedding H' (linear) (see Fig. . Note that its encoder-decoder part
(¢, 1) is just a simple multi-layer perceptron along the filter domain (i.e., manifold learning), and
it is sandwitched between forward and backward embedding (H, H'). Hence, the proposed network
can be characterized by Manifold Modeling in Embedded Space (MMES). The proposed MMES is
designed as simple as possible while keeping a essential ConvNet structure. Some parameters 7 and
r in MMES are corresponded with a kernel size and a filter size in ConvNet.

When we set the horizontal dimension of hidden tensor £ with r, each 72-dimensional fiber in
., which is a vectorization of each (7, 7)-patch of an input image, is encoded into r-dimensional
space. Note that the volume of hidden tensor £ looks to be larger than that of input/output image,
but representation ability of £ is much lower than input/output image space since the first/last tensor
(H,H') must have Hankel structure (i.e., its representation ability is equivalent to image) and the
hidden tensor £ is reduced to lower dimensions from . Here, we assume r < 72, and its low-
dimensionality indicates the existence of similar (7, 7)-patches (i.e., self-similarity) in the image,
and it would provide some “impedance” which passes self-similar patches and resist/ignore others.
Each fiber of Hidden tensor £ represents a coordinate on the patch-manifold of image.

It should be noted that the MMES network is a special case of deep neural networks. In fact,
the proposed MMES can be considered as a new kind of auto-encoder (AE) in which convolution
operations have been replaced by Hankelization in pre-processing and post-processing. Compared
with ConvNet, the forward and backward embedding operations can be implemented by convolution
and transposed convolution with one-hot-filters (see Fig. [I2]in Appendix for details). Note that the
encoder-decoder part can be implemented by multiple convolution layers with kernel size (1,1) and
non-linear activations. In our model, we do not use convolution explicitly but just do linear transform
and non-linear activation for “filter-domain” (i.e., horizontal axis of tensors in Fig. E])

The contributions in this study can be summarized as follow: (1) A new and simple approach of
image/tensor modeling is proposed which translates the ConvNet, (2) effectiveness of the proposed
method and similarity to the DIP are demonstrated in experiments, and (3) most importantly, there
is a prospect for interpreting/characterizing the DIP as “low-dimensional patch-manifold prior”.
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2 RELATED WORKS

Note that the idea of low-dimensional patch manifold itself has been proposed by Peyre| (2009) and
Osher et al.| (2017). Peyre had firstly formulated the patch manifold model of natural images and
solve it by dictionary learning and manifold pursuit. Osher et al. formulated the regularization
function to minimize dimension of patch manifold, and solved Laplace-Beltrami equation by point
integral method. In comparison with these studies, we decrease the dimension of patch-manifold by
utilizing AE shown in Fig.

A related technique, low-rank tensor modeling in embedded space, has been studied recently by
Yokota et al.| (2018)). However, the modeling approaches here are different: multi-linear vs non-
linear manifold. Thus, our study would be interpreted as manifold version of (Yokota et al.,[2018]) in
a perspective of tensor completion methods. Note that |Yokota et al.| (2018) applied their model for
only tensor completion task. By contrast, we investigate here tensor completion, super-resolution,
and deconvolution tasks.

Another related work is devoted to group sparse representation (GSR) (Zhang et al.l [2014a). The
GSR is roughly characterized as a combination of similar patch-grouping and sparse modeling which
is similar to the combination of embedding and manifold-modeling. However, the computational
cost of similar patch-grouping is obviously higher than embedding, and this task is naturally included
in manifold learning.

The main difference between above studies and our is the motivation: Essential and simple image
modeling which can translate the ConvNet/DIP. The proposed MMES has many connections with
ConvNet/DIP such as embedding, non-linear mapping, and the training with noise.

From a perspective of DIP, there are several related works. First, the deep geometric prior (Williams
et al.| 2019) utilises a good properties of a multi-layer perceptron for shape reconstruction problem
which efficiently learn a smooth function from 2D space to 3D space. It helps us to understand
DIP from a perspective of manifold learning. For example, it can be used for gray scale image
reconstruction if an image is regarded as point could in 3D space (4, j, X;;). However, this may not
provide the good image reconstruction like DIP, because it just smoothly interpolates a point cloud
by surface like a Volonoi interpolation. Especially it can not provide a property of self-similarity in
natural image.

Second, deep decoder (Heckel & Hand, 2018) reconstructs natural images from noises by non-
convolutional networks which consists of linear channel/color transform, ReLLU, channel/color nor-
malization, and upsampling layers. In contrast that DIP uses over-parameterized network, deep
decoder uses under-parameterized network and shows its ability of image reconstruction. Although
deep decoder is a non-convolutional network, Authors emphasize the closed relationship between
convolutional layers in DIP and upsampling layers in deep decoder. In this literature, Authors de-
scribed ”If there is no upsampling layer, then there is no notion of locality in the resultant im-
age” in deep decoder. It implies the "locality” is the essence of image model, and the convolu-
tion/upsampling layer provides it. Furthermore, the deep decoder has a close relationship with
our MMES. Note that the MMES is originally/essentially has only decoder and inverse MDT (see
Eq.(3)), and the encoder is just used for satisfying Hankel structure. The decoder and inverse MDT
in our MMES are respectively corresponding linear operation and upsampling layer in deep decoder.
Moreover, concept of under-parameterization is also similar to our MMES.

From this, we can say the essence of image model is the "locality”, and its locality can be provided
by “convolution”, “upsampling”, or ’delay-embedding”. This is why the image restoration from
single image with deep convolutional networks has highly attentions which are called by zero-shot
learning, internal learning, or self-supervised learning (Shocher et al., 2018} [Lehtinen et al., 2018;

Krull et al., 2019; Batson & Royer, |2019; |Xu et al., 2019; (Cha et al.,|2019; |Laine et al.,|2019).

Recently, two generative models: SinGAN (Shaham et al.|[2019) and InGAN (Shocher et al.,[2019)
learned from only a single image, have been proposed. Key concept of both papers is to impose the
constraint for local patches of image to be natural. From a perspective of the constraint for local
patches of image, our MMES has closed relationship with these works. However, we explicitly
impose a low-dimensional manifold constraint for local patches rather than adversarial training with
patch discriminators.
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Figure 2: Conceptual illustration of MMES for a image inpainting task.

3  MANIFOLD MODELING IN EMBEDDED SPACE

Here, on the contrary to Section [I] we start to explain the proposed method from the concept of
MMES, and we systematically derive the MMES structure from it. Conceptually, the proposed
tensor reconstruction method can be formulated by

mini\l{nize Y - F(x)|%,

S.t. H(X) = [hl,hg, ...,hT] = H, (1)
hy e M, fort=1,2,...,T,

where ) € R/1%/2XXJN i5 an observed corrupted tensor, X € RI1>*/2X:XIN jg an estimated
tensor, F : RIvx12x-xIn _y RJixJ2xXJN jq g linear operator which represents the observation
system, H : RIx12xxIn _y RPXT j5 padding and Hankelization operator with sliding window of
size (71, T2, ..., TN ), and we impose each column of matrix H can be sampled from an r-dimensional
manifold M, in D-dimensional Euclid space (see Appendix B for details). We have » < D. For
simplicity, we putted D := [[, 7, and T := [[,, ({5, + 7, — 1). For tensor completion task, F := Po
is a projection operator onto support set §2 so that the missing elements are set to be zero. For super-
resolution task, F is a down-sampling operator of images/tensors. For deconvolution task, F is a
convolution operator with some blur kernels. Fig. 2] shows the concept of proposed manifold mod-
eling in case of image inpainting (i.e., N = 2). We minimize the distance between observation Y
and reconstruction X with its support €2, and all patches in X should be included in some restricted
manifold M,.. In other words, X is represented by the patch-manifold, and the property of the
patch-manifold can be image priors. For example, low dimensionality of patch-manifold restricts
the non-local similarity of images/tensors, and it would be related with “impedance” in DIP. We
model X indirectly by designing the properties of patch-manifold M,..

3.1 DEFINITION OF LOW-DIMENSIONAL MANIFOLD

We consider an AE to define the r-dimensional manifold M, in (Hn Tn)-dimensional Euclidean
space as follows:

T

M= {p (1) [LER"}, (Y, ¢r) := argminz lhe — Yo (Re) 13, 2
(Yrbr) t—1

where ¢, : RP? — R7 is an encoder, ¥, : R — RP is a decoder, and 1/AJT<;A5T : RP — RP is an

auto-encoder constructed from {h;}7_;. Note that, in general, the use of AE models is a widely

accepted approach for manifold learning (Hinton & Salakhutdinov, 2006). The properties of the

manifold M, are determined by the properties of ¢, and 1),.. By employing multi-layer perceptrons

(neural networks) for ¢, and v,., encoder-decoder may provide a smooth manifold.

3.2 PROBLEM FORMULATION

In this section, we combine the conceptual formulation (I)) and the AE guided manifold constraint
to derive a equivalent and more practical optimization problem. First, we redefine a tensor X as an
output of generator:

X ::HT[hl,hg, . hr], where hy € M,
:HT[Q&r(ll)ﬂ/}r(b)a---a’lﬁr(lT)L (3)



Under review as a conference paper at ICLR 2020

Algorithm 1 Optimization algorithm for tensor reconstruction

input: ) € R/1* </~ (corrupted tensor), F, T, 7, 0;
initialize: Z € R *IN auto-encoder A,, A = 5.0;
repeat

H « H(Z) € RP*T with 1

generate noise E € RP*T with o;

Lar — || H — A, (H + B)|[3:

»Crec <~ %Hy _f(HTAT(H+ E))H%"

update (2, A,.) by Adam for Lyec + ALAE;

if Lroc < Lag then \ < 1.1); else \ < 0.99);
until converge

output: X = HT A, H(Z) € R **In (reconstructed tensor);

where I; € R”, and HT is a pseudo inverse of . At this moment, X’ is a function of {I;}7_;, how-
ever Hankel structure of matrix H can not be always guaranteed under the unconstrained condition
of l;. For guaranteeing the Hankel structure of matrix H, we further transform it as follow:

X =H [0y (g1), Uy dr(g2), ooor Vror(gr)],
=H'A,[g91,92, ..., gT]
—HIAH(Z), @

where we put A, : RP*XT — RPXT a5 an operator which auto-encodes each column of a input
matrix with (¢, ¢,), and [g1, g, ..., g7] as a matrix, which has Hankel structure and is transformed
by Hankelization of some input tensor Z € Rf1*f2XXIN_ Note that Z is the most compact
representation for Hankel matrix [g1, g2, ..., g7|. Eq. (EI) describes the MMES network shown in
Fig.|l} H, g{),x, 1[» and HT are respectively corresponding to forward embedding, encoding, decoding,
and backward embedding, where encoder and decoder can be defined e.g. by multi-layer perceptrons
(i.e., repetition of linear transformation and non-linear activation).

From this formulation, Problem (1) is transformed as minimizez ||y — F(H!A, H(Z))||%, where
A, is an AE which defines the manifold M,.. In this study, the AE/manifold is learned from an
observed tensor Y itself, thus the optimization problem is finally formulated as

minimize || — FHIAH(Z))|[} A2 [[H(2) - AH(Z)|E, (5)

=:Lsec =:LAE

where we refer respectively the first and second terms by a reconstruction loss and an auto-encoding
loss, and A > 0 is a trade-off parameter for balancing both losses.

3.3 OPTIMIZATION ALGORITHM

Optimization problem (3) consists of two terms: a reconstruction loss, and an auto-encoding loss.
Hyperparameter A is set to balance both losses. Basically, A should be large because auto-encoding
loss should be zero. However, very large A prohibits minimizing the reconstruction loss, and may
lead to local optima. Therefore, we adjust gradually the value of X in the optimization process.

Algorithm [T] shows an optimization algorithm for tensor reconstruction and/or enhancement. For
AE learning, we employs a strategy of denoising-auto-encoder (see Appendix in detail). Adaptation
of A is just an example, and it can be modified appropriately with data. Here, the trade-off parameter
A is adjusted for keeping L. > Lag, but for no large gap between both losses. By exploiting the
convolutional structure of # and H' (see Appendix|B. 1)), the calculation flow of L. and £Ag can be
easily implemented by using neural network libraries such as TensorFlow. We employed Adam
(Kingma & Bal [2014) optimizer for updating (Z, A,.).

4 EXPERIMENTS

Here, we show the selective experimental results to demonstrate the close similarity and some slight
differences between DIP and MMES. First, toy examples with a time-series signal and a gray-scale
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Figure 3: Time series signal recovery of subspace and manifold models in embedded space.
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Figure 4: Distribution of two-dimensional (8,8)-patches on manifold learned from a 50% missing
gray-scale image of ‘Lena’.

image were recovered by the proposed method to show its basic behaviors. Thereafter, we show the
main results by comparison with DIP and other selective methods on color-image inpainting, super-
resolution, and deconvolution tasks. Optional results of optimization behavior, hyper-parameter
sensitivity, and volumetric/3D image completion are shown in Appendix.

4.1 ToOY EXAMPLES

In this section, we apply the proposed method into a toy example of signal recovery. Fig. [3|shows
a result of this experiment. A one-dimensional time-series signal is generated from Lorentz sys-
tem, and corrupted by additive Gaussian noise, random missing, and three block occlusions. The
corrupted signal was recovered by the subspace modeling (Yokota et all, [2018)), and the proposed
manifold modeling in embedded space. Window size of delay-embedding was 7 = 64, the lowest
dimension of auto-encoder was » = 3, and additive noise standard deviation was set to o = 0.05.
Manifold modeling catched the structure of Lorentz attractor much better than subspace modeling.

Fig. |4—_1| visualizes a two-dimensional (8, 8)-patch manifold learned by the proposed method from a
50% missing gray-scale image of ‘Lena’. For this figure, we set 7 = [8,8], r = 2, 0 = 0.05.
Similar patches are located near each other, and the smooth change of patterns can be observed. It
implies the relationship between non-local similarity based methods (Buades et al, 2005}, [Dabov|
et all 2007 [Gu et al) 2014} [Zhang et al., [20144), and the manifold modeling (i.e., DAE) plays a
key role of “patch-grouping” in the proposed method. The difference from the non-local similarity
based approach is that the manifold modeling is “global” rather than “non-local” which finds similar
patches of the target patch from its neighborhood area.
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Figure 5: Comparison of performance by averages of PSNR and SSIM for color image completion
and super-resolution tasks with various settings.
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Figure 6: Illustration of image inpainting results from nature images with 99% missing pixels by
HaLTRC, TMac, tSVD, Tucker inc., LRTV, SPC, GSR, MDT-Tucker, DIP and the proposed MMES.
Note that DIP and MMES approaches provide the best performance in comparison to state-of-the-
arts methods.

4.2 COLOR IMAGE COMPLETION, ESPECIALLY FOR EXTREMELY HIGH NUMBER OF MISSING
PIXELS

In this section, we compare performance of the proposed method with several selected unsupervised
image inpainting methods: low-rank tensor completion (HaLRTC) 2013), parallel low-
rank matrix factorization (TMac) [2015), tubal nuclear norm regularization (tSVD) (Zhang
2014b), Tucker decomposition with rank increment (Tucker inc.) (Yokota et al., 2018), low-
rank and total-variation (LRTV) regularization (Yokota & Hontani, [2019)), smooth PARAFAC
tensor completion (SPC) (Yokota et all,2016)), GSR (Zhang et al., [2014a), multi-way delay embed-
ding based Tucker modeling (MDT-Tucker) (Yokota et al.,[2018)), and DIP (Ulyanov et al.| [2018).
Implementation and detailed hyper-parameter settings are explained in Appendix. Basically, we
carefully tuned the hyper-parameters for all methods to perform the best scores of peak-signal-to-
noise ratio (PSNR) and structural similarity (SSIM).

Fig. BJa) shows the eight test images and averages of PSNR and SSIM for various missing ratio
{50%, 70%, 90%, 95%, 99%} and for selective competitive methods. The proposed method is quite
competitive with DIP. Fig. [6]shows the illustration of results. The 99% of randomly selected voxels
are removed from 3D (256,256,3)-tensors, and the tensors were recovered by various methods. Ba-
sically low-rank priors (HaLRTC, TMac, tSVD, Tucker) could not recover such highly incomplete
image. In piecewise smoothness prior (LRTV), over-smoothed images were reconstructed since
the essential image properties could not be captured. There was a somewhat jump from them by
SPC (i.e., smooth prior of basis functions in low-rank tensor decomposition). MDT-Tucker further
improves it by exploiting the shift-invariant multi-linear basis. GSR nicely recovered the global
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Figure 7: Comparison of our approach with other methods for super-resolution task. The first line
‘Leaves’ were up-scaled from (64,64,3) to (256,256,3), and the second line ‘Airplane’ was up-scaled
from (64,64,3) to (512,512,3).

pattern of images but details were insufficient. Finally, the reconstructed images by DIP and MMES
recovered both global and local patterns of images.

4.3 COLOR IMAGE SUPER-RESOLUTION

In this section, we compare the proposed method with selected unsupervised image super-resolution
methods: Bicubic interpolation, GSR (Zhang et al., 2014a)), ZSSR (Shocher et al} [2018) and DIP
(Ulyanov et al},[2018)). Implementation and detailed hyper-parameter settings are explained in Ap-
pendix. Basically, we carefully tuned the hyper-parameters for all methods to perform the best
scores of PSNR and SSIM.

Fig. [B|b) shows values of PSNR and SSIM of the computer simulation results. We used three
(256,256,3) color images, and six (512,512,3) color images. Super resolution methods scaling up
them from four or eight times down-scaled images of them with Lanczos2 kernels. According to
this quantitative evaluation, bicubic interpolation was clearly worse than others. ZSSR worked well
for up-scaling from (128,128,3), however the performances were substantially decreased for up-
scaling from (64,64,3). Basically, GSR, DIP, and MMES were very competitive. In detail, DIP
was slightly better than GSR, and the proposed MMES was slightly better than DIP. More detailed
PSNR/SSIM values are given by Table[3|in Appendix. Fig.[7]shows selected high resolution images
reconstructed by four super-resolution methods. In general, bicubic method reconstructed blurred
images and these were visually worse than others. GSR results had smooth outlines in all images,
but these were slightly blurred. ZSSR was weak for very low-resolution images. DIP reconstructed
visually sharp images but these images had jagged artifacts along the diagonal lines. The proposed
MMES reconstructed sharp and smooth outlines.

4.4 COLOR IMAGE DECONVOLUTION

In this section, we compare the proposed method with DIP for image deconvolution/deblurring task.
Three (256,256,3) color images are prepared and blurred by using three different Gaussian filters.
For DIP we choose the best early stopping timing from {1000, 2000, ..., 10000} iterations. For
MMES, we employed the fixed AE structure as [3272, T, 327'2], and parameters as 7 = 4, r = 16,
and o = 0.01 for all nine cases. Fig. 8] shows the reconstructed deblurring images by DIP and
MMES. Tab.[T|shows the PSNR and SSIM values of these results. We can see that the similarity of
the methods qualitatively and quantitatively.
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Figure 8: Comparison of our approach with DIP for deconvolution/deblurring task. Three color
images were blurred by three Gaussian windows of different sizes. These were recovered by the
DIP and the proposed MMES.

Table 1: PSNR/SSIM values for deconvolution results
PSNR A9 AlS A30 B9 B15 B31 C9 C15 C31

DIP 28.85 2453 1821 2658 19.80 16.21 27.18 2207 15.74
MMES | 29.24 24.72 1892 2746 20.89 1645 29.15 2238 16.55

SSIM A9 Al5S  A30 B9 B15 B3l C9 C15 C31
DIP 9346 8586 .5962 9438 7871 .5628 9438 .8276 .4568
MMES | 9436 .8599 .6234 9512 .8088 .5805 .9636 .8382 .5284

5 INTERPRETATION OF MMES TOWARD EXPLAINING DIP

It is well known that there is no mathematical definition of interpretability in machine learning and
there is no one unique definition of interpretation. We understand the interpretability as a degree
to which a human can consistently predict the model’s results or performance. The higher the in-
terpretability of a deep learning model, the easier it is for someone to comprehend why certain
performance or predictions or expected output can be achieved. We think that a model is better in-
terpretable than another model if its performance or behaviors are easier for a human to comprehend
than performance of the other models.

5.1 FROM A PERSPECTIVE OF DIMENSIONALITY REDUCTION/MANIFOLD LEARNING

The manifold learning and associated auto-encoder (AE) can be viewed as the generalized non-linear
version of principal component analysis (PCA). In fact, manifold learning solves the key problem
of dimensionality reduction very efficiently. In other words, manifold learning (modeling) is an
approach to non-linear dimensionality reduction. Manifold modeling for this task are based on the
idea that the dimensionality of many data sets is only artificially high. Although the patches of
images (data points) consist of hundreds/thousands pixels, they may be represented as a function of
only a few or quite limited number underlying parameters. That is, the patches are actually samples
from a low-dimensional manifold that is embedded in a high-dimensional space. Manifold learning
algorithms attempt to uncover these parameters in order to find a low dimensional representation of
the images.

In our MMES approach to solve the problem we applied original embedding via multi-way delay
embedding transform (MDT or Hankelization). Our algorithm is based on the optimization of cost
function and it works towards extracting the low-dimensional manifold that is used to describe the
high-dimensional data. The manifold is described mathematically by Eq. (Z) and cost function is
formulated by Eq. (3).
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5.2 REGARDING OUR ATTEMPT TO INTERPRET "NOISE IMPEDANCE IN DIP” viA MMES

As mentioned at introduction, |{Ulyanov et al.| (2018) reported an important phenomenon of noise
impedance of ConvNet structures. Here, we provide a prospect for explaining the noise impedance
in DIP through the MMES.

Let us consider the sparse-land model, i.e. noise-free images are distributed along low-dimensional
manifolds in the high-dimensional Euclidean space and images perturbed by noises thicken the man-
ifolds (make the dimension of the manifolds higher). Under this model, the distribution of images
can be assumed to be higher along the low-dimensional noise-free image manifolds. When we as-
sume that the image patches are sampled from low-dimensional manifold like sparse-land model, it
is difficult to put noisy patches on the low-dimensional manifold. Let us consider to fit the network
for noisy images. In such case the fastest way for decreasing squared error (loss function) is to
learn similar patches” which often appear in a large set of image-patches. Note that finding sim-
ilar image-patches for denoising is well-known problem solved, e.g., by BM3D algorithm, which
find similar image patches by template matching. In contrast, our auto-encoder automatically maps
similar-patches into close points on the low-dimensional manifold. When similar-patches have some
noise, the low-dimensional representation tries to keep the common components of similar patches,
while reducing the noise components. This has been proved by |Alain & Bengio|(2014) so that a (de-
noising) auto-encoder maps input image patches toward higher density portions in the image space.
In other words, a (denoising) auto-encoder has kind of a force to reconstruct the low-dimensional
patch manifold, and this is our rough explanation of noise impedance phenomenon. Although the
proposed MMES and DIP are not completely equivalent, we see many analogies and similarities and
we believe that our MMES model and associated learning algorithm give some new insight for DIP.

6 DISCUSSIONS AND CONCLUSIONS

A beautiful manifold representation of complicated signals in embedded space has been originally
discovered in a study of dynamical system analysis (i.e., chaos analysis) for time-series signals
(Packard et al., [1980). After this, many signal processing and computer vision applications have
been studied but most methods have considered only linear approximation because of the difficulty
of non-linear modeling (Van Overschee & De Moor, [1991; [Szummer & Picard, [1996; |[Li et al.,
1997; Ding et al., 2007; Markovsky}, 2008)). However nowadays, the study of non-linear/manifold
modeling has been well progressed with deep learning, and it was successfully applied in this study.
Interestingly, we could apply this non-linear system analysis not only for time-series signals but
also natural color images and tensors (this is an extension from delay-embedding to multi-way shift-
embedding). The best of our knowledge, this is the first study to apply Hankelization with AE into
general tensor data reconstruction.

MMES is a novel and simple image reconstruction model based on the low-dimensional patch-
manifold prior which has many connections to ConvNet. We believe it helps us to understand
how work ConvNet/DIP through MMES, and support to use DIP for various applications like ten-
sor/image reconstruction or enhancement (Gong et al., 2018}, [Yokota et al., 2019; [Van Veen et al.,
2018; Gandelsman et al.,[2019).

Finally, we established bridges between quite different research areas such as the dynamical system
analysis, the deep learning, and the tensor modeling. The proposed method is just a prototype
and can be further improved by incorporating other methods such as regularizations, multi-scale
extensions, and adversarial training.
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A HANKELIZATION OF ONE- AND TWO-DIMENSIONAL ARRAYS

For example, Hankelization of one-dimensional array f = [f1, fa, ..., f7] with window size 7 = 3

is given by

fi fo fa fa fs

<f2 fa fa fs f6> . (6)
fs fa fs fo f7

We can see the anti-diagonal elements of above matrix are equivalent. Such matrix is called as
“Hankel matrix”.

For a two-dimensional array

fir fiz fi3
<f21 fa2 f23> ) @)
far fa2 f33
we consider unfold of it and inverse folding by
fi1 fi1
fa1 fo1
fa31 fa1
fir fiz fis fi2 fir fiz fis fi2
unfold (le fa2 f23> = fa2 |, and <f21 fa2 f23> = fold | fa2 (8)
far fa2 f33 f32 far fa2 f33 f32
f13 f13
f23 f23
f33 f33

The point here is that we scan matrix elements column-wise manner. Hankelization of this two-
dimensional array (matrix) with 7 = [2, 2] is given by scanning a matrix with local (2,2)-window
column-wise manner, and unfold and stack each local patch left-to-right. Thus, it is given as

fiu fo1 fi2 fa2 fir fa iz fa2

fa1 f31 Ja2 f32 _ | \far fa fo2 fa2 ©)
fi2 fo2 fis fa3 fiz fa fis faz) |’

fa2 f32 fe3 f33 Sz f32 fos  f33

We can see that it is not a Hankel matrix. However, it is a “block Hankel matrix” in perspective of
block matrix, a matrix that its elements are also matrices. We can see the block matrix itself is a
Hankel matrix and all elements are Hankel matrices, too. Thus, Hankel matrix is a special case of
block Hankel matrix in case of that all elements are scalar. In this paper, we say simply “Hankel
structure” for block Hankel structure.

Figure [0] shows an illustrative explanation of valid convolution which is decomposed into delay-
embedding/Hankelization and linear transformation. 1D valid convolution of f with kernel h =
[h1, ha, hs] can be provided by matrix-vector product of the Hankel matrix and h. In similar way,
2D valid convolution can be provided by matrix-vector product of the block Hankel matrix and
unfolded kernel.

B MULTIWAY-DELAY EMBEDDING FOR TENSORS
Multiway-delay embedding transform (MDT) is a multi-way generalization of Hankelization pro-
posed by Yokota et al.[(2018)).

In (Yokota et al., 2018)), MDT is defined by using the multi-linear tensor product with multiple
duplication matrices and tensor reshaping. Basically, we use the same operation, but a padding
operation is added. Thus, the multiway-delay embedding used in this study is defined by

H(X) = unfold(D’T)(pad,_(X) X1 Sl XN SN), (10)
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Al [m] [fihat fehe + fehs| o [ff fs] [
fa| * | he| = faha + fsho + fahs fa f3 fa|x|h2
fa| |hs fahi + faha + fshs fa fafs| |hs

(1D case) |y, fahi + fshao + fehs fa fs5 fo
s fshi + feha + frhs fs feo fr
fs Delay-embedding
fr or Hankelization

. + Linear transform

fll f12 fld hll ]112 fu1 fiz . hi1 hia fi2 fiz X hiy hia
* = | [ fo1 fa2 | |hor hoa fa2 f23| |ha1 ho:
(2D case) | fa1 fo2 fo3 hat hao —21 2=
f31 f32 f33 Ja1 faz2| |har hae foz fas| [Py bz
fa1 faz| |h21 ha2 f32 f3z| | ha1 hao
b

f11 far fi2 foo
— fold fo1 f31 fa2 fa2 y
f12 fo2 f13 fos

f22 f32 f23 f33

Figure 9: Decomposition of 1D and 2D convolutions: Valid convolution can be divided into delay-
embedding/Hankelization and linear transformation.

where pad__ : Rl xIv  RUi+2(n—1))xx(In+2(7v—1)) j5 3 N-dimensional reflection padding
operato of tensor, unfold p 7y : R (im=1)xx7n(Intrn=1) _y ROXT g an unfolding opera-
tor which outputs a matrix from an input N-th order tensor, and S,, € R7+(In+7n—=1)x(In+2(mn—1))
is a duplication matrix. Fig.[I0]shows the duplication matrix with 7.

For example, our Hankelization with reflection padding of f = [f1, fa, ..., f7] with 7 = 3 is given
by

fo fi fo fs fa fs fo fr fe
i fo fs fa fs Jo fr fe fs

<f3 fa fi fo f3 fo f5 s f7>
. (11)

Fig. 11| shows an example of our multiway-delay embedding in case of second order tensors. The
overlapped patch grid is constructed by multi-linear tensor product with S,,. Finally, all patches are
splitted, lined up, and vectorized.

The Moore-Penrose pseudo inverse of H is given by
HI(H) = tim, (fold p 7 (H) x1 ST -+ xn SY), (12)

where S}, := (S7'S,,) ' S}l is a pseudo inverse of Sy, fold(p, 1) := unfold,, 1, and trim, = pad].

is a trimming operator for removing (7,,—1) elements at start and end of each mode. Note that 7foH
is an identity map, but H o H is not, that is kind of a projection.

B.1 DELAY EMBEDDING USING CONVOLUTION

Delay embedding and its pseudo inverse can be implemented by using convolution with all one-
hot-tensor windows of size (71, 72, ..., 7n ). The one-hot-tensor windows can be given by folding a
D-dimensional identity matrix Ip € RP*P into Zp € R™* X"~ %D Fig [12|shows a calculation
flow of multi-way delay embedding using convolution in a case of N = 2. Multi-linear tensor
product is replaced with convolution with one-hot-tensor windows.

'"For one dimensional array x = [x1,...,x7]",  we have pad, (z)

T
[Try ey X2y Ty ey TLy T —1y ooy 7] -
——— ——— ——————

T—1 I T—1
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Pseudo inverse of the convolution with padding is given by its adjoint operation, which is called as
the “transposed convolution” in some neural network library, with trimming and simple scaling with
DL,

1
r(I—7+1) I. = 1 |r

Figure 10: Duplication matrix. In case that we have I columns, it consists of (I — 7 -+ 1) identity
matrices of size (7, 7).

(n=1) (-1

: 1. ;o Ty
= pad "I : de';I‘icSaQte n unfold T,
— —- 7
Ll x . N X — oooooooo 0
trim pseudo inverse (h+m -1+ —1)
(r - D si.s (h+n-1)

matricize f ’Vectorize

SRS

(Ia +72—1) (h4+7—1)(la+7—1)

Figure 11: Flow of multiway-delay-embedding operation (N = 2).

ot R

TlT' TI/
pad convolutlon
—— —-
trim conv_transpose
division with 7172
fold 1‘ unfold

(11 + 71— 1)(12 + 1o — 1)

T1T2

Figure 12: Multiway-delay-embedding using convolution (N = 2).

C DESIGN OF AUTO-ENCODER

In this section, we discuss how to design the neural network architecture of auto-encoder for restrict-
ing the manifold M,.. The simplest way is controlling the value of r, and it directly restricts the
dimensionality of latent space. There are many other possibilities: Tikhonov regularization (Good-
fellow et al.l 2016), drop-out (Gal & Ghahramani, |2016)), denoising auto-encoder (Vincent et al.,
2008)), variational auto-encoder (Diederik P Kingma, 2014])), adversarial auto-encoder (Makhzani
et al., [2015), alpha-GAN (Rosca et al., 2017), and so on. All methods have some perspective and
promise, however the cost is not low. In this study, we select an attractive and fundamental one:
“denoising auto-encoder”’(DAE) (Vincent et al.,[2008). The DAE is attractive because it has a strong
relationship with Tikhonov regularization (Bishop,[1995), and decreases the entropy of data (Sonoda
& Muratal 2017). Furthermore, learning with noise is also employed in the deep image prior.

Finally, we designed an auto-encoder with controlling the dimension 7 and the standard deviation o
of additive zero-mean Gaussian noise. Fig.|13|shows the illustration of an example of architecture of
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auto-encoder which we used in this study. In this case, it consists of five hidden variables of which
sizes are [D, D, r, D, D] with leaky ReLU activation.

input = = -»I = || =>| [ =output
D T D
D D D D

[ dense layer + leaky relu
[] dense layer

Figure 13: An example of architecture of auto-encoder.

D A SPECIAL SETTING FOR COLOR-IMAGE RECOVERY

In case of multi-channel or color image recovery case, we use a special setting of generator network
because spacial pattern of individual channels are similar and the patch-manifold can be shared.
Fig.[14] shows an illustration of the auto-encoder shared version of MMES in a case of color image
recovery. In this case, we put three channels of input and each channel input is embedded, indepen-
dently. Then, three block Hankel matrices are concatenated, and auto-encoded simultaneously. In-
verted three images are stacked as a color-image (third-order tensor), and finally color-transformed.
The last color-transform can be implemented by convolution layer with kernel size (1,1), and it is
also optimized as parameters. It should be noted that the input three channels are not necessary to
correspond to RGB, but it would be optimized as some compact color-representation.

color-adjustment
and normalization
———

ZR Zq Zg X

‘ embed ‘ embed ‘ T \
auto-encoder invert Ninvert

A, — — —

Hy Hg Hyp — Hg Hg Hy

Figure 14: Generator network in a case of color-image recovery.

E OTHER DETAILS OF IMAGE-INPAINTING EXPERIMENTS

Here, we explain detailed experimental settings in Section .2}

In this section, we compared performance of the proposed method with several selected unsuper-
vised image inpainting methods: low-rank tensor completion (HaLRTC) (Liu et al., 2013)), parallel
low-rank matrix factorization (TMac) (Xu et al., 2015), tubal nuclear norm regularization (tSVD)
(Zhang et al. 2014b)), Tucker decomposition with rank increment (Tucker inc.) (Yokota et al.|
2018)), low-rank and total-variation (LRTV) regularizationf](Yokota & Hontani,[2017;2019)), smooth
PARAFAC tensor completion (SPCﬂ (Yokota et al., [2016), GS (Zhang et al 2014a), multi-way

2For LRTV, the MATLAB software was downloaded from https://sites.google.com/site/
yokotatsuya/home/software/lrtv_pds
*For SPC, the MATLAB software was downloaded from |https://sites.google.com/site/

yokotatsuya/home/software/smooth-parafac-decomposition-for-tensor-completion,

*For GSR, each color channel was recovered, independently, using the MATLAB software downloaded
fromhttps://github.com/jianzhangcs/GSR.
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Table 2: Parameter settings for MMES in image completion experiments
(1,7) | airplane baboon barbara facade house lena peppers  saiboat
50% | (16,4) (10,4)  (6.4) (10,4) (16,4) (6,4) 6.4) 6.4)
70% | (16,4) (104) (64 (16,4) (16,4) (6,4) (16,4) 6.4)
90 % | (16,4) 4.8) (6,4) (16,4) (16,4) (8,4) (16,4) 4.4
95 % | (16,4) (4,6) 6.4) (16,4) (16,4) (6,8) (16,4) 6,8)
99 % | (8,32) 4.4) (6.,4) 4,1) (8,16) (10,32) (8.8) 6.4)

delay embedding based Tucker modeling (MDT—Tuckerf] (Yokota et al., [2018)), and DIIﬁ (Ulyanov
et al.l [2018)).

For this experiments, hyper-parameters of all methods were tuned manually to perform the best peak-
signal-to-noise ratio (PSNR) and for structural similarity (SSIM), although it would not be perfect.
For DIP, we did not try the all network structures with various kernel sizes, filter sizes, and depth.
We just employed “default architecture”, which the details are available in supplemental materiaﬂ
of (Ulyanov et al.,[2018)), and employed the best results at the appropriate intermediate iterations in
optimizations based on the value of PSNR. For the proposed MMES method, we adaptively selected
the patch-size T, and dimension 7. Table shows parameter settings of 7 = [, 7| and r for MMES.
Noise level of denoising auto-encoder was set as ¢ = 0.05 for all images. For auto-encoder, same
architecture shown in Fig. 13| was employed. Initial learning rate of Adam optimizer was 0.01 and
we decayed the learning rate with 0.98 every 100 iterations. The optimization was stopped after
20,000 iterations for each image.

F OTHER DETAILS OF SUPER-RESOLUTION EXPERIMENTS

Here, we explain detailed experimental settings in Section[4.3]

In this section, we compare performance of the proposed method with several selected unsupervised
image super-resolution methods: bicubic interpolation, GSRﬁ(Zhang et al.,2014a)), ZSSRE] and DIP
(Ulyanov et al., 2018).

In this experiments, DIP was conducted with the best number of iterations from {1000, 2000, 3000,
.., 9000} . For four times (x4) up-scaling in MMES, we set 7 = 6, r = 32, and o = 0.1. For eight
times (x8) up-scaling in MMES, we set 7 = 6, » = 16, and o = 0.1. For all images in MMES, the
architecture of auto-encoder consists of three hidden layers with sizes of [872, 7, 872]. We assumed
the same Lanczos2 kernel for down-sampling system for all super-resolution methods.

Tab. E] shows values of PSNR and SSIM of the results. We used three (256,256,3) color images, and
six (512,512,3) color images. Super resolution methods scaling up them from four or eight times
down-scaled images of them. According to this quantitative evaluation, bicubic interpolation was
clearly worse than others. ZSSR was good for (128,128,3) color images, however the performance
were substantially decreased for (64,64,3) color image. Basically, GSR, DIP, and MMES were very
competitive. In detail, DIP was slightly better than GSR, and the proposed MMES was slightly
better than DIP.

SFor MDT-Tucker, the MATLAB software was downloaded from
https://sites.google.com/site/yokotatsuya/home/software/
mdt-tucker-decomposition-for-tensor-completion.

°For DIP, we implemented by ourselves in Python with TensorFlow.

"https://dmitryulyanov.github.io/deep_image_prior

8For GSR, each color channel was recovered, independently, using the MATLAB software downloaded
fromhttps://github.com/jianzhangcs/GSR. We slightly modified its MATLAB code for applying
it to super-resolution task.

°For ZSSR, software was downloaded from |https://github.com/assafshocher/ZSSR. We set
the same Lanczos2 kernel for this super-resolution task.
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Table 3: Values of PSNR and SSIM in super-resolution task

PSNR / SSIM Bicubic GSR ZSSR DIP MMES (proposed)
Starfish (64 to 256) 23.98/.7124 25.73/1.7922 25.13/.7748 25.79/.7930 26.18 /.8099
House (64 to 256) 26.21/.7839 28.05/.8394  26.89/.8202 28.33/.8420 28.79 / .8448
Leaves (64 to 256) 19.10/.6673 22.60/.8511 20.19/.7406 22.54/.8535 23.96 / .8935
Airplane (128 to 512) 26.30/.9176 27.74 1 9487 27.53/.9430 27.49/.9375 28.40/.9503
Airplane (64 to 512) 22.93/.7545 23.79/.8061 22.741.7629 23.83/.8155 24.10/.8207
Baboon (128 to 512) 20.61/.6904 20.93/.7542 20.94 /.7489 20.52/.7260 20.92/.7486
Baboon (64 to 512) 19.38 /.4505 19.61/.5039 19.54 7 .4926 19.64 / .5085 19.64 / .5024
Lena (128 to 512) 28.64/.9172 30.36 / .9481 29.56/.9417 29.91/.9406 29.76 / .9406
Lena (64 to 512) 25.23/.7710 26.47/.8271 25.56/.7946 26.71/.8340 26.68 /.8327
Monarch (128 to 512) 24.88/.9322 27.67/.9679 26.00/.9514 27.90/.9576 28.81/.9686
Monarch (64 to 512) 20.65/.7697 22.13/.8393 21.22/.8018 22.65/.8594 23.01/.8627
Peppers (128 to 512) 27.27/.9392  29.19/.9642  28.60/.9589 28.78 /1 .9578 28.85/.9584
Peppers (64 to 512) 24.15/.8173 25.52/.8753 24.35/.8299 26.07 /.8904 2575/ .8794
Sailboat (128 to 512) 24.38/.8885 25.43/.9262 25.33/.9228 25.13/7.9130 25.72/.9273
Sailboat (64 to 512) 21.22/.6898 21.94/.7463 21.55/.7276 22.32/.7664 23.37/.7705
Average 23.66/.7801 25.14/.8393 24.35/.8141 25.19/.8401 25.53/.8474
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Figure 15: Optimization behavior.

G OTHER EXPERIMENTAL RESULTS

G.1 OPTIMIZATION BEHAVIOR

For this experiment, we recovered 50% missing gray-scale image of ‘Lena’. We stopped the opti-
mization algorithm after 20,000 iterations. Learning rate was set as 0.01, and we decayed the learn-
ing rate with 0.98 every 100 iterations. A was adapted by Algorithm [T]every 10 iterations. Fig.[3]
shows optimization behaviors of reconstructed image, reconstruction loss L., auto-encoding loss
Lpag, and trade-off coefficient A\. By using trade-off adjustment, the reconstruction loss and the
auto-encoding loss were intersected around 1,500 iterations, and both losses were jointly decreased
after the intersection point.

G.2 HYPER-PARAMETER SENSITIVITY

We evaluate the sensitivity of MMES with three hyper-parameters: r, o, and 7. First, we fixed the
patch-size as (8, 8), and dimension 7 and noise standard deviation o were varied. Fig.|l7|shows
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callloE s

Original Missing(99%)  With noise ~ Without noise

Figure 16: Reconstruction of ‘home’ image by training with/without noise in deep image prior.

the reconstruction results of a 99% missing image of ‘Lena’ by the proposed method with different
settings of (r, o). The proposed method with very low dimension (r = 1) provided blurred results,
and the proposed method with very high dimension (r = 64) provided results which have many
peaks. Furthermore, some appropriate noise level (o = 0.05) provides sharp and clean results. For
reference, Fig.[T6shows the difference of DIP optimized with and without noise. From both results,
the effects of learning with noise can be confirmed.

Next, we fixed the noise level as ¢ = 0.05, and the patch-size were varied with some values of
r. Fig.[I8] shows the results with various patch-size settings for recovering a 99% missing image.
The patch sizes T of (8,8) or (10,10) were appropriate for this case. Patch size is very important
because it depends on the variety of patch patterns. If patch size is too large, then patch variations
might expand and the structure of patch-manifold is complicated. By contrast, if patch size is too
small, then the information obtained from the embedded matrix H is limited and the reconstruction
becomes difficult in highly missing cases. The same problem might be occurred in all patch-based
image reconstruction methods (Buades et al., 2005} [Dabov et all, 2007; [Gu et all} 2014} [Zhang
[2014a). However, good patch sizes would be different for different images and types/levels
of corruption, and the estimation of good patch size is an open problem. Multi-scale approach
& Michaeli, 2018) may reduce a part of this issue but the patch-size is still fixed or tuned as a
hyper-parameter.

G.3 VOLUMETRIC/3D IMAGE/TENSOR COMPLETION

In this section, we show the results of MR-image/3D-tensor completion problem. The size of MR
image is (109,91,91). We randomly remove 50%, 70%, and 90% voxels of the original MR-image
and recover the missing MR-images by the proposed method and DIP. For DIP, we implemented the
3D version of default architecture in TensorF 1ow, but the number of filters of shallow layers were
slightly reduced because of the GPU memory constraint. For the proposed method, 3D patch-size
was set as 7 = [4,4, 4], the lowest dimension was = 6, and noise level was o = 0.05. Same
architecture shown in Fig. [I3] was employed.

Fig. [I9] shows reconstruction behavior of PSNR with final value of PSNR/SSIM in this experiment.
From the values of PSNR and SSIM, the proposed MMES outperformed DIP in low-rate missing
cases, and it is quite competitive in highly missing cases. The some degradation of DIP might be
occurred by the insufficiency of filter sizes since much more filter sizes would be required for 3D
ConvNet than 2D ConvNet. Moreover, computational times required for our MMES were signifi-
cantly shorter than that of DIP in this tensor completion problem.
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Figure 17: Performance of reconstruction of color image of ‘Lena’ with 99% pixels missing for
various parameter setting.

- (4,4), r=4 (6,6), r=8 (8,8), r=16 (10,10),r=32 (12,12), r=48

(
PSNR  20.0915 20.6534 20.9763 21.2370 20.4509 19.2145

SSIM 0.5654 0.6372 0.6568 0.6626 0.6545 0.5827

(16,16), r=64

Figure 18: Reconstruction of ‘Lena’ image for various patch sizes 7.
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Figure 19: Results of MRI completion: Optimization behaviors of PSNR with final values of
PSNR/SSIM by DIP and proposed MMES.
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