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ABSTRACT

Generalization of deep networks has lately been of great interest, resulting in a
number of theoretically and empirically motivated complexity measures. How-
ever, most papers proposing such measures study only a small set of models, leav-
ing open the question of whether the conclusion drawn from those experiments
would remain valid in other settings. We present the first large scale study of gen-
eralization in deep networks. We investigate more then 40 complexity measures
taken from both theoretical bounds and empirical studies. We train over 10,000
convolutional networks by systematically varying commonly used hyperparame-
ters. Hoping to uncover potentially causal relationships between each measure and
generalization, we analyze carefully controlled experiments and show surprising
failures of some measures as well as promising measures for further research.

1 INTRODUCTION

Deep neural networks have seen tremendous success in a number of applications, but why (and
how well) these models generalize is still a mystery (Neyshabur et al., 2014; Zhang et al., 2016;
Recht et al., 2019). It is crucial to better understand the reason behind the generalization of modern
deep learning models; such an understanding has multiple benefits, including providing guarantees
for safety-critical scenarios and the design of better models. A number of papers have attempted
to understand the generalization phenomenon in deep models from a theoretical perspective e.g.
(Neyshabur et al., 2015b; Bartlett et al., 2017; Neyshabur et al., 2018a; Golowich et al., 2017; Arora
et al., 2018; Nagarajan and Kolter, 2019a; Wei and Ma, 2019a; Long and Sedghi, 2019). The most
direct and principled approach for studying generalization in deep learning is to prove a generaliza-
tion bound; typically an upper bound on the test error based on some quantity that can be calculated
on the training set. Unfortunately, finding tight bounds has proven to be an arduous undertaking.
While encouragingly Dziugaite and Roy (2017) showed that PAC-Bayesian bounds can be optimized
to achieve a reasonably tight generalization bound, current bounds are still not tight enough to ac-
curately capture the generalization behavior. Others have proposed more direct empirical ways to
characterize generalization of deep networks without attempting to deriving bounds (Keskar et al.,
2016; Liang et al., 2017). However, as pointed by Dziugaite and Roy (2017), empirical correlation
does not necessarily translate to a casual relationship between a measure and generalization.

A core component in (theoretical or empirical) analysis of generalization is the notion of complexity
measure; a quantity that monotonically relates to some aspect of generalization. More specifically,
lower complexity should often imply smaller generalization gap. A complexity measure may depend
on the properties of the trained model, optimizer, and possibly training data, but should not have ac-
cess to a validation set. Theoretically motivated complexity measures such as VC-dimension, norm
of parameters, etc., are often featured as the major components of generalization bounds, where
the monotonic relationship between the measures and generalization is mathematically established.
In contrast, empirically motivated complexity measures such as sharpness (Keskar et al., 2016) are
justified by experimentation and observation. In this work, we do not need to distinguish between
theoretically vs empirically motivated measures, and simply refer to both as complexity measures.
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Despite the prominent role of complexity measures in studying generalization, the empirical evalu-
ation of these measures is usually limited to a few models, often on toy problems. A measure can
only be considered reliable as a predictor of generalization gap if it is tested extensively on many
models at a realistic problem size. To this end, we carefully selected a wide range of complexity
measures from the literature. Some of the measures are motivated by generalization bounds such
as those related to VC-dimension, norm or margin based bounds, and PAC-Bayesian bounds. We
further selected a variety of empirical measures such as sharpness (Keskar et al., 2016), Fisher-Rao
norm (Liang et al., 2017) and path norms (Neyshabur et al., 2017).

In this study, we trained more than 10,000 models over two image classification datasets, namely,
CIFAR-10 (Krizhevsky et al., 2014) and Street View House Numbers (SVHN) Netzer et al. (2011).
In order to create a wide range of generalization behaviors, we carefully varied hyperparameters
that are believed to influence generalization. We also selected multiple optimization algorithms
and looked at different stopping criteria for training convergence. Details of all our measures and
hyperparameter selections are provided in Appendix D. Training under all combination of hyperpa-
rameters and optimization resulted in a large pool of models. For any such model, we considered 40
complexity measures. The key findings that arise from our large scale study are summarized below:

1. It is easy for some complexity measures to capture spurious correlations that do not reflect causal
insights about generalization; to mitigate that we propose a more rigorous method to study them.

2. Many norm-based measures not only perform poorly, but negatively correlate with generalization
specifically when the optimization procedure injects some stochasticity. In particular, the gener-
alization bound based on the product of spectral norms of the layers (similar to that of Bartlett
et al. (2017)) has very strong negative correlation with generalization.

3. Sharpness-based measures like PAC-Bayesian bounds (McAllester, 1999) and the measure pro-
posed by Keskar et al. (2016) perform best and seem promising candidates for further research.

4. Measures related to the optimization procedures such as the gradient noise and the speed of the
optimization can be predictive of generalization.

Our findings on the relative success of sharpness-based and optimization-based complexity measures
for predicting the generalization gap can provoke further study of these measures.

1.1 RELATED WORK

The theoretically motivated measures that we consider in this work belong to a few different families:
PAC-Bayes (McAllester, 1999; Dziugaite and Roy, 2017; Neyshabur et al., 2017); VC-dimension
(Vapnik and Chervonenkis, 1971); and norm-based bounds (Neyshabur et al., 2015b; Bartlett et al.,
2017; Neyshabur et al., 2018a). The empirically motivated measures from prior literature that we
consider are based on sharpness measure (Keskar et al., 2016); Fisher-Rao measure (Liang et al.,
2017); distance of trained weights from initialization (Nagarajan and Kolter, 2019b) and path norm
(Neyshabur et al., 2015a). Finally, we consider some optimization based measures based on the
speed of the optimization algorithm as motivated by the work of (Hardt et al., 2015) and (Wilson
et al., 2017a), and the magnitude of the gradient noise as motivated by the work of (Chaudhari and
Soatto, 2018) and (Smith and Le, 2017).

A few papers have explored a large scale study of generalization in deep networks. Neyshabur et al.
(2017) perform a small scale study of the generalization of PAC-Bayes, sharpness and a few different
norms, and the generalization analysis is restricted to correlation. Jiang et al. (2018) studied the role
of margin as a predictor of the generalization gap. However, they used a significantly more restricted
set of models (e.g. no depth variations), the experiments were not controlled for potential undesired
correlation (e.g. the models can have vastly different training error) and some measures contained
parameters that must be learned from the set of models. Novak et al. (2018) conducted large scale
study of neural networks but they only looked at correlation of a few measures to generalization.
In contrast, we study thousands of models, and perform controlled experiments to avoid undesired
artificial correlations. Some of our analysis techniques are inspired by Neal (2019) who proposed
the idea of studying generalization in deep models via causal graphs, but did not provide any details
or empirical results connected to that idea. Our work focuses on measures that can be computed on
a single model and compares a large number of bounds and measures across a much wider range of
models in a carefully controlled fashion.
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2 GENERALIZATION: WHAT IS THE GOAL AND HOW TO EVALUATE?

Generalization is arguably the most fundamental and yet mysterious aspect of machine learning.
The core question in generalization is what causes the triplet of a model, optimization algorithm, and
data properties1, to generalize well beyond the training set. There are many hypotheses concerning
this question, but what is the right way to compare these hypotheses? The core component of each
hypothesis is complexity measure that monotonically relates to some aspect of generalization. Here
we briefly discuss some potential approaches to compare different complexity measures:

• Tightness of Generalization Bounds. Proving generalization bounds is very useful to establish
the causal relationship between a complexity measure and the generalization error. However,
almost all existing bounds are vacuous on current deep learning tasks (combination of models and
datasets), and therefore, one cannot rely on their proof as an evidence on the causal relationship
between a complexity measure and generalization currently2.

• Regularizing the Complexity Measure. One may evaluate a complexity measure by adding it
as a regularizer and directly optimizing it, but this could fail due to two reasons. The complexity
measure could change the loss landscape in non-trivial ways and make the optimization more
difficult. In such cases, if the optimization fails to optimize the measure, no conclusion can be
made about the causality. Another, and perhaps more critical, problem is the existence of implicit
regularization of the optimization algorithm. This makes it hard to run a controlled experiment
since one cannot simply turn off the implicit regularization; therefore, if optimizing a measure
does not improve generalization it could be simply due to the fact that it is regularizing the model
in the same way as the optimization is regularizing it implicitly.

• Correlation with Generalization Evaluating measures based on correlation with generalization
is very useful but it can also provide a misleading picture. To check the correlation, we should vary
architectures and optimization algorithms to produce a set of models. If the set is generated in an
artificial way and is not representative of the typical setting, the conclusions might be deceiving
and might not generalize to typical cases. One such example is training with different portions
of random labels which artificially changes the dataset. Another pitfall is drawing conclusion
from changing one or two hyper-parameters (e.g changing the width or batch-size and checking
if a measure would correlate with generalization). In these cases, the hyper-parameter could be
the true cause of both change in the measure and change in the generalization, but the measure
itself has no causal relationship with generalization. Therefore, one needs to be very careful with
experimental design to avoid unwanted correlations.

In this work we focus on the third approach. While acknowledging all limitations of a correlation
analysis, we try to improve the procedure and capture some of the causal effects as much as possible
through careful design of controlled experiments. Further, to evaluate the effectiveness of complex-
ity measures as accurately as possible, we analyze them over sufficiently trained models with a wide
range of variations in hyperparameters. For practical reasons, these models must reach convergence
within a reasonable time budget. Details of the notations used are outlined in Appendix A.

2.1 TRAINING MODELS ACROSS HYPERPARAMETER SPACE

In order to create models with different generalization behavior, we consider various hyperparameter
types, which are known or believed to influence generalization (e.g. batch size, dropout rate, etc.).
Formally, denote each hyperparameter by θi taking values from the set Θi, for i = 1, . . . , n and
n denoting the total number of hyperparameter types3. For each value of hyperparameters θ ,
(θ1, θ2, . . . , θn) ∈ Θ, where Θ , Θ1 × Θ2 × · · · × Θn, we train the architecture until the training
loss (cross-entropy value) reaches a given threshold ε. See the Appendix C.2 for a discussion on the
choice of the stopping criterion. Doing this for each hyper-parameter configuration θ ∈ Θ, we obtain
a total of |Θ| models. The space Θ reflects our prior knowledge about a reasonable hyperparameter

1For example, it is expected that images share certain structures that allows some models (which leverage
these biases) to generalize.

2See Dziugaite and Roy (2017) for an example of non-vacuous generalization bound and related discussions.
3In our analysis we use n = 7 hyperparameters: batch size, dropout probability, learning rate, network

depth, weight decay coefficient, network width, optimizer.
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space, both in terms of their types and values. Regarding the latter, one could, for example, create
Θi by grid sampling of a reasonable number of points within a reasonable range of values for θi.

2.2 EVALUATION CRITERIA

2.2.1 KENDALL’S RANK-CORRELATION COEFFICIENT

One way to evaluate the quality of a complexity measure µ is through ranking. Given a set of
models resulted by training with hyperparameters in the set Θ, their associated generalization gap
{g(θ) |θ ∈ Θ}, and their respective values of the measure {µ(θ) |θ ∈ Θ}, our goal is to analyze
how consistent a measure (e.g. `2 norm of network weights) is with the empirically observed
generalization. To this end, we construct a set T , where each element of the set is associated with
one of the trained models. Each element has the form of a pair: complexity measure µ versus
generalization gap g.

T , ∪θ∈Θ

{ (
µ(θ), g(θ)

)}
. (1)

An ideal complexity measure must be such that, for any pair of trained models, if µ(θ1) > µ(θ2),
then so is g(θ1) > g(θ2). We use Kendall’s rank coefficient τ (Kendall, 1938) to capture to what
degree such consistency holds among the elements of T .

τ(T ) ,
1

|T |(|T | − 1)

∑
(µ1,g1)∈T

∑
(µ2,g2)∈T \(µ1,g1)

sign(µ1 − µ2

)
sign(g1 − g2) (2)

Note that τ can vary between 1 and −1 and attains these extreme values at perfect agreement (two
rankings are the same) and perfect disagreement (one ranking is the reverse of the other) respectively.
If complexity and generalization are independent, the coefficient becomes zero.

2.2.2 GRANULATED KENDALL’S COEFFICIENT

While Kendall’s correlation coefficient is an effective tool widely used to capture relationship be-
tween 2 rankings of a set of objects, we found that certain measures can achieve high τ values in a
trivial manner – i.e. the measure may strongly correlate with the generalization performance without
necessarily capturing the cause of generalization. We will analyze this phenomenon in greater details
in subsequent sections. To mitigate the effect of spurious correlations, we propose a new quantity for
reflecting the correlation between measures and generalization based on a more controlled setting.

None of the existing complexity measures is perfect. However, they might have different sensitivity
and accuracy w.r.t. different hyperparameters. For example, sharpness may do better than other
measures when only a certain hyperparameter (say batch size) changes. To understand such
details, in addition to τ(T ), we compute τ for consistency within each hyperparameter axis Θi, and
then average the coefficient across the remaining hyperparameter space. Formally, we define:

mi , |Θ1 × · · · ×Θi−1 ×Θi+1 × · · · ×Θn| (3)

ψi ,
1

mi

∑
θ1∈Θ1

· · ·
∑

θi−1∈Θi−1

∑
θi+1∈Θi+1

· · ·
∑

θn∈Θn

τ ( ∪θi∈Θi{
(
µ(θ), g(θ)

)
} ) (4)

The inner τ reflects the ranking correlation between the generalization and the complexity measure
for a small group of models where the only difference among them is the variation along a single
hyperparameter θi. We then average the value across all combinations of the other hyperparameter
axis. Intuitively, if a measure is good at predicting the effect of hyperparameter θi over the model
distribution, then its corresponding ψi should be high. Finally, we compute the average ψi of average
across all hyperparamter axes, and name it Ψ:

Ψ ,
1

n

n∑
i=1

ψi (5)

If a measure achieves a high Ψ on a given hyperparameter distribution Θ, then it should achieve high
individual ψ across all hyperparameters. A complexity measure that excels at predicting changes in
a single hyperparameter (high ψi) but fails at the other hyperparameters (low ψj for all j 6= i) will
not do well on Ψ. On the other hand, if the measure performs well on Ψ, it means that the measure
can reliably rank the generalization for each of the hyper-parameter changes.

A thought experiment to illustrate why Ψ captures a better causal nature of the generalization than
Kendall’s τ is as follows. Suppose there exists a measure that perfectly captures the depth of the
network while producing random prediction if 2 networks have the same depth, this measure would
do reasonably well in terms of τ but much worse in terms of Ψ. In the experiments we consider in the
following sections, we found that such a measure would achieve overall τ = 0.362 but Ψ = 0.11.
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2.2.3 CONDITIONAL INDEPENDENCE TEST: TOWARDS CAPTURING THE CAUSAL
RELATIONSHIPS

Relying on correlation is intuitive but perhaps unsatisfactory. In our experiments, we change sev-
eral hyper-parameters and assess the correlation between a complexity measure and generalization;
however, changing the hyper-parameters can also be seen as interventions or randomized tests since
they are chosen independently from any other variables, and we can use this observation to un-
cover causal structures. Specifically, we rely on the conditional independent test which measures
the conditional mutual information between random variables. Details are outlined in Appendix B.

3 GENERATING A FAMILY OF TRAINED MODELS

We chose 7 common hyperparameter types related to optimization and architecture design, with 3
choices for each hyperparameter. We generated 37 = 2187 models that are trained on the CIFAR-
10 dataset. We analyze these 2187 models in the subsequent sections; however, additional results
including repeating the experiments 5 times as well as training the models using SVHN dataset are
presented4 in Appendix Section C.5. These additional experiments, which add up to more than
10,000 trained models, suggest that the observations we make here are robust to randomness, and,
more importantly, captures general behaviors of image classification tasks.

We trained these models to convergence. Convergence criterion is chosen as when cross-entropy
loss reaches the value 0.01. Any model that was not able to achieve this value of cross-entropy5 was
discarded from further analysis. The latter is different from the DEMOGEN dataset (Jiang et al.,
2018) where the models are not trained to the same cross-entropy. Putting the stopping criterion
on the training loss rather than the number of epochs is crucial since otherwise one can simply use
cross-entropy loss value to predict generalization. Please see Appendix Section C.2 for a discussion
on the choice of stopping criterion.

To construct a pool of trained models with vastly different generalization behaviors while being able
to fit the training set, we covered a wide range of hyperparameters for training. Our base model
is inspired by the Network-in-Network (Gao et al., 2011). The hyperparameter categories we test
on are: weight decay coefficient (weight decay), width of the layer (width), mini-batch size
(batch size), learning rate (learning rate), dropout probability (dropout), depth of the
architecture (depth) and the choice of the optimization algorithms (optimizer). We select 3
choices for each hyperparameter (i.e. |Θi| = 3). Please refer to Appendix C.3 for the details on the
models, and Appendix C.1 for the reasoning behind the design choices.

Figure 1 shows summarizing statistics of the models in this study. On the left we show the number of
models that achieve above 99% training accuracy for every individual hyperparameter choice. Since
we have 37 = 2187 models in total, the maximum number of models for each hyperparameter type
is 37−1 = 718; the majority of the models in our pool were able to reach this threshold. In the middle
we show the distribution of the cross-entropy value over the entire training set. While we want the
models to be at exactly 0.01 cross-entropy, in practice it is computationally prohibitive to constantly
evaluate the loss over the entire training set; further, to enable reasonable temporal granularity, we
estimate the training loss with 100 randomly sampled minibatch. These computational compromises
result in long-tailed distribution of training loss centered at 0.01. As shown in Table 1, even such
minuscule range of cross-entropy difference could lead to positive correlation with generalization,
highlighting the importance of training loss as a stopping criterion. On the right, we show the
distribution of the generalization gap. Notice while all the models’ training accuracy is above 0.99,
there is a wide range of generalization gap, which is ideal for evaluating complexity measures.

4All the experiments reported in the main text have been repeated for 5 times. The mean (Table 9) is
consistent with those presented in the main text and standard deviation (Table 10) is very small compared to
the magnitude of the mean for all measures. Further, we also repeat the experiments once on the SVHN dataset
(Table 7), whose results are also consistent with the observations made on CIFAR-10.

5In our analysis, less than 5 percent of the models do not reach this threshold.
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Figure 1: Left: Number of models with training accuracy>99% for each hyperparameter type. Mid.: Distri-
bution of training cross-entropy (that of training error in Fig. 4). Right: Distribution of generalization gap.

4 PERFORMANCE OF COMPLEXITY MEASURES

4.1 BASELINE COMPLEXITY MEASURES

The first baseline we consider is performance of a measure against an oracle who observes the noisy
generalization gap. Concretely, we rank the models based on the true generalization gap with some
additive noise. The resulting ranking correlation indicates how close the performances of all models
are. As the scale of the noise approaches 0, the oracle’s prediction tends towards perfect (i.e. 1). This
baseline accounts for the potential noise in the training procedure and gives an anchor for gauging
the difficulty of each hyperparameter type. Formally, given an arbitrary set of hyper-parameters Θ′,
we define ε-oracle to be the expectation of τ or Ψ where the measure is {g(θ)+N (0, ε2) |θ ∈ Θ′}.
We report the performance of the noisy oracle in Table 1 for ε ∈ {0.02, 0.05}. For additional choices
of ε please refer to Appendix C.5.

Second, to understand how our hyperparameter choices affect the optimization, we give each hy-
perparameter type a canonical order which is believed to have correlation with generalization (e.g.
larger learning rate generalizes better) and measure their τ . The exact canonical ordering can be
found in Appendix C.4. Note that unlike other measures, each canonical ordering can only predict
generalization for its own hyperparameter type, since its corresponding hyperparameter remains
fixed in any other hyperparameter type; consequently, each column actually represents different
measure for the canonical measure row. Assuming that each canonical measure is uninformative of
any other canonical measures, the Ψ criterion for each canonical measure is 1

7 of its performance on
the corresponding hyperparameter type.

batch
size

dropout learning
rate

depth optimizer weight
decay

width
overall τ Ψ

C
or

r

vc dim 19 0.000 0.000 0.000 -0.909 0.000 0.000 -0.171 -0.251 -0.154
# params 20 0.000 0.000 0.000 -0.909 0.000 0.000 -0.171 -0.175 -0.154
1/γ (22) 0.312 -0.593 0.234 0.758 0.223 -0.211 0.125 0.124 0.121
entropy 23 0.346 -0.529 0.251 0.632 0.220 -0.157 0.104 0.148 0.124

cross-entropy 21 0.440 -0.402 0.140 0.390 0.149 0.232 0.080 0.149 0.147
oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487
oracle 0.05 0.172 0.375 0.305 0.384 0.165 0.184 0.204 0.438 0.256

canonical ordering 0.652 0.969 0.733 0.909 -0.055 0.735 0.171 N/A N/A
|S| = 2 min ∀|S|

M
I

vc dim 0.0422 0.0564 0.0518 0.0039 0.0422 0.0443 0.0627 0.00 0.00
# param 0.0202 0.0278 0.0259 0.0044 0.0208 0.0216 0.0379 0.00 0.00
1/γ 0.0108 0.0078 0.0133 0.0750 0.0105 0.0119 0.0183 0.0051 0.0051

entropy 0.0120 0.0656 0.0113 0.0086 0.0120 0.0155 0.0125 0.0065 0.0065
cross-entropy 0.0233 0.0850 0.0118 0.0075 0.0159 0.0119 0.0183 0.0040 0.0040
oracle 0.02 0.4077 0.3557 0.3929 0.3612 0.4124 0.4057 0.4154 0.1637 0.1637
oracle 0.05 0.1475 0.1167 0.1369 0.1241 0.1515 0.1469 0.1535 0.0503 0.0503

random 0.0005 0.0002 0.0005 0.0002 0.0003 0.0006 0.0009 0.0004 0.0001

Table 1: Numerical Results for Baselines and Oracular Complexity Measures

We next look at one of the most well-known complexity measures in machine learning; the VC-
Dimension. Bartlett et al. (2019) proves bounds on the VC dimension of piece-wise linear networks
with potential weight sharing. In Appendix D.1, we extend their result to include pooling layers
and multi-class classification. We report two complexity measures based on VC-dimension bounds
and parameter counting. These measures could be predictive merely when the architecture changes,
which happens only in depth and width hyperparameter types. We observe that, with both types,
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VC-dimension as well as the number of parameters are negatively correlated with generalization gap
which confirms the widely known empirical observation that overparametrization improves gener-
alization in deep learning.

Finally, we report the measures that only look at the output of the network. In particular, we look
at the cross-entropy loss, margin γ, and the entropy of the output. These three measures are closely
related to each other. In fact, the outcomes in Table 1 reflects this similarity. These results confirm
the general understanding that larger margin, lower cross-entropy and higher entropy would lead
to better generalization. Please see Appendix D.1.1 for definitions and more discussions on these
measures.
4.2 SURPRISING FAILURE OF SOME (NORM & MARGIN)-BASED MEASURES

In machine learning, a long standing measure for quantifying the complexity of a function, and
therefore generalization, is using some norm of the given function. Indeed, directly optimizing some
of the norms can lead to improved generalization. For example, `2 regularization on the parameters
of a model can be seen as imposing an isotropic Gaussian prior over the parameters in maximum
a posteriori estimation. We choose several representative norms (or measures based on norms) and
compute our correlation coefficient between the measures and the generalization gap of the model.

We study the following measures and their variants (Table 2): spectral bound, Frobenius distance
from initialization, `2 Frobenius norm of the parameters, Fisher-Rao metric and path norm.

batch
size

dropout learning
rate

depth optimizer weight
decay

width overall
τ

Ψ

C
or

r

Frob distance 40 -0.317 -0.833 -0.718 0.526 -0.214 -0.669 -0.166 -0.263 -0.341
Spectral orig 26 -0.262 -0.762 -0.665 -0.908 -0.131 -0.073 -0.240 -0.537 -0.434

Parameter norm 42 0.236 -0.516 0.174 0.330 0.187 0.124 -0.170 0.073 0.052
Path norm 44 0.252 0.270 0.049 0.934 0.153 0.338 0.178 0.373 0.311
Fisher-Rao 45 0.396 0.147 0.240 -0.553 0.120 0.551 0.177 0.078 0.154

oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487
|S| = 2 min ∀|S|

M
I

Frob distance 0.0462 0.0530 0.0196 0.1559 0.0502 0.0379 0.0506 0.0128 0.0128
Spectral orig 0.2197 0.2815 0.2045 0.0808 0.2180 0.2285 0.2181 0.0359 0.0359

Parameter norm 0.0039 0.0197 0.0066 0.0115 0.0064 0.0049 0.0167 0.0047 0.0038
Path norm 0.1027 0.1230 0.1308 0.0315 0.1056 0.1028 0.1160 0.0240 0.0240
Fisher Rao 0.0060 0.0072 0.0020 0.0713 0.0057 0.0014 0.0071 0.0018 0.0013
oracle 0.05 0.1475 0.1167 0.1369 0.1241 0.1515 0.1469 0.1535 0.0503 0.0503

Table 2: Numerical Results for Selected (Norm & Margin)-Based Complexity Measures

Spectral bound: The most surprising observation here is that the spectral complexity is strongly
negatively correlated with generalization, and negatively correlated with changes within every hy-
perparameter type. Most notably, it has strong negative correlation with the depth of the network,
which may suggest that the largest singular values are not sufficient to capture the capacity of the
model. To better understand the reason behind this observation, we investigate using different com-
ponents of the spectral complexity as the measure. An interesting observation is that the Frobe-
nius distance to initialization is negatively correlated, but the Frobenius norm of the parameters is
slightly positively correlated with generalization, which contradicts some theories suggesting solu-
tions closer to initialization should generalize better. A tempting hypothesis is that weight decay
favors solution closer to the origin, but we did an ablation study on only models with 0 weight decay
and found that the distance from initialization still correlates negatively with generalization.

These observations correspond to choosing different reference matrices W0
i for the bound: the

distance corresponds to using the initialization as the reference matrices while the Frobenius norm
of the parameters corresponds to using the origin as the reference. Since the Frobenius norm of
the parameters shows better correlation, we use zero reference matrices in the spectral bound. This
improved both τ and Ψ, albeit still negative. In addition, we extensively investigate the effect of
different terms of the Spectral bound to isolate the effect; however, the results do not improve.
These experiments can be found in the Appendix D.2.

Path norm: While path-norm is a proper norm in the function space but not in parameter space, we
observe that it is positively correlated with generalization in all hyper-parameter types and achieves
comparable τ (0.373) and Ψ (0.311).

Fisher-Rao metric: The Fisher-Rao metric is a lower bound (Liang et al., 2017) on the path norm
that has been recently shown to capture generalization. We observed that it overall shows worse
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correlation than the path norm; in particular, it is negatively correlated with the depth of the network,
which contrasts with path norm that properly captures the effect of depth on generalization. A more
interesting observation is that the Fisher-Rao metric achieves a positive Ψ = 0.154 but its τ = 0.078
is essentially at chance. This may suggest that the metric can capture a single hyper-parameter
change but is not able to capture the interactions between different hyperparameter types.

Effect of Randomness: dropout and batch size (first 2 columns of Table 2) directly intro-
duce randomness into the training dynamic. For batch size, we observed that the Frobenius dis-
placement and spectral complexity both correlate negatively with the changes in batch size while
the Frobenius norm of the parameters correlates positively with generalization. On the other hand,
when changes happen to the magnitude dropout probability, we observed that all of the proper norms
are negatively correlated with the generalization changes. Since increasing dropout usually reduces
the generalization gap, this implies that increasing the dropout probability may be at least partially
responsible for the growth in these norms. This is unexpected since increasing norm in principle
implies higher model capacity which is usually more prone to overfitting.

The overall picture does not change much going from the ranking correlation to mutual information,
with a notable exception where spectral complexity has the highest conditional mutual information
compared to all the other measures. This is due to the fact that the conditional mutual information
is agnostic to the direction of correlation, and in the ranking correlation, spectral complexity has
the highest absolute correlation. While this view might seem contradictory to classical view as the
spectral complexity is a complexity measure which should be small to guarantee good generaliza-
tion, it is nonetheless informative about the generalization of the model. Further, by inspecting the
conditional mutual information for each hyperparameter, we find that the majority of spectral com-
plexity’s predictive power is due to its ability to capture the depth of the network, as the mutual
information is significantly lower if depth is already observed.

4.3 SUCCESS OF SHARPNESS-BASED MEASURES

A natural category of generalization measures is centered around the concept of “sharpness” of the
local minima, capturing the sensitivity of the empirical risk (i.e. the loss over the entire training set)
to perturbations in model parameters. Such notion of stability under perturbation is captured ele-
gantly by the PAC-Bayesian framework (McAllester, 1999) which has provided promising insights
for studying generalization of deep neural networks (Dziugaite and Roy, 2017; Neyshabur et al.,
2017; 2018a). In this sections, we investigate PAC-Bayesian generalization bounds and several of
their variants which rely on different priors and different notions of sharpness (Table 3).

In order to evaluate a PAC-Bayesian bound, one needs to come up with a prior distribution over the
parameters that is chosen in advance before observing the training set. Then, given any posterior
distribution on the parameters which could depend on the training set, a PAC-Bayesian bound (The-
orem 46) states that the expected generalization error of the parameters generated from the posterior
can be bounded by the KL-divergence of the prior and posterior. The posterior distribution can be
seen as adding perturbation on final parameters. Dziugaite and Roy (2017) shows contrary to other
generalization bounds, it is possible to calculate non-vacuous PAC-Bayesian bounds by optimiz-
ing the bound over a large set of Gaussian posteriors. Neyshabur et al. (2017) demonstrates that
when prior and posterior are isotropic Gaussian distributions, then PAC-Bayesian bounds are good
measure of generalization on small scale experiments; see Eq (47).

PAC-Bayesian framework captures sharpness in the expected sense since we add randomly gener-
ated perturbations to the parameters. Another possible notion of sharpness is the worst-case sharp-
ness where we search for the direction that changes the loss the most. This is motivated by (Keskar
et al., 2016) where they observe that this notion would correlate with generalization in the case of
different batch sizes. We can use PAC-Bayesian framework to construct generalization bounds for
this worst-case perturbations as well. We refer to this worst case bound as the sharpness bound in Eq
(50). The main component in both PAC-Bayes and worst-case sharpness bounds is the ratio of norm
of parameters to the magnitude of the perturbation, where the magnitude is chosen to be the largest
number such that the training error of the perturbed model is at most 0.1. While mathematically, the
sharpness bound should always yield higher complexity than the PAC-Bayes bound, we observed
that the former has higher correlation both in terms of τ and Ψ. In addition, we studied inverse of
perturbation magnitude as a measure by removing the norm in the numerator to compare it with the
bound. However, we did not observe a significant difference.
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batch
size

dropout learning
rate

depth optimizer weight
decay

width overall
τ

Ψ

C
or

r

sharpness-orig 52 0.542 -0.359 0.716 0.816 0.297 0.591 0.185 0.400 0.398
pacbayes-orig 49 0.526 -0.076 0.705 0.546 0.341 0.564 -0.086 0.293 0.360

1/α′ sharpness mag 62 0.570 0.148 0.762 0.824 0.297 0.741 0.269 0.484 0.516
1/σ′ pacbayes mag 61 0.490 -0.215 0.505 0.896 0.186 0.147 0.195 0.365 0.315

oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487
|S| = 2 min ∀|S|

M
I

sharpness-orig 0.1117 0.2353 0.0809 0.0658 0.1223 0.1071 0.1254 0.0224 0.0224
pacbayes-orig 0.0620 0.1071 0.0392 0.0597 0.0645 0.0550 0.0977 0.0225 0.0225

1/α′ sharpness mag 0.1640 0.2572 0.1228 0.1424 0.1779 0.1562 0.1786 0.0544 0.0544
1/σ′ pacbayes mag 0.0884 0.1514 0.0813 0.0399 0.1004 0.1025 0.0986 0.0241 0.0241

oracle 0.05 0.1475 0.1167 0.1369 0.1241 0.1515 0.1469 0.1535 0.0503 0.0503

Table 3: Numerical results for selected Sharpness-Based Measures; all the measure use the origin as
the reference and mag refers to magnitude-aware version of the measure.

4.3.1 MAGNITUDE-AWARE PERTURBATION BOUNDS

Perturbing the parameters without taking their magnitude into account can cause many of them to
switch signs. Therefore, one cannot apply large perturbations to the model without changing the
loss significantly. One possible modification to improve the perturbations is to choose the pertur-
bation magnitude based on the magnitude of the parameter. In that case, it is guaranteed that if the
magnitude of perturbation is less than the magnitude of the parameter, then the sign of the parameter
does not change. Following Keskar et al. (2016), we pick the magnitude of the perturbation with
respect to the magnitude of parameters. We formalize this notion of importance based magnitude.
Specifically, we derive two alternative generalization bounds for expected sharpness in Eq (55) and
worst case sharpness in Eq (58) that include the magnitude of the parameters into the prior. For-
mally, we design α′ and σ′, respectively for sharpness and PAC-Bayes bounds, to be the ratio of
parameter magnitude to the perturbation magnitude. While this change did not improve upon the
original PAC-Bayesian measures, we observed that simply looking at 1/α′ has surprising predictive
power in terms of the generalization which surpasses the performance of oracle 0.02. This measure
is very close to what was originally suggested in Keskar et al. (2016). Its effectiveness is further
corroborated by the conditional mutual information based metric, where we observed that 1/α′ has
the highest mutual information with generalization among all hyperparameters and also overall.

4.3.2 FINDING σ

In case of models with extremely small loss, the perturbed loss should roughly increase monotoni-
cally with respect to the perturbation scale. Leveraging this observation, we design algorithms for
computing the perturbation scale σ such that the first term on the RHS is as close to a fixed value
as possible for all models. In our experiments, we choose the deviation to be 0.1 which translates to
10% training error. These search algorithms are paramount to compare measures between different
models. We provide the detailed algorithms in the Appendix E. To improve upon our algorithms,
one could try a computational approach similar to Dziugaite and Roy (2017) to obtain a numerically
better bound which may result in stronger correlation. However, due to practical computational
constraints, we could not do so for the large number of models we consider.

4.4 POTENTIAL OF OPTIMIZATION-BASED MEASURES

Optimization is an indispensable component of deep learning. Numerous optimizers have been
proposed for more stable training and faster convergence. How the optimization scheme and speed
of optimization influence generalization of a model has been a topic of contention among the deep
learning community (Merity et al., 2017; Hardt et al., 2015). We study 3 representative optimizers
Momentum SGD, Adam, and RMSProp with different initial learning rates in our experiments to
thoroughly evaluate this phenomenon. We also consider other optimization related measures that
are believed to correlate with generalization. These include (Table 4):

1. Number of iterations required to reach cross-entropy equals 0.1

2. Number of iterations required going from cross-entropy equals 0.1 to cross-entropy equals 0.01

3. Variance of the gradients after only seeing the entire dataset once (1 epoch)

4. Variance of the gradients when the cross-entropy is approximately 0.01
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batch
size

dropout learning
rate

depth optimizer weight
decay

width overall
τ

Ψ

C
or

r

step to 0.1 63 -0.664 -0.861 -0.255 0.440 -0.030 -0.628 0.043 -0.264 -0.279
step 0.1 to 0.01 64 -0.151 -0.069 -0.014 0.114 0.072 -0.046 -0.021 -0.088 -0.016

grad noise 1 epoch 65 0.071 0.378 0.376 -0.517 0.121 0.221 0.037 0.070 0.098
grad noise final 66 0.452 0.119 0.427 0.141 0.245 0.432 0.230 0.311 0.292

oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487
|S| = 2 min ∀|S|

M
I

step to 0.1 0.0349 0.0361 0.0397 0.1046 0.0485 0.0380 0.0568 0.0134 0.0134
step 0.1 to 0.01 0.0125 0.0031 0.0055 0.0093 0.0074 0.0043 0.0070 0.0032 0.0032

grad noise 1 epoch 0.0051 0.0016 0.0028 0.0633 0.0113 0.0027 0.0052 0.0013 0.0013
grad noise final 0.0623 0.0969 0.0473 0.0934 0.0745 0.0577 0.0763 0.0329 0.0329

oracle 0.05 0.1475 0.1167 0.1369 0.1241 0.1515 0.1469 0.1535 0.0503 0.0503

Table 4: Optimization-Based Measures

Number of Iterations: The number of iterations roughly characterizes the speed of optimization,
which has been argued to correlate with generalization. For the models considered here, we ob-
served that the initial phase (to reach cross-entropy value of 0.1) of the optimization is negatively
correlated with the speed of optimization for both τ and Ψ. This would suggest that the difficulty
of optimization during the initial phase of the optimization benefits the final generalization. On
the other hand, the speed of optimization going from cross-entropy 0.1 to cross-entropy 0.01 does
not seem to be correlated with the generalization of the final solution. Importantly, the speed of
optimization is not an explicit capacity measure so either positive or negative correlation could
potentially be informative.

Variance of Gradients: Towards the end of the training, the variance of the gradients also captures
a particular type of “flatness” of the local minima. This measure is surprisingly predictive of the
generalization both in terms of τ and Ψ, and more importantly, is positively correlated across every
type of hyperparameter. To the best of our knowledge, this is the first time this phenomenon has been
observed. The connection between variance of the gradient and generalization is perhaps natural
since much of the recent advancement in deep learning such as residual networks (He et al., 2016) or
batch normalization have enabled using larger learning rates to train neural networks. Stability with
higher learning rates implies smaller noises in the minibatch gradient. With the mutual information
metric, the overall observation is consistent with that of ranking correlation, but the final gradient
noise also outperforms gradient noise at 1 epoch of training conditioned on the dropout probability.
We hope that our work encourages future works in other possible measures based on optimization
and during training.

5 CONCLUSION

We conducted large scale experiments to test the correlation of different measures with the gen-
eralization of deep models and propose a framework to better disentangle the cause of correlation
from spurious correlation. We confirmed the effectiveness of the PAC-Bayesian bounds through
our experiments and corroborate it as a promising direction for cracking the generalization puzzle.
Further, we provide an extension to existing PAC-Bayesian bounds that consider the importance of
each parameter. We also found that several measures related to optimization are surprisingly pre-
dictive of generalization and worthy of further investigation. On the other hand, several surprising
failures about the norm-based measures were uncovered. In particular, we found that regularization
that introduces randomness into the optimization can increase various norm of the models and spec-
tral complexity related norm-based measures are unable to capture generalization – in fact, most of
them are negatively correlated. Our experiments demonstrate that the study of generalization mea-
sure can be misleading when the number of models studied is small and the metric of quantifying
the relationship is not carefully chosen. We hope this work will incentivize more rigorous treatment
of generalization measures in future work.

To the best of our knowledge, this work is one of the most comprehensive study of generalization
to date, but there are a few short-comings. Due to computational constraints, we were only able to
study 7 most common hyperparameter types and relatively small architectures, which do not reflect
the models used in production. Indeed, if more hyperparameters are considered, one could expect
to better capture the causal relationship. We also only studied models trained on two image datasets
(CIFAR-10 and SVHN), only classification models and only convolutional networks. We hope that
future work would address these limitations.
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A NOTATION

We denote a probability distribution as A , set as A, tensor as A, vector as a, and scalar as a or α.
Let D denote the data distributions over inputs and their labels, and let κ denote number of classes.
We use , for equality by definition. We denote by S a given dataset, consisting of m i.i.d tuples
{(X1, y1), . . . , (Xm, ym)} drawn from D where Xi ∈ X is the input data and yi ∈ {1, . . . , κ} the
corresponding class label. We denote a feedforward neural network by fw : X → Rκ, its weight
parameters by w, and the number of weights by ω , dim(w). No activation function is applied
at the output (i.e. logits). Denote the weight tensor of the ith layer of the network by Wi, so that
w = vec(W1, . . . ,Wd), where d is the depth of the network, and vec represents the vectorization
operator. Furthermore, denote by fw(X)[j] the j-th output of the function fw(X).

Let R be the set of binary relations, and I : R → {0, 1} be the indicator function that is 1 if its
input is true and zero otherwise. Let L be the 1-0 classification loss over the data distribution D :
L(fw) , E(X,y)∼D

[
I
(
fw(X)[y] ≤ maxj 6=y fw(X)[j]

)]
and let L̂ be the empirical estimate of 1-0

loss over S: L̂(fw) , 1
m

∑m
i=1 I

(
fw(X)[yi] ≤ maxj 6=yi fw(X)[j]

)
. We refer to L(fw) − L̂(fw)

as the generalization gap. For any input X, we define the sample dependent margin6 as γ(X) ,(
fw(X)

)
[y]−maxi 6=y fw(X)i. Moreover, we define the overall margin γ as the 10th percentile (a

robust surrogate for the minimum) of γ(X) over the entire training set S.

Given any margin value γ ≥ 0, we define the margin loss Lγ as follows:

Lγ(fw) , E(X,y)∼D

[
I
(
fw(X)[y] ≤ γ + max

j 6=y
fw(X)[j]

)]
(6)

and L̂γ is defined in an analogous manner on the training set. Further, for any vector v, we denote by
‖v‖2 the `2 norm of v. For any tensor W, let ‖W‖F , ‖vec(W)‖. We also denote ‖W‖2 as the
spectral norm of the tensor W when used with a convolution operator. For convolutional operators,
we compute the true singular value with the method proposed by Sedghi et al. (2018) through FFT.

We denote a tensor as A, vector as a, and scalar as A or a. For any 1 ≤ j ≤ k, consider a k-th order
tensor A and a j-th order tensor B where dimensions of B match the last j dimensions of A. We
then define the product operator ⊗j :

(A⊗j B)i1,...,ik−j , 〈Ai1,...,ik−j ,B〉 , (7)
where i1, . . . , ik−j are indices. We also assume that the input images have dimension n×n and there
are κ classes. Given the number of input channels cin, number of output channels cout, 2D square
kernel with side length k, stride s, and padding p, we define the convolutional layer convW,s,p as
follows:

convW,s,p(X)i1,i2 , W⊗3patchs(i1−1)+1,s(i2−1)+1,k

(
padp(X)

)
∀1 ≤ i1, i2 ≤ b

n+ 2p− k
s

c
(8)

where W ∈ Rcout×cin×k×k is the convolutional parameter tensor, patchi,j,k(Z) is a k × k patch of
Z starting from the point (i, j), and padp is the padding operator which adds p zeros to top, bottom,
left and right of X:

padp(X)i1,i2,j =

{
Xi1,i2 p < i1, i2 ≤ n+ p

0 otherwise
. (9)

We also define the max-pooling operator poolk,s,p as follows:

poolk,s,p(X)i1,i2,j = max(patchs(i1−1)+1,s(i2−1)+1

(
padp(X:,:,j)

)
) ∀1 ≤ i1, i2 ≤ b

n+ 2p− k
s

c
(10)

6This work only concerns with the output margins, but generally margin can be defined at any layer of a
deep network as introduced in (Elsayed et al., 2018) and used to establish a generalization bound in, (Wei and
Ma, 2019b).
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We denote by fW,s a convolutional network such that Wi ∈ Rci×ci−1×ki×ki is the convolution ten-
sor and si is the convolutional stride at layer i. At Layer i, we assume the sequence of convolution,
ReLU and max-pooling where the max pooling has kernel k′i and stride s′i. Lack of max-pooling in
some layers can be achieved by setting k′i = s′i = 1. We consider classification tasks and denote the
number of classes by κ.
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B CONDITIONAL INDEPENDENCE TEST: TOWARDS CAPTURING THE
CAUSAL RELATIONSHIPS

Relying on correlation is intuitive but perhaps unsatisfactory. In our experiments, we change sev-
eral hyper-parameters and assess the correlation between a complexity measure and generalization.
When we observe correlation between a complexity measure and generalization, we want to differ-
entiate the following two scenarios:

• Changing a hyper-parameter causes the complexity measure to be low and lower value of
the measure causes the generalization gap to be low.

• Changing a hyper-parameter causes the complexity measure to be low and changing the
same hyper-parameter also causes the generalization to be low but the lower value of the
complexity measure by itself has no effect on generalization.

The above two scenarios are demonstrated in Figure 2-Middle and Figure 2-Right respectively. In
attempt to truly understand these relationships, we will rely on the tools from probabilistic causality.
Our approach is inspired by the seminal work on Inductive Causation (IC) Algorithm by Verma
and Pearl (1991), which provides a framework for learning a graphical model through conditional
independence test. While the IC algorithm traditionally initiates the graph to be fully connected,
we will take advantage of our knowledge about generalization and prune edges of the initialized
graph to expedite the computations. Namely, we assume that the choice of hyperparameter does not
directly explain generalization, but rather it induces changes in some measure µ which can be used
to explain generalization.

g

µ. . .

θi

g

µ. . .

θi

g

µ. . .

θi

Figure 2: Left: Graph at initialization of IC algorithm. Middle: The ideal graph where the measure µ
can directly explain observed generalization. Right: Graph for correlation where µ cannot explain observed
generalization.

Our primary interest is to establish the existence of an edge between µ and g. Suppose there exists
a large family of complexity measures and among them there is a true complexity measure that can
fully explain generalization. Then to verify the existence of the edge between µ and g, we can
perform the conditional independent test by reading the conditional mutual information between µ
and g given that a set of hyperparameter types S is observed7. For any function φ : Θ → R, let
Vφ : Θ1 × Θ2 → {+1,−1} be as Vφ(θ1, θ2) , sign(φ(θ1) − φ(θ2)). Furthermore, let US be a
random variable that correspond to the values of hyperparameters in S. We calculate the conditional
mutual information as follows:

I(Vµ, Vg |US) =
∑
US

p(US)
∑

Vµ∈{±1}

∑
Vg∈{±1}

p(Vµ, Vg |US) log
( p(Vµ, Vg |US)

p(Vµ |US)p(Vg |US)

)
(11)

The above removes the unwanted correlation between generalization and complexity measure that
is caused by hyperparameter types in set S. Since in our case the conditional mutual information
between a complexity measure and generalization is at most equal to the conditional entropy of
generalization, we normalize it with the conditional entropy to arrive at a criterion ranging between
0 and 1:

H(Vg |US) = −
∑
US

p(US)
∑

Vg∈{±1}

p(Vg |US) log(p(Vg |US)) (12)

7For example, if S contains a single hyperparameter type such as the learning rate, then the conditional
mutual information is conditioned on learning rate being observed.
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Î(Vµ, Vg |US) =
I(Vµ, Vg |US)

H(Vg |US)
(13)

According to the IC algorithm, an edge is kept between two nodes if there exists no subset S of
hyperparameter types such that the two nodes are independent, i.e. Î(Vµ, Vg |US) = 0. In our
setup, setting S to the set of all hyperparameter types is not possible as both the conditional entropy
and conditional mutual information would become zero. Moreover, due to computational reasons,
we only look at |S| ≤ 2:

K(µ) = min
US s.t |S|≤2

Î(Vµ, Vg |US) (14)

At a high level, the larger K is for a measure µ, the more likely an edge exists between µ and g,
and therefore the more likely µ can explain generalization. For details on the set-up, please refer to
Appendix B.1 on how these quantities are estimated.

B.1 DEFINITION OF RANDOM VARIABLES

Since the measures are results of complicated interactions between the data, the model, and the
training procedures, we cannot manipulate it to be any values that we want. Instead, we use the
following definition of random variables: suppose S is a subset of all the components of θ (e.g.
S = {∅} for |S| = 0, |S| = {learning rate} for |S| = 1 or |S| = {learning rate, dropout} for
|S| = 2 ). Specifically we denote Sab as the collective condition {θ(a)1 = v1, θ

(b)
1 = v2, . . . , θ

(a)
|S| =

v2|S|−1, θ
(b)
|S| = v2|S|}. We can then define and empirical measure four probability Pr(µ(a) >

µ(b), g(a) > g(b) | Sab), Pr(µ(a) > µ(b), g(a) < g(b) | Sab), Pr(µ(a) < µ(b), g(a) > g(b) | Sab) and
Pr(µ(a) < µ(b), g(a) < g(b) | Sab).

µ(a) > µ(b) µ(a) ≤ µ(b)

g(a) > g(b) p00 p01
g(a) ≤ g(b) p10 p11

Figure 3: Joint Probability table for a single Sab

Together forms a 2 by 2 table that defines the joint distribution of the Bernoulli random variables
Pr(g(a) > g(b) | Sab) and Pr(µ(a) > µ(b) | Sab). For notation convenience, we use Pr(µ, g | Sab) ,
Pr(g | Sab) and Pr(µ | Sab) to denote the joint and marginal. If there are N = 3 choices for each
hyperparameter in S then there will be N |S| such tables for each hyperparameter combination.
Since each configuration occurs with equal probability, for that arbitrary θ(a) and θ(b) drawn from
Θ conditioned on that the components of S are observed for both models, the joint distribution can
be defined as Pr(µ, g | S) = 1

N |S|

∑
Sab Pr(µ, g | Sab) and likely the marginals can be defined as

Pr(µ | S) = 1
N |S|

∑
Sab Pr(µ | Sab) and Pr(g | S) = 1

N |S|

∑
Sab Pr(g | Sab). With these notations

established, all the relevant quantities can be computed by iterating over all pairs of models.

C EXPERIMENTS

C.1 MORE TRAINING DETAILS

During our experiments, we found that Batch Normalization (Ioffe and Szegedy, 2015) is crucial to
reliably reach a low cross-entropy value for all models; since normalization is a indispensable com-
ponents of modern neural networks, we decide to use batch normalization in all of our models. We
remove batch normalization before computing any measure by fusing the γ, β and moving statistics
with the convolution operator that precedes the normalization. This is important as Dinh et al. (2017)
showed that common generalization measures such as sharpness can be easily manipulated with re-
parameterization. We also discovered that the models trained with data augmentation often cannot
fit the data (i.e. reach cross-entropy 0.01) completely. Since a model with data augmentation tends
to consistently generalize better than the models without data augmentation, measure that reflects
the training error (i.e. value of cross-entropy) will easily predict the ranking between two models
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even though it has only learned that one model uses data augmentation (see the thought experiments
from the previous section). While certain hyperparameter configuration can reach cross-entropy of
0.01 even with data augmentation, it greatly limits the space of models that we can study. Hence, we
make the design choice to not include data augmentation in the models of this study. Note that from
a theoretical perspective, data augmentation is also challenging to analyze since the training samples
generated from the procedure are no longer identical and independently distributed. All values for
all the measures we computed over these models can be found in Table 5 in Appendix C.5.

C.2 THE CHOICE OF STOPPING CRITERION

The choice of stopping criterion is very essential and could completely change the evaluation and the
resulting conclusions. In our experiments we noticed that if we pick the stopping criterion based on
number of iterations or number of epochs, then since some models optimize faster than others, they
end up fitting the training data more and in that case the cross-entropy itself can be very predictive
of generalization. To make it harder to distinguish models based on their training performance, it
makes more sense to choose the stopping criterion based on the training error or training loss. We
noticed that as expected, models with the same cross-entropy usually have very similar training
error so that suggests that this choice is not very important. However, during the optimization the
training error behavior is noisier than cross-entropy and moreover, after the training error reaches
zero, it cannot distinguish models while the cross-entropy is still meaningful after fitting the data.
Therefore, we decided to use cross-entropy as the stopping criterion.

C.3 ALL MODEL SPECIFICATION

As mentioned in the main text, the models we use resemble Network-in-Network (Gao et al., 2011)
which is a class of more parameter efficient convolution neural networks that achieve reasonably
competitive performance on modern image classification benchmarks. The model consists blocks of
modules that have 1 3 × 3 convolution with stride 2 followed by 2 1 × 1 convolution with stride 1.
We refer to this single module as a NiN-block and construct models of different size by stacking
NiN-block. For simplicity, all NiN-block have the same number of output channels cout. Dropout is
applied at the end of every NiN-block. At the end of the model, there is a 1×1 convolution reducing
the channel number to the class number (i.e. 10 for CIFAR-10) followed by a global average pooling
to produce the output logits.

For width, we choose from cout from 3 options: {2× 96, 4× 96, 8× 96}.
For depth, we choose from 3 options: {2×NiNblock, 4×NiNblock, 8×NiNblock}
For dropout, we choose from 3 options: {0.0, 0.25, 0.5}
For batch size, we choose from: {32, 64, 128}
Since each optimizer may require different learning rate and in some cases, different regularization,
we fine-tuned the hyper-parameters for each optimizer while keeping 3 options for every hyper-
parameter choices8.

Momentum SGD: We choose momentum of 0.9 and choose the initial learning rate η from
{0.1, 0.032, 0.01} and regularization coefficient λ from {0.0, 0.0001, 0.0005}. The learning rate
decay schedule is ×0.1 at iterations [60000, 90000].

Adam: We choose initial learning rate η from {0.001, 3.2e−4, 1e−4}, ε = 1e−3 and regularization
coefficient λ from {0.0, 0.0001, 0.0005}. The learning rate decay schedule is ×0.1 at iterations
[60000, 90000].

RMSProp: We choose initial learning rate η from {0.001, 3.2e − 4, 1e − 4} and regularization
coefficient λ from {0.0, 0.0001, 0.0003}. The learning rate decay schedule is ×0.1 at iterations
[60000, 90000].

8While methods with adaptive methods generally require less tuning, in practice researchers have observed
performance gains from tuning the initial learning rate and learning rate decay.
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C.4 CANONICAL MEASURES

Based on empirical observations made by the community as a whole, the canonical ordering we give
to each of the hyper-parameter categories are as follows:

1. Batchsize: smaller batchsize leads to smaller generalization gap
2. Depth: deeper network leads to smaller generalization gap
3. Width: wider network leads to smaller generalization gap
4. Dropout: The higher the dropout (≤ 0.5) the smaller the generalization gap
5. Weight decay: The higher the weight decay (smaller than the maximum for each optimizer)

the smaller the generalization gap
6. Learning rate: The higher the learning rate (smaller than the maximum for each optimizer)

the smaller the generalization gap
7. Optimizer: Generalization gap of Momentum SGD<Generalization gap of Adam<Gen-

eralization gap of RMSProp

C.5 ALL RESULTS

Below we present all of the measures we computed and their respective τ and Ψ on more than 10,000
models we trained and additional plots. Unless stated otherwise, convergence is considered when
the loss reaches the value of 0.1.

ref batchsize dropout
learning

rate depth optimizer
weight
decay width overall τ Ψ

vc dim 19 0.000 0.000 0.000 -0.909 0.000 0.000 -0.171 -0.251 -0.154
# params 20 0.000 0.000 0.000 -0.909 0.000 0.000 -0.171 -0.175 -0.154
sharpness 51 0.537 -0.523 0.449 0.826 0.221 0.233 -0.004 0.282 0.248
pacbayes 48 0.372 -0.457 0.042 0.644 0.179 -0.179 -0.142 0.064 0.066

sharpness-orig 52 0.542 -0.359 0.716 0.816 0.297 0.591 0.185 0.400 0.398
pacbayes-orig 49 0.526 -0.076 0.705 0.546 0.341 0.564 -0.086 0.293 0.360
frob-distance 40 -0.317 -0.833 -0.718 0.526 -0.214 -0.669 -0.166 -0.263 -0.341
spectral-init 25 -0.330 -0.845 -0.721 -0.908 -0.208 -0.313 -0.231 -0.576 -0.508
spectral-orig 26 -0.262 -0.762 -0.665 -0.908 -0.131 -0.073 -0.240 -0.537 -0.434

spectral-orig-main 28 -0.262 -0.762 -0.665 -0.908 -0.131 -0.073 -0.240 -0.537 -0.434
fro/spec 33 0.563 0.351 0.744 -0.898 0.326 0.665 -0.053 -0.008 0.243

prod-of-spec 32 -0.464 -0.724 -0.722 -0.909 -0.197 -0.142 -0.218 -0.559 -0.482
prod-of-spec/margin 31 -0.308 -0.782 -0.702 -0.907 -0.166 -0.148 -0.179 -0.570 -0.456

sum-of-spec 35 -0.464 -0.724 -0.722 0.909 -0.197 -0.142 -0.218 0.102 -0.223
sum-of-spec/margin 34 -0.308 -0.782 -0.702 0.909 -0.166 -0.148 -0.179 0.064 -0.197

spec-dist 41 -0.458 -0.838 -0.568 0.738 -0.319 -0.182 -0.171 -0.110 -0.257
prod-of-fro 37 0.440 -0.199 0.538 -0.909 0.321 0.731 -0.101 -0.297 0.117

prod-of-fro/margin 36 0.513 -0.291 0.579 -0.907 0.364 0.739 -0.088 -0.295 0.130
sum-of-fro 39 0.440 -0.199 0.538 0.913 0.321 0.731 -0.101 0.418 0.378

sum-of-fro/margin 38 0.520 -0.369 0.598 0.882 0.380 0.738 -0.080 0.391 0.381
1/margin 22 -0.312 0.593 -0.234 -0.758 -0.223 0.211 -0.125 -0.124 -0.121

neg-entropy 23 0.346 -0.529 0.251 0.632 0.220 -0.157 0.104 0.148 0.124
path-norm 44 0.363 -0.190 0.216 0.925 0.272 0.195 0.178 0.370 0.280

path-norm/margin 43 0.363 0.017 0.148 0.922 0.230 0.280 0.173 0.374 0.305
param-norm 42 0.236 -0.516 0.174 0.330 0.187 0.124 -0.170 0.073 0.052

fisher-rao 45 0.396 0.147 0.240 -0.516 0.120 0.551 0.177 0.090 0.160
cross-entropy 21 0.440 -0.402 0.140 0.390 0.149 0.232 0.080 0.149 0.147
1/σ pacbayes 53 0.501 -0.033 0.744 0.200 0.346 0.609 0.056 0.303 0.346
1/σ sharpness 54 0.532 -0.326 0.711 0.776 0.296 0.592 0.263 0.399 0.406

num-step-0.1-to-0.01-loss 64 -0.151 -0.069 -0.014 0.114 0.072 -0.046 -0.021 -0.088 -0.016
num-step-to-0.1-loss 63 -0.664 -0.861 -0.255 0.440 -0.030 -0.628 0.043 -0.264 -0.279
1/α′ sharpness mag 62 0.570 0.148 0.762 0.824 0.297 0.741 0.269 0.484 0.516
1/σ′ pacbayes mag 61 0.490 -0.215 0.505 0.896 0.186 0.147 0.195 0.365 0.315

pac-sharpness-mag-init 59 -0.293 -0.841 -0.698 -0.909 -0.240 -0.631 -0.171 -0.225 -0.541
pac-sharpness-mag-orig 60 0.401 -0.514 0.321 -0.909 0.181 0.281 -0.171 -0.158 -0.059

pacbayes-mag-init 56 0.425 -0.658 -0.035 0.874 0.099 -0.407 0.069 0.175 0.052
pacbayes-mag-orig 57 0.532 -0.480 0.508 0.902 0.188 0.155 0.186 0.410 0.284

grad-noise-final 66 0.452 0.119 0.427 0.141 0.245 0.432 0.230 0.311 0.292
grad-noise-epoch-1 65 0.071 0.378 0.376 -0.517 0.121 0.221 0.037 0.070 0.098

oracle 0.01 0.579 0.885 0.736 0.920 0.529 0.622 0.502 0.851 0.682
oracle 0.02 0.414 0.673 0.548 0.742 0.346 0.447 0.316 0.726 0.498
oracle 0.05 0.123 0.350 0.305 0.401 0.132 0.201 0.142 0.456 0.236
oracle 0.1 0.069 0.227 0.132 0.223 0.086 0.121 0.093 0.241 0.136

canonical ordering -0.652 0.969 0.733 0.909 -0.055 0.735 0.171 0.005 0.402
canonical ordering depth -0.032 0.001 0.033 -0.909 -0.061 -0.020 0.024 -0.363 -0.138

Table 5: Complexity measures (rows), hyperparameters (columns) and the rank-correlation coeffi-
cients with models trained on CIFAR-10.
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batchsize dropout
learning

rate num_block optimizer
weight
decay width |S| = 0 |S| = 1 |S| = 2

#-param 0.0202 0.0278 0.0259 0.0044 0.0208 0.0216 0.0379 0.0200 0.0036 0.0000
-entropy 0.0120 0.0656 0.0113 0.0086 0.0120 0.0155 0.0125 0.0117 0.0072 0.0065

1-over-sigma-pacbayes-mag 0.0884 0.1514 0.0813 0.0399 0.1004 0.1025 0.0986 0.0960 0.0331 0.0241
1-over-sigma-pacbayes 0.0661 0.1078 0.0487 0.0809 0.0711 0.0589 0.0858 0.0664 0.0454 0.0340

1-over-sigma-sharpness-mag 0.1640 0.2572 0.1228 0.1424 0.1779 0.1562 0.1786 0.1741 0.1145 0.0544
1-over-sigma-sharpness 0.1086 0.2223 0.0792 0.0713 0.1196 0.1041 0.1171 0.1159 0.0592 0.0256

cross-entropy 0.0233 0.0850 0.0118 0.0075 0.0159 0.0119 0.0183 0.0161 0.0062 0.0040
displacement 0.0462 0.0530 0.0196 0.1559 0.0502 0.0379 0.0506 0.0504 0.0183 0.0128

fisher-rao 0.0061 0.0072 0.0020 0.0713 0.0057 0.0014 0.0071 0.0059 0.0013 0.0018
fro-over-spec 0.0019 0.0065 0.0298 0.0777 0.0036 0.0015 0.0005 0.0000 0.0005 0.0013
frob-distance 0.0462 0.0530 0.0196 0.1559 0.0502 0.0379 0.0506 0.0504 0.0183 0.0128

grad-noise-epoch-1 0.0051 0.0016 0.0028 0.0633 0.0113 0.0027 0.0052 0.0036 0.0013 0.0013
grad-noise-final 0.0623 0.0969 0.0473 0.0934 0.0745 0.0577 0.0763 0.0712 0.0441 0.0329
input-grad-norm 0.0914 0.1374 0.1203 0.0749 0.1084 0.0853 0.1057 0.1042 0.0623 0.0426

margin 0.0105 0.0750 0.0078 0.0133 0.0108 0.0183 0.0119 0.0108 0.0072 0.0051
oracle-0.01 0.6133 0.5671 0.6007 0.5690 0.6171 0.6108 0.6191 0.6186 0.4727 0.2879
oracle-0.02 0.4077 0.3557 0.3929 0.3612 0.4124 0.4057 0.4154 0.4130 0.2987 0.1637
oracle-0.05 0.1475 0.1167 0.1369 0.1241 0.1515 0.1469 0.1535 0.1515 0.0980 0.0503

pacbayes-mag-init 0.0216 0.0238 0.0274 0.0046 0.0222 0.0210 0.0345 0.0202 0.0038 0.0004
pacbayes-mag-orig 0.1160 0.2249 0.1006 0.0426 0.1305 0.1316 0.1246 0.1252 0.0354 0.0221

pacbayes-orig 0.0620 0.1071 0.0392 0.0597 0.0645 0.0550 0.0977 0.0629 0.0365 0.0225
pacbayes 0.0053 0.0164 0.0084 0.0086 0.0036 0.0066 0.0185 0.0030 0.0036 0.0040

parameter-norm 0.0039 0.0197 0.0066 0.0115 0.0064 0.0049 0.0167 0.0039 0.0038 0.0047
path-norm-over-margin 0.0943 0.1493 0.1173 0.0217 0.1025 0.1054 0.1090 0.1011 0.0181 0.0139

path-norm 0.1027 0.1230 0.1308 0.0315 0.1056 0.1028 0.1160 0.1030 0.0261 0.0240
prod-of-spec-over-margin 0.2466 0.3139 0.2179 0.1145 0.2473 0.2540 0.2497 0.2481 0.0951 0.0483

prod-of-spec 0.2334 0.3198 0.2070 0.1037 0.2376 0.2470 0.2394 0.2385 0.0862 0.0415
random 0.0005 0.0002 0.0005 0.0002 0.0003 0.0006 0.0009 0.0003 0.0001 0.0004

sharpness-mag-init 0.0366 0.0460 0.0391 0.0191 0.0374 0.0373 0.0761 0.0368 0.0159 0.0134
sharpness-mag-orig 0.0125 0.0143 0.0195 0.0043 0.0120 0.0134 0.0142 0.0111 0.0036 0.0033

sharpness-orig 0.1117 0.2353 0.0809 0.0658 0.1223 0.1071 0.1254 0.1189 0.0547 0.0224
sharpness 0.0545 0.1596 0.0497 0.0156 0.0586 0.0599 0.0700 0.0583 0.0130 0.0123
spec-init 0.2536 0.3161 0.2295 0.1179 0.2532 0.2584 0.2540 0.2539 0.0980 0.0559

spec-orig-main 0.2266 0.2903 0.2072 0.0890 0.2255 0.2355 0.2262 0.2262 0.0739 0.0382
spec-orig 0.2197 0.2815 0.2045 0.0808 0.2180 0.2285 0.2181 0.2188 0.0671 0.0359

step-0.1-to-0.01 0.0125 0.0031 0.0055 0.0093 0.0074 0.0043 0.0070 0.0055 0.0026 0.0032
step-to-0.1 0.0349 0.0361 0.0397 0.1046 0.0485 0.0380 0.0568 0.0502 0.0303 0.0134

sum-of-fro-over-margin 0.1200 0.2269 0.1005 0.0440 0.1207 0.1060 0.1645 0.1227 0.0366 0.0110
sum-of-fro-over-sum-of-spec 0.0258 0.0392 0.0055 0.1111 0.0312 0.0194 0.0355 0.0297 0.0051 0.0027

sum-of-fro 0.1292 0.2286 0.1115 0.0441 0.1281 0.1134 0.1714 0.1300 0.0366 0.0119
sum-of-spec-over-margin 0.0089 0.0292 0.0406 0.0951 0.0089 0.0069 0.0054 0.0051 0.0054 0.0072

sum-of-spec 0.0127 0.0324 0.0466 0.0876 0.0117 0.0096 0.0080 0.0076 0.0079 0.0099
vc-dim 0.0422 0.0564 0.0518 0.0039 0.0422 0.0443 0.0627 0.0412 0.0033 0.0000

conditional entropy 0.9836 0.8397 0.9331 0.8308 0.9960 0.9746 0.9977 N/A N/A N/A

Table 6: Complexity measures (rows), hyperparameters (columns) and the mutual information
with models trained on CIFAR-10.

Figure 4: Distribution of training error on the trained models.
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batchsize dropout
learning

rate depth optimizer
weight
decay width overall τ Ψ

vc dim 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 -0.0478 -0.3074 -0.1497
# params 0.0000 0.0000 0.0000 -1.0000 0.0000 0.0000 -0.0478 -0.1934 -0.1497
sharpness 0.1898 -0.4092 0.4569 0.9752 0.1708 0.2444 0.1202 0.5438 0.2497
pacbayes 0.0606 -0.5806 0.0503 0.9447 0.0831 -0.2123 0.0034 0.3688 0.0499

sharpness 0ref 0.2324 -0.1807 0.6329 0.9595 0.2196 0.5018 0.1923 0.5175 0.3654
pacbayes 0ref 0.1983 -0.2055 0.5979 0.8863 0.2286 0.4583 0.0655 0.3708 0.3185
displacement -0.1071 -0.8603 -0.6270 0.8874 -0.1677 -0.6319 -0.0302 0.1765 -0.2196

spectral complexity -0.2854 -0.7928 -0.6423 -0.9989 -0.1063 -0.2913 -0.0799 -0.6284 -0.4567
spectral complexity 0ref -0.1362 -0.6110 -0.4688 -0.9932 -0.0513 0.0671 -0.1096 -0.6163 -0.3290

spectral complexity 0ref last2 -0.1362 -0.6110 -0.4688 -0.9628 -0.0513 0.0671 -0.2797 -0.5870 -0.3490
spectral complexity 0ref last1 0.6285 0.3961 0.6646 -0.8274 0.2317 0.6047 0.0525 -0.1264 0.2501

spectral product -0.2603 -0.5835 -0.6095 -0.9628 -0.1063 -0.0343 -0.2705 -0.5615 -0.4039
spectral product om -0.2582 -0.6419 -0.5852 -0.9289 -0.0918 -0.0681 -0.2477 -0.5404 -0.4031

spectral product dd/2 -0.2603 -0.5835 -0.6095 0.9989 -0.1063 -0.0343 -0.2705 0.4627 -0.1237
spectral produce dd/2 om -0.2582 -0.6419 -0.5852 0.9921 -0.0918 -0.0681 -0.2477 0.4421 -0.1287

spectral sum -0.2734 -0.7752 -0.3386 0.9616 -0.0669 -0.2637 -0.0434 0.3542 -0.1142
frob product 0.5098 -0.0369 0.5439 -1.0000 0.1861 0.6508 0.0126 -0.4983 0.1238

frob product om 0.4673 -0.1262 0.5534 -1.0000 0.2079 0.6375 0.0091 -0.5001 0.1070
frob product dd/2 0.5098 -0.0369 0.5439 0.9853 0.1861 0.6508 0.0126 0.5928 0.4074

frob product dd/2 om 0.4673 -0.1262 0.5534 0.9492 0.2079 0.6375 0.0091 0.5638 0.3855
median margin 0.0684 0.3861 -0.1519 -0.9314 -0.1018 0.3211 0.0216 -0.3829 -0.0554
input grad norm 0.0597 0.6277 -0.2289 0.9955 0.0026 0.0383 0.0216 0.6360 0.2166

logit entropy -0.0320 -0.4506 0.1481 0.7999 0.1360 -0.2460 -0.0106 0.3001 0.0492
path norm 0.2150 0.2565 0.0464 0.9854 0.1018 0.3885 0.0614 0.5626 0.2936

parameter norm 0.3246 -0.4794 0.1730 0.6639 0.0780 0.1383 -0.0398 0.3747 0.1227
fr norm cross-entropy 0.2313 0.0500 0.0222 -0.6189 0.1008 0.3190 0.0546 -0.2844 0.0227

fr norm logit sum 0.2313 0.0500 0.0222 -0.3277 0.1008 0.3190 0.0546 -0.1168 0.0643
fr norm logit margin 0.2313 0.0500 0.0222 -0.3277 0.1008 0.3190 0.0546 -0.1168 0.0643
path norm/margin 0.1107 0.0291 0.1340 0.9978 0.1504 0.2098 0.0683 0.5798 0.2429

one epoch loss 0.4390 -0.5989 0.2624 0.9729 0.1602 -0.0445 -0.0034 0.5186 0.1697
final loss 0.0923 -0.4091 -0.0042 -0.0096 0.0811 0.1118 -0.0432 -0.0693 -0.0258

1/sigma gaussian 0.1867 -0.1862 0.6164 0.6665 0.2280 0.4985 0.1512 0.3148 0.3087
1/sigma sharpness 0.2321 -0.1549 0.6330 0.9363 0.2253 0.5163 0.2179 0.4930 0.3723

min(norm distance) 0.3235 -0.4785 0.1727 0.6633 0.0766 0.1391 -0.0405 0.3744 0.1223
step between -0.1224 -0.1610 -0.0061 0.1556 0.0737 -0.0415 -0.0154 -0.0720 -0.0167

step to -0.6667 -0.6982 -0.4814 0.8738 -0.1609 -0.6314 -0.1015 0.0035 -0.2666
step to 0.1 -0.6656 -0.9120 -0.3613 0.9556 -0.1450 -0.5974 -0.0414 0.0944 -0.2524

1/param sharpness 0.4546 0.3254 0.6650 0.9831 0.2753 0.6495 0.2680 0.5676 0.5173
1/param gaussian 0.2525 0.1250 0.4758 0.9805 0.1629 0.2698 0.0871 0.5674 0.3362

ratio cplx sharpness -0.0787 -0.7181 -0.4883 -1.0000 -0.0640 -0.4720 -0.0502 -0.2254 -0.4102
ratio cplx sharpness 0ref 0.5005 -0.3831 0.3153 -1.0000 0.1648 0.2440 -0.0502 -0.1687 -0.0298

ratio cplx gaussian 0.2289 -0.3322 0.2298 -0.9786 0.1625 -0.0429 -0.0484 -0.1309 -0.1116
ratio cplx gaussian 0ref 0.0984 -0.6821 0.2351 -0.9842 0.1304 0.0542 -0.0484 -0.1682 -0.1709
ratio cplx sharpness u1 0.2778 -0.4237 0.5492 -0.9707 0.1830 0.4040 -0.0434 -0.1580 -0.0034

ratio cplx sharpness 0ref u1 0.3606 -0.2165 0.6476 -0.9650 0.2421 0.5463 -0.0422 -0.1364 0.0818
ratio cplx gaussian u1 0.2300 -0.4279 -0.0703 0.9707 0.1346 -0.3957 0.0302 0.5052 0.0674

ratio cplx gaussian 0ref u1 0.4519 -0.2101 0.4876 0.9887 0.1812 0.2924 0.1464 0.6390 0.3340
grad var 0.2128 -0.1862 0.2458 0.0343 0.1711 0.3211 0.1149 0.0594 0.1305

grad var 1 epoch 0.1590 0.1912 -0.0159 0.0118 -0.0534 0.2760 -0.0046 0.1222 0.0806
oracle 0.01 0.3811 0.6463 0.4293 0.9517 0.3478 0.3946 0.3572 0.8070 0.5012
oracle 0.02 0.2410 0.4102 0.2964 0.8730 0.1886 0.2190 0.1741 0.6854 0.3432
oracle 0.05 0.1238 0.2235 0.1530 0.6706 0.0522 0.1057 0.0785 0.5162 0.2010
oracle 0.1 -0.0239 0.0708 0.0844 0.4356 0.0408 0.0526 0.0512 0.3322 0.1017

canonical ordering -0.6732 0.9539 0.6424 1.0000 -0.1028 0.6662 0.0478 0.0123 0.3620
canonical ordering depth -0.0304 -0.0247 0.0105 -1.0000 0.0253 -0.0332 0.0262 -0.6241

Table 7: Complexity measures (rows), hyperparameters (columns) and the rank-correlation coeffi-
cients with models trained on SVHN dataset.
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batchsize dropout
learning

rate depth optimizer
weight
decay width overall τ Ψ

vc dim 0.0000 0.0000 0.0000 -0.7520 0.0000 0.0000 -0.0392 -0.1770 -0.1130
# params 0.0000 0.0000 0.0000 -0.7520 0.0000 0.0000 -0.0392 -0.1194 -0.1130
sharpness 0.2059 -0.1966 0.1336 0.6358 -0.0532 -0.0127 -0.0317 0.2325 0.0973
pacbayes 0.1480 -0.0488 -0.0611 0.5493 -0.0570 -0.2340 -0.0563 0.1477 0.0343

sharpness 0ref 0.2271 0.0167 0.4462 0.6262 0.0600 0.1563 -0.0058 0.2995 0.2181
pacbayes 0ref 0.2587 0.1655 0.5282 0.5238 0.1102 0.1318 -0.0174 0.3104 0.2430
displacement -0.1814 -0.7677 -0.6504 0.3767 -0.2403 -0.3831 -0.0392 -0.2652 -0.2693

spectral complexity -0.1495 -0.5752 -0.6208 -0.7407 -0.2650 -0.2885 -0.0945 -0.4333 -0.3906
spectral complexity 0ref -0.0837 -0.4196 -0.4747 -0.7379 -0.1776 -0.1468 -0.1085 -0.3860 -0.3070

spectral complexity 0ref last2 -0.0837 -0.4196 -0.4747 -0.7284 -0.1776 -0.1468 -0.1857 -0.3940 -0.3166
spectral complexity 0ref last1 0.2606 0.3893 0.7221 -0.7435 0.4169 0.4404 0.0615 0.0477 0.2210

spectral product -0.2034 -0.5619 -0.6199 -0.7520 -0.2184 -0.1269 -0.0691 -0.4176 -0.3645
spectral product om -0.1257 -0.4727 -0.5549 -0.7181 -0.2260 -0.2113 -0.1707 -0.4238 -0.3542

spectral product dd/2 -0.2034 -0.5619 -0.6199 0.7520 -0.2184 -0.1269 -0.0691 0.0547 -0.1496
spectral produce dd/2 om -0.1257 -0.4727 -0.5549 0.7501 -0.2260 -0.2113 -0.1707 0.0868 -0.1445

spectral sum -0.2005 -0.8378 -0.5692 0.5832 -0.3751 -0.0899 -0.0392 -0.1517 -0.2184
frob product 0.2854 -0.1532 0.4967 -0.7520 0.3609 0.4656 0.0054 -0.2162 0.1013

frob product om 0.2816 -0.1987 0.4613 -0.7520 0.2365 0.3729 0.0130 -0.2113 0.0592
frob product dd/2 0.2854 -0.1532 0.4967 0.7652 0.3609 0.4656 0.0054 0.3407 0.3180

frob product dd/2 om 0.2816 -0.1987 0.4613 0.7643 0.2365 0.3729 0.0130 0.3356 0.2758
median margin -0.1652 0.3153 -0.0850 -0.5474 0.1263 0.1738 0.2142 -0.1295 0.0046
input grad norm 0.0851 0.6548 -0.2502 0.7379 -0.1871 -0.0009 0.0088 0.3563 0.1498

logit entropy 0.2200 -0.3496 0.3906 0.5584 0.1614 -0.2819 -0.2095 0.1378 0.0699
path norm 0.2549 0.5258 0.2951 0.8161 0.2593 0.2223 0.0420 0.3892 0.3451

parameter norm 0.2472 -0.0090 0.3754 0.1287 0.2716 0.1569 -0.0458 0.0865 0.1607
fr norm cross-entropy 0.0727 0.3722 0.0162 -0.5314 -0.1595 0.0355 0.0231 0.0246 -0.0245

fr norm logit sum 0.0727 0.3722 0.0162 -0.0844 -0.1595 0.0355 0.0231 0.1780 0.0394
fr norm logit margin 0.0727 0.3722 0.0162 -0.0844 -0.1595 0.0355 0.0231 0.1780 0.0394
path norm/margin 0.2510 0.0441 0.3314 0.7718 0.1206 0.0571 -0.0558 0.3580 0.2172

one epoch loss 0.1843 -0.4509 0.0544 0.0655 0.0684 -0.0012 -0.0425 -0.1217 -0.0174
final loss 0.1452 -0.1095 -0.0630 0.3484 -0.2080 -0.1140 -0.2236 0.1410 -0.0321

1/sigma gaussian 0.2525 0.1905 0.4993 0.3698 0.0822 0.1298 0.0660 0.3213 0.2272
1/sigma sharpness 0.2120 0.0008 0.3879 0.6097 0.0161 0.1191 -0.0073 0.3005 0.1912

min(norm distance) 0.2472 -0.0090 0.3754 0.1287 0.2716 0.1569 -0.0458 0.0865 0.1607
step between -0.0053 -0.0747 -0.0792 0.1688 0.0318 0.0621 -0.0168 -0.0210 0.0124

step to -0.3219 -0.5252 -0.4186 0.3199 -0.1076 -0.4497 -0.0095 -0.2071 -0.2161
step to 0.1 -0.3219 -0.8336 -0.2626 0.2859 -0.0699 -0.4231 -0.0062 -0.2350 -0.2331

1/param sharpness 0.2127 0.2602 0.4458 0.6430 0.0354 0.1846 0.0071 0.3613 0.2555
1/param gaussian 0.1660 0.0065 0.4001 0.6820 0.0319 -0.0879 -0.1308 0.2878 0.1525

ratio cplx sharpness -0.1776 -0.7743 -0.6476 -0.7520 -0.2498 -0.3803 -0.0392 -0.1602 -0.4315
ratio cplx sharpness 0ref 0.3789 -0.0109 0.5033 -0.7520 0.3067 0.2688 -0.0392 -0.0867 0.0937

ratio cplx gaussian 0.1404 -0.2537 0.1203 -0.7501 0.0446 -0.2183 -0.0392 -0.1123 -0.1366
ratio cplx gaussian 0ref 0.1309 -0.4026 0.2961 -0.7520 0.0389 -0.1434 -0.0392 -0.1075 -0.1245
ratio cplx sharpness u1 0.2091 -0.1873 0.1958 -0.7520 -0.0114 0.1140 -0.0392 -0.0971 -0.0673

ratio cplx sharpness 0ref u1 0.2615 0.0669 0.5110 -0.7520 0.1652 0.2527 -0.0392 -0.0774 0.0666
ratio cplx gaussian u1 0.0658 -0.2413 -0.0411 0.6690 0.0047 -0.3558 -0.1296 0.1672 -0.0040

ratio cplx gaussian 0ref u1 0.2234 -0.0346 0.4737 0.6954 0.0722 -0.0239 -0.0468 0.3329 0.1942
grad var 0.1013 0.3514 0.3706 0.2730 0.1035 -0.0652 0.0250 0.3538 0.1656

grad var 1 epoch 0.0801 0.4045 0.3792 -0.3701 0.1349 0.1328 0.0814 0.1279 0.1204
oracle 0.01 0.5789 0.8862 0.7507 0.8274 0.5878 0.5464 0.5123 0.8470 0.6700
oracle 0.02 0.3588 0.7288 0.5922 0.5804 0.3970 0.3440 0.3927 0.7032 0.4848
oracle 0.05 0.1114 0.4149 0.3066 0.2937 0.1918 0.1473 0.1697 0.4267 0.2336
oracle 0.1 0.1037 0.2281 0.1738 0.1957 0.1225 0.0692 0.0876 0.2423 0.1401

canonical ordering -0.3254 0.9459 0.7125 0.7520 -0.0598 0.4628 0.0392 -0.0151 0.3610
canonical ordering depth -0.0238 -0.0337 0.0105 -0.7520 -0.0152 0.0353 -0.0054 -0.2835 -0.1120

Table 8: Complexity measures (rows), hyperparameters (columns) and the rank-correlation coeffi-
cients with models trained on CIFAR-10 when converged to Loss = 0.1.
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batchsize dropout
learning

rate depth optimizer
weight
decay width overall τ Φ

vc dim 0 0 0 -0.9073 0 0 -0.1487 -0.2509 -0.1509
# params 0 0 0 -0.9073 0 0 -0.1487 -0.1751 -0.1509
sharpness 0.5492 -0.5155 0.4636 0.8247 0.2134 0.2025 0.0083 0.2848 0.2495
pacbayes 0.3896 -0.4459 0.0427 0.6289 0.1721 -0.1757 -0.1266 0.0647 0.0693
sharpness-orig 0.5493 -0.3492 0.7147 0.8101 0.3006 0.5655 0.1976 0.3996 0.3984
pacbayes-orig 0.5399 -0.0847 0.7237 0.5377 0.3561 0.5597 -0.0693 0.2895 0.3662
frob-distance -0.3048 -0.8366 -0.7253 0.5301 -0.2437 -0.6701 -0.1499 -0.2606 -0.3429
spec-init -0.3414 -0.8436 -0.7326 -0.9068 -0.2422 -0.3134 -0.2133 -0.5743 -0.5133
spec-orig -0.2633 -0.7593 -0.678 -0.9068 -0.1611 -0.0683 -0.2273 -0.5354 -0.4377
spec-orig-main -0.2633 -0.7593 -0.678 -0.9064 -0.1611 -0.0683 -0.2662 -0.5451 -0.4432
fro / spec 0.5884 0.3703 0.7501 -0.9014 0.3661 0.658 -0.0219 -0.0086 0.2585
prod-of-spec -0.4718 -0.7237 -0.7302 -0.9072 -0.2385 -0.1409 -0.2126 -0.5598 -0.4893
prod-of-spec/margin -0.3222 -0.7803 -0.716 -0.9066 -0.2066 -0.1614 -0.1727 -0.5698 -0.4665
sum-of-spec -0.4718 -0.7237 -0.7302 0.9072 -0.2385 -0.1409 -0.2126 0.1023 -0.2301
sum-of-spec/margin -0.3222 -0.7803 -0.716 0.9066 -0.2066 -0.1614 -0.1727 0.0662 -0.2075
spec-dist -0.4506 -0.8263 -0.5791 0.7297 -0.3413 -0.2027 -0.1485 -0.1044 -0.2598
prod-of-fro 0.4659 -0.1885 0.5283 -0.9072 0.3342 0.7255 -0.0835 -0.2972 0.1250
prod-of-fro/margin 0.5377 -0.372 0.5888 -0.9072 0.4024 0.7329 -0.0673 -0.2957 0.1308
sum-of-fro 0.4659 -0.1885 0.5283 0.9099 0.3342 0.7255 -0.0835 0.4157 0.3845
sum-of-fro/margin 0.5377 -0.372 0.5888 0.8832 0.4024 0.7329 -0.0673 0.3894 0.3865
1/margin -0.3334 0.5914 -0.2543 -0.7539 -0.2257 0.2097 -0.0988 -0.1257 -0.1236
input grad norm 0.5235 0.263 0.0544 0.6239 0.0888 0.5969 0.2054 0.3836 0.3366
neg-entropy 0.3686 -0.5443 0.2609 0.6326 0.2296 -0.1567 0.0973 0.1472 0.1269
path-norm 0.2457 0.262 0.0397 0.9296 0.1271 0.3291 0.1558 0.3718 0.2984
param-norm 0.2414 -0.5194 0.1611 0.3346 0.1866 0.1198 -0.1509 0.0729 0.0533
fisher-rao 0.4327 0.1625 0.2494 -0.5317 0.1322 0.5559 0.1484 0.1028 0.1642
fr norm logit sum 0.4327 0.1625 0.2494 -0.094 0.1322 0.5559 0.1484 0.2238 0.2267
fr norm logit margin 0.4327 0.1625 0.2494 -0.094 0.1322 0.5559 0.1484 0.2238 0.2267
path norm/margin 0.3692 -0.2022 0.2159 0.9189 0.2523 0.2103 0.1582 0.3724 0.2747
one epoch loss 0.3939 -0.4362 0.0477 0.1573 0.1149 -0.0475 0.0128 -0.0147 0.0347
cross-entropy 0.4443 -0.4015 0.1518 0.3821 0.1367 0.2322 0.0676 0.1515 0.1447
1/sigma pacbayes 0.5109 -0.0349 0.7551 0.2032 0.3738 0.6048 0.0686 0.2993 0.3545
1/sigma sharpness 0.536 -0.3169 0.7154 0.7529 0.3021 0.5726 0.2615 0.3976 0.4034
min(norm distance) 0.2414 -0.5194 0.1611 0.3346 0.1866 0.1198 -0.1509 0.0729 0.0533
num-step-0.1-to-0.01-loss -0.1458 -0.0816 -0.0166 0.1318 0.0949 -0.0348 -0.0387 -0.086 -0.0130
step to -0.6798 -0.5418 -0.4441 0.3493 -0.0578 -0.6909 0.0102 -0.2812 -0.2936
num-step-to-0.1-loss -0.68 -0.8526 -0.2662 0.4545 -0.0291 -0.6484 0.0291 -0.2626 -0.2847
1/alpha sharpness mag 0.5802 0.1381 0.7537 0.8181 0.3163 0.7371 0.2416 0.481 0.5122
1/alpha pacbayes mag 0.5089 -0.2388 0.5203 0.8959 0.1907 0.1628 0.1738 0.3649 0.3162
pac-sharpness-mag-init -0.2967 -0.8451 -0.7165 -0.9072 -0.2637 -0.6387 -0.1488 -0.2256 -0.5452
pac-sharpness-mag-orig 0.4145 -0.5227 0.3102 -0.9072 0.1916 0.2586 -0.1488 -0.159 -0.0577
pacbayes-mag-init 0.4783 -0.6438 0.2402 -0.9072 0.1446 -0.1006 -0.1488 -0.1669 -0.1339
pacbayes-mag-orig 0.4694 -0.7749 0.317 -0.9072 0.1343 0.0315 -0.1488 -0.1682 -0.1255
ratio cplx sharpness u1 0.5034 -0.5539 0.6314 -0.9064 0.2799 0.4205 -0.1487 -0.1424 0.0323
ratio cplx sharpness 0ref u1 0.5602 -0.3762 0.7642 -0.9062 0.3653 0.6861 -0.1487 -0.1237 0.1350
ratio cplx gaussian u1 0.4365 -0.6655 -0.0286 0.8761 0.1058 -0.403 0.0465 0.1778 0.0525
ratio cplx gaussian 0ref u1 0.5721 -0.4788 0.5105 0.9018 0.1896 0.1495 0.168 0.4093 0.2875
grad-noise-final 0.3663 0.0039 0.3066 0.0813 0.1773 0.4492 0.1615 0.2521 0.2209
grad-noise-epoch-1 -0.0376 0.3618 0.2691 -0.5688 -0.0342 0.2535 -0.0616 -0.0252 0.0260
oracle 0.01 0.588 0.8718 0.7047 0.9094 0.5191 0.6117 0.5107 0.852 0.6736
oracle 0.02 0.3904 0.6862 0.5405 0.7226 0.35 0.3969 0.336 0.7197 0.4889
oracle 0.05 0.1827 0.3694 0.3099 0.3893 0.1478 0.1676 0.1665 0.4518 0.2476
oracle 0.1 0.106 0.2132 0.1694 0.2084 0.0922 0.0859 0.082 0.259 0.1367
canonical ordering -0.668 0.9753 0.7421 0.9073 -0.0511 0.7268 0.1487 -0.0039 0.3973
canonical ordering depth 0.0025 -0.012 -0.0019 -0.9073 0.0041 -0.0133 -0.0002 -0.3605 -0.1326

Table 9: Complexity measures (rows), hyperparameters (columns) and the average rank-
correlation coefficients over 5 runs with models trained on CIFAR-10. The numerical values
are consistent of that of Table 5.
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batchsize dropout
learning

rate depth optimizer
weight
decay width overall τ Ψ

vc dim 0 0 0 0.0038 0 0 0.0179 0.0006 0.0026
# params 0 0 0 0.0038 0 0 0.0179 0.0009 0.0026
sharpness 0.0124 0.0129 0.0153 0.0036 0.0196 0.0154 0.0181 0.0026 0.0056
pacbayes 0.0171 0.0159 0.0108 0.0086 0.0074 0.0078 0.0169 0.0008 0.0048
sharpness-orig 0.0082 0.0106 0.0062 0.0073 0.0192 0.0151 0.0164 0.0034 0.0048
pacbayes-orig 0.011 0.0062 0.0111 0.0083 0.0162 0.013 0.0173 0.0025 0.0047
frob-distance 0.0102 0.0049 0.0067 0.0058 0.017 0.0102 0.0176 0.0035 0.0043
spec-init 0.0061 0.0029 0.0072 0.004 0.0192 0.0191 0.0127 0.001 0.0045
spec-orig 0.0015 0.0096 0.0072 0.004 0.0166 0.0234 0.0136 0.0009 0.0049
spec-orig-main 0.0015 0.0096 0.0072 0.0037 0.0166 0.0234 0.0083 0.0004 0.0046
fro / spec 0.0164 0.0105 0.0034 0.0048 0.0205 0.0151 0.0203 0.0024 0.0055
prod-of-spec 0.0053 0.0109 0.0048 0.0037 0.0237 0.0249 0.0101 0.0008 0.0055
prod-of-spec/margin 0.0075 0.0078 0.0082 0.0039 0.0225 0.0232 0.0054 0.0006 0.0051
sum-of-spec 0.0053 0.0109 0.0048 0.0037 0.0237 0.0249 0.0101 0.0014 0.0055
sum-of-spec/margin 0.0075 0.0078 0.0082 0.0035 0.0225 0.0232 0.0054 0.0015 0.0051
spec-dist 0.012 0.0095 0.0081 0.0084 0.0221 0.0122 0.0177 0.0036 0.0052
prod-of-fro 0.016 0.0096 0.0117 0.0037 0.0191 0.0121 0.0174 0.0014 0.0052
prod-of-fro/margin 0.0112 0.0126 0.0083 0.0037 0.0224 0.0093 0.0141 0.0014 0.0049
sum-of-fro 0.016 0.0096 0.0117 0.0034 0.0191 0.0121 0.0174 0.0024 0.0052
sum-of-fro/margin 0.0112 0.0126 0.0083 0.0054 0.0224 0.0093 0.0141 0.002 0.0049
1/margin 0.0191 0.0059 0.0154 0.0068 0.0221 0.0079 0.0224 0.0026 0.0060
input grad norm 0.0147 0.0186 0.019 0.0018 0.0222 0.0161 0.011 0.0043 0.0061
neg-entropy 0.0163 0.0169 0.012 0.0093 0.022 0.0184 0.0204 0.0025 0.0064
path-norm 0.0103 0.006 0.0079 0.0034 0.0174 0.0115 0.0178 0.0014 0.0044
param-norm 0.0125 0.0061 0.0071 0.0077 0.0083 0.0051 0.0175 0.0016 0.0038
fisher-rao 0.0192 0.0153 0.0084 0.0083 0.0311 0.01 0.0158 0.0069 0.0065
fr norm logit sum 0.0192 0.0153 0.0084 0.0169 0.0311 0.01 0.0158 0.0075 0.0068
fr norm logit margin 0.0192 0.0153 0.0084 0.0169 0.0311 0.01 0.0158 0.0075 0.0068
path norm/margin 0.0095 0.0172 0.0054 0.0056 0.0157 0.0224 0.0192 0.0019 0.0056
one epoch loss 0.0169 0.0128 0.0146 0.0066 0.0223 0.0126 0.0173 0.005 0.0058
cross-entropy 0.0221 0.0128 0.0174 0.0138 0.0151 0.014 0.0183 0.0023 0.0062
1/sigma pacbayes 0.0095 0.0031 0.0081 0.0066 0.0173 0.0132 0.0162 0.0035 0.0044
1/sigma sharpness 0.0084 0.009 0.0077 0.0126 0.0185 0.0119 0.0121 0.0039 0.0045
min(norm distance) 0.0125 0.0061 0.0071 0.0077 0.0083 0.0051 0.0175 0.0016 0.0038
num-step-0.1-to-0.01-loss 0.0049 0.0094 0.0071 0.0182 0.0147 0.0081 0.0222 0.0023 0.0051
step to 0.0118 0.011 0.0162 0.0169 0.0135 0.0101 0.012 0.002 0.0050
num-step-to-0.1-loss 0.0119 0.0059 0.0101 0.0236 0.0191 0.0148 0.0152 0.002 0.0058
1/alpha sharpness mag 0.0108 0.0224 0.0048 0.0082 0.0262 0.0097 0.0201 0.0031 0.0062
1/alpha pacbayes mag 0.0198 0.0166 0.0084 0.0037 0.0228 0.015 0.0237 0.0044 0.0065
pac-sharpness-mag-init 0.0113 0.0039 0.0139 0.0037 0.0186 0.0155 0.0179 0.0011 0.0051
pac-sharpness-mag-orig 0.016 0.0061 0.0127 0.0037 0.0188 0.0139 0.0179 0.0008 0.0052
pacbayes-mag-init 0.022 0.0059 0.0171 0.0037 0.0173 0.0131 0.0179 0.001 0.0057
pacbayes-mag-orig 0.0221 0.0077 0.0083 0.0037 0.0213 0.0134 0.0179 0.0009 0.0057
ratio cplx sharpness u1 0.0177 0.0134 0.0127 0.0036 0.0261 0.012 0.0183 0.0009 0.0061
ratio cplx sharpness 0ref u1 0.0124 0.0079 0.0052 0.0039 0.0266 0.0056 0.0183 0.0006 0.0052
ratio cplx gaussian u1 0.0205 0.0106 0.0075 0.0019 0.0156 0.01 0.0218 0.0031 0.0054
ratio cplx gaussian 0ref u1 0.0239 0.0126 0.0035 0.0028 0.0173 0.0087 0.017 0.0041 0.0054
grad-noise-final 0.0447 0.0598 0.0628 0.0337 0.0394 0.0243 0.0363 0.0309 0.0170
grad-noise-epoch-1 0.0547 0.0165 0.0542 0.0316 0.082 0.0173 0.0514 0.0478 0.0186
oracle 0.01 0.0178 0.0078 0.0153 0.0108 0.0189 0.0086 0.026 0.0026 0.0061
oracle 0.02 0.0133 0.0135 0.0081 0.0138 0.0272 0.0167 0.0058 0.0033 0.0058
oracle 0.05 0.0091 0.0249 0.0133 0.0136 0.0171 0.015 0.0239 0.0076 0.0066
oracle 0.1 0.0188 0.0333 0.0292 0.0341 0.0145 0.0185 0.0321 0.0107 0.0102
canonical ordering 0.0111 0.004 0.0073 0.0038 0.0185 0.0108 0.0179 0.0027 0.0045
canonical ordering depth 0.018 0.0226 0.0208 0.0038 0.0198 0.0273 0.0202 0.0046 0.0076

Table 10: Complexity measures (rows), hyperparameters (columns) and the standard deviation of
each entry measured over 5 runs with models trained on CIFAR-10. The standard deviation for
Ψ is computed assuming that each hyperparamters are independent from each other. We see that all
standard deviation are quite small, suggesting the results in of Table 5 are statistically significant.
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D COMPLEXITY MEASURES

In this section, we look at different complexity measures. When a measure µ is based on a general-
ization bound, we chose it so that the following is true with probability 0.99 (we choose the failure
probability δ to be 0.01):

L ≤ L̂+

√
µ

m
(15)

We also consider measures which do not provably bound the generalization error and evaluate those.

Note that in almost all cases, the canonical ordering given based on some “common" assumptions
are positively correlated with the generalization in terms of both τ and Ψ; however, for optimizer, the
correlation τ is close to 0. This implies that the choice of optimizer is only essentially uncorrelated
with the generalization gap in the range of models we consider. This ordering helps validate many
techniques used by the practioners.

D.1 VC-DIMENSION BASED MEASURES

We start by restating the theorem in (Bartlett et al., 2019) which provides an upper bound on the
VC-dimension of any piece-wise linear network.

Theorem 1 (Bartlett et al. (2019)) Let F be the class of feed-forward networks with a fixed com-
putation graph of depth d and ReLU activations. Let ai and qi be the number of activations and
parameters in layer i. Then VC-dimension of F can be bounded as follows:

VC(F) ≤ d+

(
d∑
i=1

(d− i+ 1)qi

)
log2

8e

d∑
i=1

iai log2

4e

d∑
j=1

jaj


Theorem 2 Given a convolutional network f , for any δ > 0, with probability 1 − δ over the the
training set:

L ≤ L̂+ 4000

√
d log2 (6dn)

3∑d
i=1 k

2
i cici−1

m
+

√
log(1/δ)

m
(16)

Proof We simplify the bound in Theorem 1 using a d′ to refer to the depth instead of d:

VC(F) ≤ d′ +

 d′∑
i=1

(d− i+ 1)qi

 log2

8e

d′∑
i=1

iai log2

4e

d′∑
j=1

jaj


≤ d′ +

 d′∑
i=1

(d′ − i+ 1)qi

 log2

8e

d′∑
i=1

iai

2

≤ d′ + 2 log2

8e

d′∑
i=1

iai

 d′∑
i=1

(d′ − i+ 1)qi

≤ 3d′ log2

8e

d′∑
i=1

iai

 d′∑
i=1

qi

In order to extend the above bound to a convolutional network, we need to present a pooling layer
with ReLU activations. First note that maximum of two inputs can be calculated using two layers
with ReLU and linear activations as max(x1, x2) = x1 +ReLU(x2−x1). Now, since max-pooling
at layer i has kernel sizes k′i, we need d4 log2(k′i)e layers to present that but given that the kernel
size of the max-pooling layer is at most size of the image, we have

d4 log2(k′i)e ≤ d4 log2(n2)e ≤ d8 log2(n)e ≤ 9 log2(n)
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Therefore, we have d′ ≤ 9d log2(n). The number of activations in any of these layers is at most n2ci
since there are at most n2 pairs of neighbor pixels in an n × n image with ci channels. We ignore
strides when calculating the upper bound since it only reduces number of activations at a few layers
and does not change the bound significantly. Using these bounds ond′, ai and qi the equivalent
network, we can bound the VC dimension as follows:

VC(F) ≤ 27d log2(n) log2

(
8e(9d log2(n))2n2

)
(9 log2(n))

d∑
i=1

k2i ci−1(ci + 1)

≤ 729d log2(n)2 log2 (6dn)

d∑
i=1

k2i ci−1(ci + 1)

≤ 729d log2 (6dn)
3

d∑
i=1

k2i ci−1(ci + 1)

For binary classifiers, generalization error can be in terms of Rademacher complexity (Mohri et al.,
2012) which in turn can be bounded by 72

√
VC/m (Kontorovich, 2016). Therefore, we can get the

following9 generalization bound:

L ≤ L̂+ 144

√
V C(F)

m
+

√
log(1/δ)

m
(17)

For multi-class classification, the generalization error can be similarly bounded by Graph dimension
which is an extension of VC-dimension. A simple approach get a bound on Graph dimension is to
consider all pairs of classes as binary classification problem which bounds the graph dimension by
κ2 V C(F). There, putting everything together, we get the following generalization bound:

L ≤ L̂+ 4000κ

√
d log2 (6dn)

3∑d
i=1 k

2
i ci−1(ci + 1)

m
+

√
log(1/δ)

m
(18)

Inspired by Theorem 2, we define the following V C-based measure for generalization:

µV C(fw) =

4000κ

√√√√d log2 (6dn)
3

d∑
i=1

k2i ci−1(ci + 1) +
√

log(1/δ)

2

(19)

Since some of the dependencies in the above measure are probably proof artifacts, we also define
another measure that is nothing but the number of parameters of the model:

µparam =

d∑
i=1

k2i ci−1(ci + 1) (20)

D.1.1 MEASURES ON THE OUTPUT OF THE NETWORK

While measures that can be calculated only based on the output of the network cannot reveal com-
plexity of the network, they can still be very informative for predicting generalization. Therefore,
we define a few measures that can be calculated solely based on the output of the network.

We start by looking at the cross-entropy over the output. Even though we used a cross-entropy
based stopping criterion, the cross-entropy of the final models is not exactly the same as the stopping
criterion and it could be informative. Hence we define the following measure:

µcross-entropy =
1

m

m∑
i=1

`(fw(Xi), yi) (21)

where ` is the cross-entropy loss.

9The generalization gap is bounded by two times Rademacher Complexity, hence the constant 144.
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Another useful and intuitive notion that appears in generalization bounds is margin. In all measures
that involve margin γ, we set the margin γ to be the 10-th percentile of the margin values on the
training set and therefore ensuring L̂γ ≤ 0.1. Even though margin alone is not a sensible gener-
alization measure and can be artificially increased by scaling up the magnitude of the weights, it
could still reveal information about training dynamics and therefore be informative. We report the
following measure based on the margin:

µ1/margin(fw) =
1

γ2
(22)

Finally, entropy of the output is another interesting measure and it has been shown that regularizing
it can improve generalization in deep learning (Pereyra et al., 2017). With a fixed cross-entropy,
increasing the entropy corresponds to distribute the uncertainty of the predictions equally among
the wrong labels which is connected to label smoothing and increasing the margin. We define the
following measure which is the negative entropy of the output of the network:

µneg-entropy(fw) =
1

m

m∑
i=1

κ∑
j=1

pi[j] log(pi[j]) (23)

where pi[j] is the predicted probability of the class j for the input data Xi.

D.2 (NORM & MARGIN)-BASED MEASURES

Several generalization bounds have been proved for neural networks using margin and norm no-
tions. In this section, we go over several such measures. For fully connected networks, Bartlett and
Mendelson (2002) have shown a bound based on product of `1,∞ norm of the layer weights times a
2d factor where `1,∞ is the maximum over hidden units of the `2 norm of the incoming weights to
the hidden unit. Neyshabur et al. (2015b) proved a bound based on product of Frobenius norms of
the layer weights times a 2d factor and Golowich et al. (2017) was able to improve the factor to

√
d.

Bartlett et al. (2017) proved a bound based on product of spectral norm of the layer weights times
sum over layers of ratio of Frobenius norm to spectral norm of the layer weights and Neyshabur et al.
(2018a) showed a similar bound can be achieved in a simpler way using PAC-bayesian framework.

Spectral Norm Unfortunately, none of the above founds are directly applicable to convolutional
networks. Pitas et al. (2017) built on Neyshabur et al. (2018a) and extended the bound on the spectral
norm to convolutional networks. The bound is very similar to the one for fully connected networks
by Bartlett et al. (2017). We next restate their generalization bound for convolutional networks
including the constants.

Theorem 3 (Pitas et al. (2017)) Let B an upper bound on the `2 norm of any point in the input
domain. For any B, γ, δ > 0, the following bound holds with probability 1− δ over the training set:

L ≤ L̂γ +

√√√√(84B
∑d
i=1 ki

√
ci +

√
ln(4n2d)

)2∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj−W0
j‖2F

‖Wj‖22
+ ln(mδ )

γ2m
(24)

Inspired by the above theorem, we define the following spectral measure:

µspec,init(fw) =

(
84B

∑d
i=1 ki

√
ci +

√
ln(4n2d)

)2∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj−W0
j‖2F

‖Wj‖22
+ ln(mδ )

γ2

(25)
The generalization bound in Theorem 3 depends on reference tensors W0

i . We chose the initial
tensor as the reference in the above measure but another reasonable choice is the origin which gives
the following measures:

µspec-orig(fw) =

(
84B

∑d
i=1 ki

√
ci +

√
ln(4n2d)

)2∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj‖2F
‖Wj‖22

+ ln(mδ )

γ2
(26)
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Since some of the terms in the generalization bounds might be proof artifacts, we also measure the
main terms in the generalization bound:

µspec-init-main(fw) =

∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj−W0
j‖2F

‖Wj‖22
γ2

(27)

µspec-orig-main(fw) =

∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj‖2F
‖Wj‖22

γ2
(28)

We further look at the main two terms in the bound separately to be able to differentiate their con-
tributions.

µspec-init-main(fw) =

∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj−W0
j‖2F

‖Wj‖22
γ2

(29)

µspec-orig-main(fw) =

∏d
i=1 ‖Wi‖22

∑d
j=1

‖Wj‖2F
‖Wj‖22

γ2
(30)

µprod-of-spec/margin(fw) =

∏d
i=1 ‖Wi‖22
γ2

(31)

µprod-of-spec(fw) =

d∏
i=1

‖Wi‖22 (32)

µfro/spec(fw) =

d∑
i=1

‖Wi‖2F
‖Wi‖22

(33)

Finally, since product of spectral norms almost certainly increases with depth, we look at the fol-
lowing measure which is equal to the sum over squared spectral norms after rebalancing the layers
to have the same spectral norms:

µsum-of-spec/margin(fw) = d

(∏d
i=1 ‖Wi‖22
γ2

)1/d

(34)

µsum-of-spec(fw) = d
(
‖Wi‖22

)1/d
(35)

Frobenius Norm The generalization bound given in Neyshabur et al. (2015b) is not directly appli-
cable to convolutional networks. However, Since for each layer i, we have ‖Wi‖2 ≤ k2i ‖Wi‖F and
therefore by Theorem 3, we can get an upper bound on the test error based on product of Frobenius
norms. Therefore, we define the following measure based on the product of Frobenius norms:

µprod-of-fro/margin(fw) =

∏d
i=1 ‖Wi‖2F

γ2
(36)

µprod-of-fro(fw) =

d∏
i=1

‖Wi‖2F (37)

We also look at the following measure with correspond to sum of squared Frobenius norms of the
layers after rebalancing them to have the same norm:

µsum-of-fro/margin(fw) = d

(∏d
i=1 ‖Wi‖2F

γ2

)1/d

(38)

µsum-of-fro(fw) = d

(
d∏
i=1

‖Wi‖2F

)1/d

(39)
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Finally, given recent evidence on the importance of distance to initialization (Dziugaite and Roy,
2017; Nagarajan and Kolter, 2019b; Neyshabur et al., 2018b), we calculate the following measures:

µfrobenius-distance (fw) =

d∑
i=1

∥∥Wi −W0
i

∥∥2
F

(40)

µdist-spec-init(fw) =

d∑
i=1

∥∥Wi −W0
i

∥∥2
2

(41)

In case when the reference matrix W0
i = 0 for all weights, Eq (40) the Frobenius norm of the

parameters which also correspond to distance from the origin:

µparam-norm(fw) =

d∑
i=1

‖Wi‖2F (42)

Path-norm Path-norm was introduced in Neyshabur et al. (2015b) as an scale invariant complexity
measure for generalization and is shown to be a useful geometry for optimization Neyshabur et al.
(2015a). To calculate path-norm, we square the parameters of the network, do a forward pass on
an all-ones input and then take square root of sum of the network outputs. We define the following
measures based on the path-norm:

µpath-norm/margin(fw) =

∑
i fw2(1)[i]

γ2
(43)

µpath-norm(fw) =
∑
i

fw2(1) (44)

where w2 = w ◦w is the element-wise square operation on the parameters.

Fisher-Rao Norm Fisher-Rao metric was introduced in Liang et al. (2017) as a complexity mea-
sure for neural networks. Liang et al. (2017) showed that Fisher-Rao norm is a lower bound on the
path-norm and it correlates in some cases. We define a measure based on the Fisher-Rao matric of
the network:

µFisher-Rao(fw) =
(d+ 1)2

m

m∑
i=1

〈w,∇w`(fw(Xi)), yi〉2 (45)

where ` is the cross-entropy loss.

D.3 FLATNESS-BASED MEASURES

PAC-Bayesian framework (McAllester, 1999) allows us to study flatness of a solution and connect
it to generalization. Given a prior P is is chosen before observing the training set and a posterior
Q which is a distribution on the solutions of the learning algorithm (and hence depends on the
training set), we can bound the expected generalization error of solutions generated from Q with
high probability based on the KL divergence of P and Q. The next theorem states a simplified
version of PAC-Bayesian bounds.

Theorem 4 For any δ > 0, distribution D, prior P , with probability 1− δ over the training set, for
any posterior Q the following bound holds:

Ev∼Q [L(fv)] ≤ Ew∼Q

[
L̂(fv)

]
+

√
KL(Q||P ) + log

(
m
δ

)
2(m− 1)

(46)

If P and Q are Gaussian distributions with P = N (µP ,ΣP ) amd Q = N (µQ,ΣQ), then the
KL-term can be written as follows:

KL(N (µQ,ΣQ)||N (µP ,ΣP )) =
1

2

[
tr
(
Σ−1P ΣQ

)
+ (µQ − µP )

>
Σ−1P (µQ − µP )− k + ln(

det ΣP
det ΣQ

)

]
.
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SettingQ = N (w, σ2I) andP = N (w0, σ2I) similar to Neyshabur et al. (2017), the KL term will

be simply
‖w−w0‖2

2

2σ2 . However, since σ belongs to prior, if we search to find a value for σ, we need
to adjust the bound to reflect that. Since we search over less than 20000 predefined values of σ in our
experiments, we can use the union bound which changes the logarithmic term to log(20000m/δ)
and we get the following bound:

Eu∼N (u,σ2I) [L(fw+u)] ≤ Eu∼N (u,σ2I)

[
L̂(fw+u)

]
+

√
‖w−w0‖22

4σ2 + log(mσ ) + 10

m− 1
(47)

Based on the above bound, we define the following measures using the origin and initialization as
reference tensors:

µpac-bayes-init(fw) =

∥∥w −w0
∥∥2
2

4σ2
+ log(

m

σ
) + 10 (48)

µpac-bayes-orig(fw) =
‖w‖22
4σ2

+ log(
m

δ
) + 10 (49)

where σ is chosen to be the largest number such that Eu∼N (u,σ2I)

[
L̂(fw+u)

]
≤ 0.1.

The above framework captures flatness in the expected sense since we add Gaussian perturbations
to the parameters. Another notion of flatness is the worst-case flatness where we search for the
direction that changes the loss the most. This is motivated by (Keskar et al., 2016) where they
observe that this notion would correlate to generalization in the case of different batch sizes. We
can use PAC-Bayesian framework to give generalization bounds for worst-case perturbations as
well. The magnitude of a Gaussian variable with with variance σ2 is at most σ

√
2 log(2/δ) with

probability 1− δ/2. Applying a union bound on all parameters, we get that with probability 1− δ/2
the magnitude of the Gaussian noise is at most α = σ

√
2 log(2ω/δ) where ω is the number of

parameters of the model. Therefore, we can get the following generalization bound:

Eu∼N (u,σ2I) [L(fw+u)] ≤ max
|ui|≤α

L̂(fw+u) +

√
‖w−w0‖22 log(2ω/δ)

2α2 + log( 2m
δ ) + 10

m− 1
(50)

Inspired by the above bound, we define the following measures:

µsharpness-init(fw) =

∥∥w −w0
∥∥2
2

log(2ω)

4α2
+ log(

m

σ
) + 10 (51)

µsharpness-orig(fw) =
‖w‖22 log(2ω)

4α2
+ log(

m

δ
) + 10 (52)

where α is chosen to be the largest number such that max|ui|≤α L̂(fw+u) ≤ 0.1.

To understand the importance of the flatness parameters σ and α, we also define the following
measures:

µpac-bayes-flatness(fw) =
1

σ2
(53)

µsharpness-flatness(fw) =
1

α2
(54)

where α and σ are computed as explained above.

Magnitude-aware Perturbation Bounds The magnitude of perturbation in (Keskar et al., 2016)
was chosen so that for each parameter the ratio of magnitude of perturbation to the magnitude of the
parameter is bounded by a constant α′10. Following a similar approach, we can choose the posterior
for parameter i in PAC-Bayesian framework to be N (wi, σ

′2|wi|2 + ε2). Now, substituting this

10They actually used a slightly different version which is a combination of the two perturbation bounds we
calculated here. Here, for more clarity, we decomposed it into two separate perturbation bounds.
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in the Equation equation D.3 and solving for the prior N (w0, σ2
P ) that minimizes the KL term by

setting the gradient with respect to σP2 to zero, KL can be written as follows:

2KL(Q||P ) = ω log

(
σ′2 + 1

ω

∥∥w −w0
∥∥2
2

+ ε2
)
−

ω∑
i=1

log
(
σ′2|wi − w0

i |2 + ε2
)

=

ω∑
i=1

log

(
ε2 + (σ′2 + 1)

∥∥w −w0
∥∥2
2
/ω

ε2 + σ′2|wi − w0
i |2

)
Therefore, the generalization bound can be written as follows

Eu [L(fw+u)] ≤ Eu

[
L̂(fw+u)

]
+

√√√√ 1
4

∑ω
i=1 log

(
ε2+(σ′2+1)‖w−w0‖22/ω

ε2+σ′2|wi−w0
i |2

)
+ log(mδ ) + 10

m− 1
(55)

where ui ∼ N (0, σ′2|wi| + ε2), ε = 1e − 3 and σ′ is chosen to be the largest number such that
Eu

[
L̂(fw+u)

]
≤ 0.1. We define the following measures based on the generalization bound:

µpac-bayes-mag-init(fw) =
1

4

ω∑
i=1

log

(
ε2 + (σ′2 + 1)

∥∥w −w0
∥∥2
2
/ω

ε2 + σ′2|wi − w0
i |2

)
+ log(

m

δ
) + 10 (56)

µpac-bayes-mag-orig(fw) =
1

4

ω∑
i=1

log

(
ε2 + (σ′2 + 1) ‖w‖22 /ω
ε2 + σ′2|wi − w0

i |2

)
+ log(

m

δ
) + 10 (57)

We also follow similar arguments are before to get a similar bound on the worst-case sharpness:

Eu [L(fw+u)] ≤ max
|ui|≤α′|wi|+ε

L̂(fw+u)+

√√√√ 1
4

∑ω
i=1 log

(
ε2+(α′2+4 log(2ω/δ))‖w−w0‖22/ω

ε2+α′2|wi−w0
i |2

)
+ log(mδ ) + 10

m− 1
(58)

We look at the following measures based on the above bound:

µpac-sharpness-mag-init(fw) =
1

4

ω∑
i=1

log

(
ε2 + (α′2 + 4 log(2ω/δ))

∥∥w −w0
∥∥2
2
/ω

ε2 + α′2|wi − w0
i |2

)
+ log(

m

δ
) + 10

(59)

µpac-sharpness-mag-orig(fw) =
1

4

ω∑
i=1

log

(
ε2 + (α′2 + 4 log(2ω/δ)) ‖w‖22 /ω

ε2 + α′2|wi − w0
i |2

)
+ log(

m

δ
) + 10

(60)

Finally, we look at measures that are only based the sharpness values computed above:

µpac-bayes-mag-flat(fw) =
1

σ′2
(61)

µsharpness-mag-flat(fw) =
1

α′2
(62)

where α and σ are computed as explained above.

D.4 OPTIMIZATION-BASED MEASURES

There are mixed results about how the optimization speed is relevant to generalization. On one hand
we know that adding Batch Normalization or using shortcuts in residual architectures help both opti-
mization and generalization and Hardt et al. (2015) suggests that faster optimization results in better
generalization. On the other hand, there are empirical results showing that adaptive optimization
methods that are faster, usually generalize worse (Wilson et al., 2017b). Here, we put these hypoth-
esis into test by looking at the number of steps to achieve cross-entropy 0.1 and the number of steps
needed to go from cross-entropy 0.1 to 0.01:
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µ#steps-0.1-loss(fw) = #steps from initialization to 0.1 cross-entropy (63)
µ#steps-0.1-0.01-loss(fw) = #steps from 0.1 to 0.01 cross-entropy (64)

The above measures tell us if the speed of optimization at early or late stages can be informative
about generalization. We also define measures that look at the SGD gradient noise after the first
epoch and at the end of training at cross-entropy 0.01 to test the gradient noise can be predictive of
generalization:

µgrad-noise-epoch1(fw) = Var(X,y) S (∇w`(fw1(X), y)) (65)

µgrad-noise-final(fw) = Var(X,y) S (∇w`(fw(X), y)) (66)

where w1 is the weight vector after the first epoch.

E ALGORITHMS

We first lay out some common notations used in the pseudocode:

1. f : the architecture that takes parameter θ and input x and map to f(x; θ) which is the
predicted label of x

2. θ: parameters
3. M : Some kind of iteration; M1: binary search depth; M2: Monte Carlo Estimation steps;
M3: Iteration for estimating the loss

4. D = {(xi, yi)}ni=0 the dataset the model is trained on; B as a uniformly sampled minibatch
from the dataset.

Both search algorithm relies on the assumption that the loss increases monotonically with the per-
turbation magnitude σ around the final weight. This assumption is quite mild and in reality holds
across almost all the models in this study.

Algorithm 1 EstimateAccuracy

1: Inputs: model f , parameter θ, dataset D , estimate iteration M
2: Initialize Accuracy = 0
3: for episode i = 1 to M do
4: B ∼ sample(D)
5: Accuracy += 1

|B|
∑
i δ(yi = f(Bi; θ))

6: end for
7: return Accuracy/M

Note that for finding the sharpness σ, we use the cross-entropy as the differentiable surrogate object
instead of the 1-0 loss which is in general not differentiable. Using gradient ascent brings another
additional challenge that is for a converged model, the local gradient signal is usually weak, making
gradient ascent extremely inefficient. To speed up thie process, we add a uniform noise with range
being [−σnew/Nw, σnew/Nw] to lift the weight off the flat minima where Nw is the number of
parameters. This empirical greatly accelerates the search.

Further, for magnitude aware version of the bounds, the overall algorithm stays the same with the
exception that now covariance matrices at line 7 of Algorithm 2 become as diagonal matrix con-
taining w2

i on the diagonal; similarly, for line 12 of Algorithm 3, the weight clipping of each wi is
conditioned on σnew|wi|, i.e. clipped to [−σnew|wi|, σnew|wi|]. Here wi denotes the ith parameter
of flattened w.

32



Published as a conference paper at ICLR 2020

Algorithm 2 Find σ for PAC-Bayesian Bound

1: Inputs: f , θ0, model accuracy `, target accuracy deviation d, Upper bound σmax, Lower bound
σmin, M1, M2, M3

2: Initialize
3: for episode i = 1 to M1 do
4: σnew = (σmax + σmin)/2

5: ˆ̀= 0
6: for step j = 0 to M2 do
7: θ ← θ0 +N (0, σ2

newI)

8: ˆ̀= ˆ̀+ EstimateAccuracy(f, θnew,D ,M3)
9: end for

10: ˆ̀= ˆ̀/M2

11: d̂ = |`− ˆ̀|
12: if d̂ < εd or σmax − σmin < εσ then
13: return σnew
14: end if
15: if d̂ > d then
16: σmax = σnew
17: else
18: σmin = σnew
19: end if
20: end for

Algorithm 3 Find σ for Sharpness Bound

1: Inputs: f , θ0, loss function L, model accuracy `, target accuracy deviation d, Upper bound
σmax, Lower bound σmin, M1, M2, M3, gradient steps M4

2: Initialize
3: for episode i = 1 to M1 do
4: σnew = (σmax + σmin)/2

5: ˆ̀=∞
6: for step j = 0 to M2 do
7: θ = θ0 + U(σnew/2)
8: for step k = 0 to M4 do
9: B ∼ sample(D)

10: θ = θ + η∇θ`(f,B, θ)
11: if ||θ|| > σnew then
12: θ = σnew · θ

||θ||
13: end if
14: end for
15: ˆ̀= min(ˆ̀,EstimateAccuracy(f, θnew,D ,M3))
16: end for
17: d̂ = |`− ˆ̀|
18: if d̂ < εd or σmax − σmin < εσ then
19: return σnew
20: end if
21: if d̂ > d then
22: σmax = σnew
23: else
24: σmin = σnew
25: end if
26: end for
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