
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Enabling Continual Learning in Neural Networks with Meta Learning

Anonymous Authors1

Abstract

Catastrophic forgetting in neural networks is one
of the most well-known problems in continual
learning. Previous attempts on addressing the
problem focus on preventing important weights
from changing (Kirkpatrick et al., 2017; Zenke
et al., 2017). Such methods often require task
boundaries to learn effectively and do not support
backward transfer learning. In this paper, we pro-
pose a meta-learning algorithm which learns to
reconstruct the gradients of old tasks w.r.t. the cur-
rent parameters and combines these reconstructed
gradients with the current gradient to enable con-
tinual learning and backward transfer learning
from the current task to previous tasks. Experi-
ments on standard continual learning benchmarks
show that our algorithm can effectively prevent
catastrophic forgetting and supports backward
transfer learning.

1. Introduction
The ability to learn continually without forgetting previ-
ously learned skills is crucial to artificial general intelligence
(AGI) (Legg & Hutter, 2007). Addressing catastrophic for-
getting in artificial neural networks (ANNs) has been the top
priority of continual learning research. Notable attempts on
solving the problem include Elastic Weight Consolidation
(EWC) by Kirkpatrick et al. (2017) and the follow up work
on Synaptic Intelligence (SI) by Zenke et al. (2017), and
Memory Aware Synapse (MAS) by Aljundi et al. (2018).
These algorithms share the same core idea: preventing im-
portant parameters from deviating from their old (presum-
ably better) values. In order to achieve that, EWC-like
algorithms compute the importance of each parameter w.r.t.
each task in the sequence and for each old task, a regular-
ization term is added to the loss of the new task to prevent
that task from being catastrophically forgotten. The regular-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

ization term for task T (i) in EWC-like algorithms takes the
following form:

λ(i)

2

∑
j

ω
(i)
j (θj − θ(i)∗j )2 (1)

where λ(i) controls the relative importance of task i to the
current task, θ is the current parameters, θ(i)∗ is the param-
eters found at the end of the training of T (i), and ω(i)

j is the

importance of parameter θ(i)∗j w.r.t. T (i). Intuitively, the

regularizer prevents θj with large ω(i)
j from deviating too

far from θ
(i)∗
j while allowing θj with small ω(i)

j to change
more freely.

EWC-like algorithms have several weaknesses:

1. The regularizer in Eqn. 1 prevent changes to important
parameters regardless of the effect of these changes.
Unless θ(i)∗j is the optimal value for the j-th parameter,
either increasing or decreasing its value will result
in better performance on task i. Keeping θ close to
θ(i)∗ only prevent the network from catastrophically
forgetting T (i) but cannot help the network to leverage
the information from the current task T (k), k > i to
improve its performance on T (i) and other previous
tasks. In other words, regularizers of the form in Eqn.
1 do not support backward transfer learning.

2. The number of old parameter and importance vectors,
θ∗ and ω, grows linearly with the number of tasks,
making EWC-like algorithms not scalable to a large
number of tasks. Schwarz et al. (2018) proposed the
online EWC algorithm which maintains only one copy
of θ∗ and ω. The sizes of θ∗ and ω are equal to that
of the network. Therefore, the memory requirement
of online EWC is still considerably large for large
networks.

To address these limitations of EWC-like algorithms, we
propose a meta learning algorithm which:

1. Learns to approximate the gradient of a task w.r.t. the
current parameters from the current parameters

2. Combines the approximated gradients of old tasks w.r.t.
the current parameters and the current task’s gradient



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Enabling continual learning in NNs with meta learning

to result in an update that improves the performance of
the network on all tasks.

By combining the gradients, our algorithm exploits the sim-
ilarity between the current task and previous tasks to enable
backward transfer learning. As described in section 2.2
and 5.2, the size of a meta-network is typically orders of
magnitude smaller than that of the main network and meta-
networks for different tasks can be distilled into a single
meta-network in an online manner. That significantly re-
duces the memory requirement of our method.

In the next section, we introduce our learning to learn al-
gorithm for continual learning. Experiments are presented
in section 3. Conclusions and future work are located in
section 4 and 5, respectively.

2. Method
2.1. Motivation

Let us consider a continual learning problem with a
learner f(x;θ) : RD → Rd, T tasks

{
T (i)

}T
i=1

with

T corresponding training datasets
{
D(i)

}T
i=1

, D(i) ={(
x
(i)
j ,y

(i)
j

)}n(i)

j=1
, and T loss functions

{
L(i)

}T
i=1

,

L(i)
(
ŷ(i),y(i)

)
: Rd × Rd → R. To avoid clutter, we re-

move the input of the loss function L, and ∇(i) and ∇θL(i)

are short for ∇θL(i)

({
ŷ
(i)
j

}n(i)

j=1
,
{
y
(i)
j

}n(i)

j=1

)
1.

In joint learning settings, data from all tasks is available to
the learner. The parameter θ is updated using the average
of gradients from all tasks:

θ′ = θ − αδ,

where α is the learning rate, and

δ =
1

T
∇θ

T∑
i=1

L(i) =
1

T

T∑
i=1

∇θL(i) (2)

Generally, updating θ with δ will improve the performance
of f on all T tasks.

In continual learning settings, at task t+1, the learner cannot
access to D(i), i = 1, ..., t and cannot compute∇θL(i), i =
1, ..., t. The update at task t+1 is computed from∇θL(t+1)

only. When θ is updated with this gradient, f ’s performance
on T (t+1) will be improved while f ’s performance on tasks
T (i), i = 1, ..., t might be catastrophically damaged.

1The analysis here still applies to the case where mini-batches
are used because the expectation of L(i)

(
ŷ(i),y(i)

)
converges to

L(i)

({
ŷ
(i)
j

}n(i)

j=1
,
{
y
(i)
j

}n(i)

j=1

)
.

To address this problem, we propose the following meta
learning algorithm. During task i, we train meta-network
h(i) to reconstruct ∇θL(i) from θ. In subsequent tasks,
h(i) is used to reconstruct the gradient of task i w.r.t. the
current parameters without having to access to D(i). More
concretely, h(i) learns to map the parameter to the corre-
sponding gradient:

h(i)(θ;φ(i)) ≈ ∇θL(i) (3)

When the main network f is trained on a new task T (k), k >
i, h(i) is used to produce ∇̂θL(i) = h(i)(θ;φ(i)), an approx-
imate of∇θL(i). ∇̂θL(i) is used in the place of∇θL(i) in
Eqn. 2.

Section 2.3 introduces several ways to combine predicted
gradients with the current gradient to prevent catastrophic
forgetting and enable backward transfer learning. For our
method to work when optimizers other than SGD is used to
train the main network, ∇θL(i) should be replaced with the
update vector produced by the optimizer.

2.2. Learning to predict gradients

Because a real world neural network typically contains tens
of thousands to billions of parameters, the naive way of
training h would require an astronomically large number
of samples of θ and ∇ to cover a very high dimensional
space. A fully connected meta-network h also need to be
extremely large to receive a very high dimensional input and
produce a very high dimensional output. To circumvent the
problem, we follow the coordinate-wise approach proposed
by Andrychowicz et al. (2016) where each coordinate is
processed independently. h is a neural network that takes in
a 1-dimensional input and produces 1-dimensional output

h(θj ;φ) ≈ ∇j (4)

The procedure is applied to all coordinates in θ. In our
experiments, hs are MLPs and are trained to minimize the
Euclidean distance between h(θj ;φ) and ∇j for all θj in
θ. h could be modified to process more inputs such as the
position of parameter in the network or the previous values
of θj . It is also possible for h to process a small set of
related parameters simultaneously, e.g. parameters in the
same filter of a CNN. However, we leave these variations
for future work.

2.3. Preventing catastrophic forgetting with predicted
gradients

Let us consider a pair of gradients ∇(k) and ∇(i). If ∇(k)
j

and∇(i)
j have different signs and α is small enough, then up-

dating f with∇(k)
j will improve the network’s performance

on task k and damage its performance on task i. If they have
the same sign then the update will improve the performance



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Enabling continual learning in NNs with meta learning

0 20 40 60 80 100
Iteration x100

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

0
1
2
3
4

(a)

0 20 40 60 80 100
Iteration x100

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

0
1
2
3
4

(b)

Figure 1. Accuracy of a 3 hidden layer MLP with 784 inputs, 10 outputs, and 256 hidden neurons on 5 tasks of the Permuted MNIST
dataset. Each task contains 2000 iterations. The batch size is 64, the learning rate is α = 0.003 for both experiments. (a) The accuracy
when plain SGD is applied. (b) The accuracy when our algorithm is applied. The gradient predictors are 3 hidden layer MLPs with 1
input, 1 output, and 256 hidden neurons.

on both tasks. That intuition leads to the following rule to
create an update vector from a pair of gradients:

δj =

{
0, if∇(k)

j · ∇(i)
j ≤ 0

∇(k)
j , if ∇(k)

j · ∇(i)
j > 0

(5)

At task t+1, an update vector δ can be produced by applying
the above rule the pair between∇(t+1) and all other gradi-
ents ∇̂(i), i = 1, ..., t. When t is large, that method usually
results in a sparse update vector. In practice, we apply the
rule to the pair

{
∇(t+1), ∇̄1:t

}
where ∇̄1:t = 1

t

∑t
i=1 ∇̂(i).

Updating the main network with δ will improve the perfor-
mance on task t+ 1 and will likely to improve the perfor-
mance on tasks 1, ..., t.

The update vector δ contains information that are common
between task t + 1 and previous tasks. Updating f with
δ transfers information from the current task to previous
tasks. δ is the medium for backward transfer learning in our
algorithm.

3. Experiments
We tested our algorithm on the Permuted MNIST dataset
(Kirkpatrick et al., 2017). To better demonstrate the effect
of backward transfer learning, we train each task for only
2000 iterations to prevent the main network from reaching
its maximum performance. The result is shown in Fig. 1.

The network in Fig. 1(a) suffers from catastrophic forgetting
problem: the performance on old tasks decrease rapidly

when new tasks are trained. The network trained with our
algorithm (Fig. 1(b)) does not suffer from catastrophic
forgetting: the performance on old tasks is maintained or
even improved when new tasks are trained. The performance
improvement on old tasks suggests that our algorithm has
backward transfer learning capability. We also note the
forward transfer learning phenomenon in Fig. 1(b): the
starting accuracy of a later task is higher than that of former
ones.

4. Conclusions
In this paper, we present a meta learning algorithm for con-
tinual learning. Experiments on Permuted MNIST dataset
show that our algorithm is effective in preventing catas-
trophic forgetting and is capable of supporting backward
transfer learning.

5. Future work
5.1. Learning to learn continually without task

boundaries

To make our algorithm works without task boundaries, we
need to detect boundaries automatically. The simplest way
to detect task boundaries is to look at the loss of the main
network. That way, however, does not work well when dif-
ferent tasks uses different loss functions or have different
input, output scales. We propose to use detect task bound-
aries using the loss of the meta-networks. Different tasks



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Enabling continual learning in NNs with meta learning

must have different gradient patterns 2, the change in task
will result in higher error in gradient reconstruction and
can be detected. When a new task is detected, a new meta-
network is created to learn the gradient pattern of that task.
The next section present a method for distilling knowledge
from all previous meta-networks into a single one.

5.2. Distilling knowledge from meta-networks

As presented in section 2.3, we only need ∇̄1:t and ∇(t+1)

to produce the update for task t+1, other gradients ∇̂(i), i =
1, ..., t are not needed for computing δ. We can thus reduce
the number of meta-networks by creating a meta network
g(θ;µ) which approximates ∇̄1:t. The knowledge from
h(i), i = 1, ..., t is distilled into g. Because

∇̄1:t+1 =
t

t+ 1
∇̄1:t +

1

t+ 1
∇̂(t+1) (6)

≈ t

t+ 1
g(θ;µ) +

1

t+ 1
∇̂(t+1) (7)

g can be trained to approximate ∇̄1:t+1 in an online manner:
at task 1, g is initialized to be h(1); at task t+ 1, g is trained
to approximate ∇̄1:t+1 using the above equations. At any
task t+ 1, we only need to keep g and h(t+1).

References
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and

Tuytelaars, T. Memory aware synapses: Learning what
(not) to forget. In Ferrari, V., Hebert, M., Sminchisescu,
C., and Weiss, Y. (eds.), Computer Vision – ECCV 2018,
pp. 144–161, Cham, 2018. Springer International Pub-
lishing. ISBN 978-3-030-01219-9.

Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., and de Freitas, N. Learning to learn
by gradient descent by gradient descent. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 29, pp. 3981–3989. Curran Associates, Inc., 2016.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho,
T., Grabska-Barwinska, A., Hassabis, D., Clopath, C.,
Kumaran, D., and Hadsell, R. Overcoming catastrophic
forgetting in neural networks. Proceedings of the Na-
tional Academy of Sciences, 114(13):3521–3526, 2017.
ISSN 0027-8424. doi: 10.1073/pnas.1611835114.

Legg, S. and Hutter, M. Universal intelligence: A definition
of machine intelligence. CoRR, abs/0712.3329, 2007.
URL http://arxiv.org/abs/0712.3329.
2If two tasks have similar gradient patterns then they are similar

and can be considered as a single task.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-
Barwinska, A., Teh, Y. W., Pascanu, R., and Hadsell, R.
Progress & compress: A scalable framework for continual
learning. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pp. 4528–4537, Stockholmsmssan, Stockholm Sweden,
10–15 Jul 2018. PMLR.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 3987–3995, Interna-
tional Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR.

http://arxiv.org/abs/0712.3329

