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Abstract

Backpropagation is the workhorse of deep learning, however several other
biologically-motivated learning rules have been introduced, such as random feed-
back alignment and difference target propagation. None of these methods have
produced competitive performance against backpropagation. In this paper, we
show that biologically-motivated learning rules with skip connections between
intermediate layers can perform as well as backpropagation on the MNIST dataset
and are robust to various sets of hyper-parameters.

1 Introduction

The backpropagation (BP) of global error [11] has been tremendously successful in solving hard Al
tasks using deep learning. All deep learning models, such as deep feed forward neural networks,
recurrent neural networks, and deep reinforcement learning, use BP as the main credit assignment
tool to update their weights (model parameters) [6]. However, BP for the brain is widely considered
to be biologically implausible because BP requires symmetric backward connectivity patterns (weight
transpose) and it does not deliver the error signals through a distinct pathway. Such concerns have
inspired researchers to develop biologically-motivated learning rulesﬂ while trying to attain the
performance of artificial neural networks. The two most popular learning rules are random feedback
alignment (FA) [8] and difference target propagation (DTP) [7]. Instead of having symmetric weight
connections, FA uses random feedback weights as a backward pathway to propagate the error
information. DTP trains separate feedback neural network that produces the target activities and
then minimizes the error between target activities and forward propagated activities. Several other
methods were inspired by FA and DTP, such as directed feedback alignment [9]] and simplified
difference target propagation (SDTP) [1]. However, Bartunov et. al. demonstrate that not only are
these methods non scalable to problems like the ImageNet dataset, but also that performance decays
as more biologically plausible constraints are added [[1]. We show in addition that performance is not
robust with respect to hyper-parameters for variants of DTP methods.

The concept of skip and dense connections in deep learning was first introduced from residual neural
networks[4] and densely connected convolutional networks [5]], wherein skip implies later layers
receive signal from the earlier layers with intermediate skips, whereas dense implies each layer is
connected to each other. The brain contains of many examples of both skip and dense connections.
For example, the neocortex has a similar structure to residual nets; where cortical layer VI neurons
get input from layer I, which skips intermediate layers [12]. Similar skip connection structure exist in
multiple other layers [3]]. Oh et. al. [10] laid out the adult mouse brain mesoscale connectome and
showed skip connections between inter-regions. The whole-brain and corticocortical connections can
be fit by one-component lognormal distributions. In general, the log-normal distribution connectivity
implies that sparse long-range connections exist in the brain, which may act as skip connections in
our context [2, [10].

"We refer to credit assignment methods as learning rules.
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Sigmoid Relu
Learning Rate | Early Stop | Depth | Learning Rate Early Stop Depth
BP (0.1-0.001) | (200k-800k) | (3-7) | (0.001-0.00001) | (100k-300k) | (5-10)
FA | (0.01-0.0001) | (200k-800k) | (3-7) | (0.001-0.00001) | (600k-1000k) | (5-10)
DTP | (0.01-0.0001) [ (200k-800k) [ (3-7) [ (0.001-0.00001) | (50k-150k)}’| | (5-10)

Table 1: The table provides a range of hyper-parameters explored for various learning rules. Through-
out the hyper-parameter search, we explored three sets of learning rates and five sets of the early
stopping starting points. We tried 0.001, le-3, and le-4 learning rates and 0.01, 0.001, and le-
03 learning rates for the architectures with ReLU and sigmoid activations respectively. We tried
200k,400k,600k,800k, 1,000k early stop starting point for NN and DN. We tried three different range
of early stop starting points that are uniformly spaced out for ConvNet and DenseConvNet.

The performance of computer vision and natural language processing methods has improved over the
last five years by increasing the depth of deep neural networks. With the introduction of skip and
dense connections from residual neural networks [4] and densely connected convolutional networks
[S], training with hundreds even thousands of layers has became possible. The core idea behind
the performance gain with skip and dense connections is that a shorter path from earlier layers to
later layers is created, and information as gradients gets propagated more efficiently through more
layers. In our experiments, we demonstrate that such type of skip connections help even more for
biologically motivated learning rules.

Taking inspiration from the connectivity in the brain and taking the performance advancement in deep
skip and dense networks as exemplars, we show that skip and dense connections allow biologically-
plausible learning rules to perform as well as backpropagation. We show that FA and DTP with
densely connected deep neural networks perform comparable to BP even with an increase in depth,
and show that they are much more robust against different hyper-parameters compared to non-densely
connected networks.

2 Methods

We use fully connected neural network and convolutional network architectures with dense con-
nectivity. Dense connectivity refers to direct connections from any layer to all subsequent layers.

More formally, we define densely connected neural network to be h; = fi([hy; -+ ;h—1];0;) =
o(Wiihi + - Wi—ihi—1 + b)), where 6, = {W; 1,--- ,W;;_1, b, } are the parameters of neural
network with weights W, ;_; connecting from layer [ — 1 to [, and hy = =. [-;-] refers to the

concatenation between vectors.
We can use standard BP on dense network to learn the weights. The gradient of hidden layer ! and
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parameter §; can be derived using chain rule: 45 = " (‘”“) 4 and 4% = (@) L

dh; dh; dh; do; Thl
Similarly for FA, we can replace the transpose weight matrices with fixed random connections.
For DTP, the decoder network is defined as h; = g(hj+1; Ai+1) which is learned to act as an

inverse transformation f~!(h;41;60;41). Then, the target activation I, h;, becomes h; < h; —

Zf:z 11(gi(hj) — g4 (ﬁj)) We can minimize the standard difference target loss and reconstruction

loss for 8 and A [[7].

Note that all the above can be easily extended to convolutional neural network.

3 Experiment

We conducted our experiments on different learning methods with different network architectures
on the MNIST dataset. We compared the performance of feedfoward neural network (NN) against
dense neural network (DN) and convolution network (ConvNet) against dense convolutional network
(DenseConvNet) for BP, FA and DTP. It is well known that BP without batch normalization suffers
from vanishing gradients as the feedfoward neural network depth increases, especially with sigmoid

?Early stopping range between 200k-600k explored for multi-lyer perceptron (NN and DN) and 50k-150k
explored for convolutional neural networks (ConNet and DenseConvNet)
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Figure 1: The performance over BP, FA, DTP with respect to different network depths.

activation function. The same holds for FA and DTP as well. We want to evaluate the performance of
FA and DTP as we increase network depth for densely connected networks. Furthermore, we want to
know whether they are more robust to different sets of hyper-parameters.

In our experiments, the dataset was divided into 50,000 training, 10,000 validation, and 10,000 test.
We trained each network with a batch size of 128 and a 0.00001 L2 weight decay coefficient. Table 1
presents the set of hyper-parameters we tested. We explored learning rates between 0.00001 and 0.1
and explored early stopping criterion starting points between 20,000 and 1,000,000. We used 128
hidden units for each fully connected hidden layer. We used a convolutional filter size of three and
channel size (depth x 16) for convolutional neural networks. We explored both sigmoid and ReLu
activation functions for multi-layer perceptron and convolutional neural networks. We measured the
performance of the model with network depth from three to seven layers for sigmoid activation and
five to ten layers for ReLu activation.

Figure[T]presents the test accuracy over BP, FA, and DTP with respect to network depth. The results of
BP, FA, DTP are paired with NN and DN in Figure @ and paired with ConvNet, and DenseConvNet
in Figure [Tb] The best hyper-parameters for each model is chosen across 10 folds. We observe
that test accuracy for all three methods drop for NN and ConvNet with network depths, whereas
the test accuracy maintains for DN and DenseConvNet. This illustrates that the network did not
suffer from propagating error signals all the way to bottom layers when having dense connections.
It is well-known that BP suffers from vanishing gradients with deep neural networks, and yet the
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Figure 2: The sensitivity of test accuracy over multiple hyper-parameter for BP, FA, DTP. X-axis are
all combination of hyper-parameter settings for learning rates, epochs, and network depth (sorted
based on accuracy rate).

dense connectivity allows short pathway from the top layers to bottom layers. We suspect that FA
benefits from the dense connectivity the same way as BP. Even though DTP is a local learning rule,
the activities in the top layers need to be informative in order for the local weight updates to make
sense, otherwise, the local updates are based on random signals from the adjacent layers for the fully
connected neural network. However, the dense connectivity will enable transfer of information from
the top layers to bottom, since every hidden layer are adjacent layers from each other.

Figure [2] presents the sensitivity of test accuracy over multiple hyper-parameters. We explored
combinations of learning rates, epochs, and depth, which are ordered based on sorted test accuracy.
We can see that the performance of FA and DTP for NN and ConvNet (red lines) varies across a wide
range. In fact, there are big accuracy discrepancy for depth 3, 4, and 5 for NN and ConvNet. However,
the performance of all three learning rules for DN and DenseConvNet (blue lines) remain nearly
constant. This illustrates that having dense connections makes the model more robust to different
hyper-parameters.



4 Discussion

Building an intelligent system may require an appropriate objective/reward function, credit assignment
method, specific architecture types, or some combination of all of the above. The nervous systems
of animals illustrate some of the building blocks necessary for building intelligent systems, such as
dopamine-based reward signals, distinct error signal pathways and neuronal architectures capable
of performing computations. However, the error rates for the ImageNet classification challenge
using AlexNet are in the range of 93~98% for all biologically motivated learning rules, whereas
the BP error rate is 63.9% [1]. BP is therefore more effective than biologically motivated learning
rules. However, BP cannot be employed in biologically plausible architectures because it requires
symmetric backward connectivity and does not have a distinct error signal propagation pathway.
Why are biologically-plausible learning rules so ineffective in the context of deep learning? We
believe it is because biologically-inspired learning rules have been studied in isolation, rather than
considering them in the context of biologically-constrained architectures. Thus, re-examining the
other key biological conditions that induce better learning performance is required. In this paper, we
posit that the skip connections in nervous systems could be one of the key architectural components
that are required to enhance existing and still unexplored credit assignment methods. Through this
experiment, we show that biologically-motivated learning rules like FA and DTP are more effective
when combined with dense and skip connections. Furthermore, it is possible that having lognormal-
distributed skip connections, as observed in the mouse brain, could be the computationally efficient
way to propagate information. We leave this to future work.
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