
Proceedings of Machine Learning Research 102:109–120, 2019 MIDL 2019 – Full paper track

Deep Hierarchical Multi-label Classification of Chest X-ray Images

Haomin Chen1,2 HCHEN135@JHU.EDU

Shun Miao1 SHWINMIAO@GMAIL.COM

Daguang Xu1 DAGUANGX@NVIDIA.COM

Gregory D. Hager2 HAGER@CS.JHU.EDU

Adam P. Harrison1 ADAM.P.HARRISON@GMAIL.COM
1 NVIDIA AI-Infra, Bethesda, MD
2 Department of Computer Science, Johns Hopkins University, Baltimore, MD

Abstract
Chest X-rays (CXRs) are a crucial and extraordinarily common diagnostic tool, leading to heavy re-
search for Computer-Aided Diagnosis (CAD) solutions. However, both high classification accuracy
and meaningful model predictions that respect and incorporate clinical taxonomies are crucial for
CAD usability. To this end, we present a deep Hierarchical Multi-Label Classification (HMLC) ap-
proach for CXR CAD. Different than other hierarchical systems, we show that first training the net-
work to model conditional probability directly and then refining it with unconditional probabilities
is key in boosting performance. In addition, we also formulate a numerically stable cross-entropy
loss function for unconditional probabilities that provides concrete performance improvements. To
the best of our knowledge, we are the first to apply HMLC to medical imaging CAD. We exten-
sively evaluate our approach on detecting 14 abnormality labels from the PLCO dataset, which
comprises 198,000 manually annotated CXRs. We report a mean Area Under the Curve (AUC) of
0.887, the highest yet reported for this dataset. These performance improvements, combined with
the inherent usefulness of taxonomic predictions, indicate that our approach represents a useful step
forward for CXR CAD.
Keywords: hierarchical multi-label classification, chest x-ray, computer aided diagnosis.

1. Introduction

Chest X-rays (CXRs) are the most frequently ordered image study (Folio, 2012). Commensurate
with this importance, CXR Computer-Aided Diagnosis (CAD) has received considerable research
attention, both prior to the popularity of deep learning (Jaeger et al., 2013), and afterwards (Wang
et al., 2017; Yao et al., 2017; Guendel et al., 2018). These efforts have achieved notable successes,
e.g., Guendel et al. (2018) reporting very high mean Area Under the Curves (AUCs) on the Prostate,
Lung, Colorectal and Ovarian (PLCO) dataset (Gohagan et al., 2000). Yet, pushing raw performance
further will likely require models that depart from standard multi-label classifiers. Perhaps more im-
portantly, standard multi-label classifiers are not able to leverage or align with domain knowledge.
For instance, despite their importance to clinical understanding and interpretation, taxonomies of
disease patterns are not typically incorporated into CXR CAD systems, or for other medical CAD
domains for that matter. This observation motivates our work, which uses Hierarchical Multi-Label
Classification (HMLC) to both push raw AUC performance further and also to provide more mean-
ingful predictions that leverage clinical taxonomies.
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Organizing diagnoses or observations into ontologies and/or taxonomies is crucial within ra-
diology, e.g., RadLex (Langlotz, 2006), with CXR interpretation being no exception (Folio, 2012;
Demner-Fushman et al., 2015; Dimitrovski et al., 2011). This importance should also be reflected
within CAD systems. For instance, when uncertain about fine-level predictions, e.g., nodules vs.
masses, a CAD system should still be able to provide meaningful parent-level predictions, e.g., pul-
monary nodules and masses. This parent prediction may be all the clinician is interested in anyway.
Another important benefit is that observations are conditioned upon their parent being true, allow-
ing fine-level predictors to focus solely on discriminating between siblings rather than on having to
discriminate across all possible conditions. This can help improve classification performance (Bi
and Kwok, 2015).

Because more than one abnormality can be observed on a CXR at the same time, a CAD sys-
tem must operate in a multi-label setting. Prior work has well articulated the limitations of Binary
Relevance (BR) learning (Dembczyński et al., 2012), i.e., treating each label as an independent
prediction. HMLC helps address this, by making predictions conditionally independent rather than
globally independent. Inferring risk-optimal binary HMLC labels given a set of predictions is a sur-
prisingly rich topic (Bi and Kwok, 2015), but here we focus instead on producing said predictions.
In this way, our focus has similarities to recent deep neural network approaches for hierarchical
multi-class classification of natural images (Redmon and Farhadi, 2017; Roy et al., 2018; Yan et al.,
2014). A common approach is to simply train classifiers to predict conditional probabilities at
each node. Within medical imaging, hierarchical classifiers have not received much attention for
CAD, but there are works on HMLC medical image retrieval (Pourghassem and Ghassemian, 2008;
Demner-Fushman et al., 2015; Dimitrovski et al., 2011).

We present a deep HMLC approach for CXR CAD. Our work departs from prior art in three
important ways. First, like other deep approaches, we train a classifier to predict conditional proba-
bilities. However, we also demonstrate that a second fine-tuning stage, trained using unconditional
probabilities, can boost performance even further. Second, we formulate a numerically stable and
principled loss function for unconditional probabilities that can handle the unstable multiplication
of prediction outputs. Finally, we argue that in an HMLC setting, global metrics, such as AUCs,
do not provide a complete picture. Instead, we advocate also investigating performance conditioned
on a high-level node being true, e.g., one or more abnormalities, providing a measure of model
performance for different patient populations, some of which may be more clinically relevant de-
pending on the application. We evaluate our HMLC approach on the PLCO dataset (Gohagan et al.,
2000), reporting a mean AUC of 0.887, the highest yet reported for this dataset. To the best of our
knowledge, we are the first to outline an HMLC CAD system for medical imaging.

2. Methods

We introduce a two-stage method for CXR HMLC, which we first overview in Section 2.1. This is
followed by Sections 2.2 and 2.3, which detail our two training stages that use conditional proba-
bility and a numerically stable unconditional probability formulation, respectively.

2.1. Hierarchical Multi-Label Classification

The first step in creating an HMLC system is to create the label taxonomy. Without loss of gen-
erality, we focus on the labels and data found within the CXR arm of the PLCO dataset (Gohagan
et al., 2000), a large-scale lung cancer screening trial that collected structured radiological reports
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Abnormality

PulmonaryBone lesion Pulmonary nodules
and masses Cardiac abnormality

Mass Nodule Hilar Granuloma Pleural based mass

COPD Opacity Scarring Pleural abnormalityDistortion

Infiltration Major atelectasis Pleural fibrosis Fluid in pleural space

Figure 1: Constructed label hierarchy from the PLCO dataset.

of abnormalities obtained from multiple US clinical centers. From these fine-grained labels, we
constructed a label taxonomy1, which is shown in Figure 1. The hierarchical structure follows the
PLCO trial’s division of “suspicious for cancer” disease patterns vs. not, and is further partitioned
using common groupings (Folio, 2012), totalling 19 labels. While care was taken in constructing
the taxonomy and we aimed for clinical usefulness, we make no specific claim as such. We instead
use the taxonomy to explore the benefits of HMLC, stressing that our approach is general enough
to incorporate any appropriate taxonomy.

Because this is a multi-label setting, all or none of the labels in Figure 1 can be positive. The only
restriction is that if a child is positive, its parent must be too. Siblings are not mutually exclusive.
Finally, we assume that each image is associated with a set of fine-level labels and their antecedents,
i.e., there are no incomplete paths.

We use a DenseNet-121 (Huang et al., 2016) model as a backbone, connecting 19 fully con-
nected layers to its last feature layer to extract 19 scalar outputs. Each output is assumed to represent
the conditional probability (or its logit) given its parent is true. Thus, once the model is successfully
trained, unconditional probabilities can be calculated from the output using the chain rule, e.g., the
unconditional probability of scarring can be calculated as

P(Scarring) = P(Abnormality)P(Pulmonary|Abnormality)P(Scarring|Pulmonary). (1)

In this way, the predicted unconditional probability of a parent label is guaranteed to be greater
than or equal to its children labels. We refer to the conditional probability in a label hierarchy as
Hierarchical Label Conditional Probability (HLCP), and the unconditional probability calculated
following the chain rule as Hierarchical Label Unconditional Probability (HLUP). The network
outputs can be trained either conditionally or unconditionally, which we outline in the next two
sections.

2.2. Training with Conditional Probability

Similar to prior work (Redmon and Farhadi, 2017; Roy et al., 2018; Yan et al., 2014), in the first
stage of the proposed training scheme, each classifier is only trained on data conditioned upon its

1. Note, we merged “left hilar abnormality” and “right hilar abnormality” into “hilar abnormality”, resulting in 19
labels.
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HLCP Training HLUP Training

(a) (b)

Figure 2: The HLCP and HLUP losses are depicted in (a) and (b), respectively, where black and
white points are positive and negative labels, respectively. Blue areas indicate the activa-
tion area in the loss functions.

parent label being positive. Thus, training directly models the conditional probability. The shared
part of the classifiers, i.e., feature layers from the backbone network, is trained jointly by all the
tasks. Specifically, for each image the losses are only calculated on labels whose parent label is also
positive. For example, when an image with positive Scarring and no other positive labels is fed into
training, only the losses of Abnormality and the children labels of Pulmonary and Abnormality are
calculated and used for training.

Figure 2 (a) illustrates this training regimen, which we denote HLCP training. In this work, we
use Cross Entropy (CE) loss to train the conditional probabilities, which can be written as

LHLCP = ∑
m∈M

CE (zm, ẑm)∗1{za(m)=1}, (2)

where M denotes the set of all disease patterns, and m and a(m) denote a disease pattern and its
ancestor, respectively. Here CE(·, ·) denotes the cross entropy loss, and zm ∈ {0,1} denotes the
ground truth label of m, with ẑm corresponding to the network’s sigmoid output.

Training with conditional probability is a very effective initialization step, as it concentrates the
modeling power solely on discriminating siblings under the same parent label, rather than having
to discriminate across all labels, which eases convergence and reduces confounding factors. It also
alleviates the problem of low label prevalence because fewer negative samples are used for each
label.

2.3. Fine Tuning with Unconditional Probability

In the second stage, we finetune the model using an HLUP CE loss. This stage aims at improving the
accuracy of unconditional probability predictions, which is what is actually used during inference
and is thus critical to classification performance. Another important advantage is that the final linear
layer sees more negative samples. Predicted unconditional probabilities for label m, denoted p̂m, are
calculated using the chain rule:

p̂m = ∏
m′∈A(m)

ẑm′ , (3)

where A(m) is the union of label m and its antecedents. When training using unconditional proba-
bilities, the loss is calculated on every classifier output for every data instance. Thus, the HLUP CE
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loss for each image is simply

LHLUP = ∑
m∈M

CE (zm, p̂m) . (4)

Figure 2(b) visually depicts this loss.
A naive way to calculate (4) would be a direct calculation. However, such an approach intro-

duces instability during optimization, as the training would have to minimize the product of network
outputs. In addition, the product of probability values within [0,1] can cause arithmetic underflow.
For this reason, we outline a numerically stable formulation of (4), whose derivation can be found
in Appendix A:

LHLUP = ∑
m′∈A(m)

`m′+ γ, (5)

`m′ =−zm log
(

1
1+ exp(−ym′)

)
− (1− zm) log

(
1− 1

1+ exp(−ym′)

)
, (6)

γ =−(1− zm)

(
∑

m′∈A(m)

ym′+LSE

({
∑
j∈S
−y j ∀S ∈P (A(m))\{ /0}

}))
, (7)

where ŷm′ is the logit output for label m′. The expression in (6) is simply the CE loss given a logit
input, which enjoys stable implementations within all popular deep learning software. For (7), P(·)
denotes the powerset, S enumerates all possible subsets of P(A(m)), excluding the empty set, and
LSE(·) is the LogSumExp function. Enumerating the powerset produces an obvious combinatorial
explosion. However, for smaller-scale hierarchies, like that in Figure 1, it remains tractable. For
larger hierarchies, an O(|A(m)|) solution involves simply interpreting the LogSumExp as a smooth
approximation to the maximum function, but we do not need that here. Numerically stable imple-
mentations of the LogSumExp, and its gradient, are well known. Thus, since both terms in (5) can
be implemented stably, our formulation avoids the numerical issues faced by a naive calculation
of (4).

3. Experiments

We validate our approach on the PLCO dataset (Gohagan et al., 2000), which contains 198,000 man-
ually labeled CXRs. While the recent ChestXRay14 dataset (Wang et al., 2017) is extraordinarily
valuable, we expect the PLCO structured labels to have greater reliability, especially in evaluation,
over the former’s text-mined labels. As noted in Section 2.1, after pre-processing the data is left
with 14 leaf-node labels. We split the data into training, validation, and test sets, corresponding to
70%, 10%, and 20% of the data, respectively. Data is split at the patient level, and care was taken
to balance the prevalence of each disease pattern as much as possible.

Our chosen network is DenseNet-121 (Huang et al., 2016), implemented using TensorFlow. We
first train with the HLCP CE loss of (2) fine-tuning from a model pretrained from ImageNet (Deng
et al., 2009). We refer to this model simply as HLCP. To produce our final model, we then finetune
the HLCP model using the HLUP CE loss of (4). We denote this final model as HLUP-finetune.

While we do compare to a recent DenseNet121 BR approach (Guendel et al., 2018), we stress
that direct comparisons of numbers are impossible, as Guendel et al. (2018) used different data splits
and only evaluated on 12 leaf-node labels. For that reason, we also compare against three baseline
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Table 1: Comparison of AUC and AP across tested models. Mean values across leaf-node and
high-level disease patterns are shown, as well as leaf-node label conditioned on one or
more abnormality being present.

Leaf-node
labels

High-level
labels

Leaf-node labels conditioned on
abnormality

AUC AP AUC AP AUC AP

(Guendel et al., 2018) 0.874 N/A N/A N/A N/A N/A
BR-leaf 0.871 0.234 N/A N/A 0.806 0.334
BR-all 0.867 0.221 0.852 0.440 0.808 0.323
HLUP 0.872 0.214 0.856 0.436 0.799 0.288
HLCP 0.879 0.229 0.857 0.440 0.822 0.329
HLUP-finetune 0.887 0.250 0.866 0.460 0.832 0.342

models, all using the same trunk network fine-tuned from ImageNet pretrained weights. The first,
denoted BR-leaf, is trained using CE loss on the 14 leaf-node labels. This measures performance
using a standard multi-label BR approach. The second, denoted BR-all is very similar, but trains
a CE loss on all 19 labels independently, including high-level ones. In this way, BR-all measures
performance when one wishes to naively output high-level abnormality nodes, without considering
label taxonomy. Finally, we also test against a model trained using the HLUP CE loss, but not
starting from the HLCP weights. As such, this baseline, denoted HLUP, helps reveal the impact
of using a two-stage approach vs. simply training an HLUP classifier in one step. For all tested
models, extensive hyper-parameter searches were performed on the NVIDIA cluster to optimize
mean validation AUCs of leaf-node labels.

For all models, we evaluate the mean AUC and Average Precision (AP) on the test set. To
start, we measure performance on both leaf-node as well as high-level patterns. The results are
shown in the first two columns of Table 1. As the table demonstrates, the standard baseline BR-leaf
model produces high AUC scores, in line with prior art (Guendel et al., 2018); however, it does not
provide high-level predictions based on a taxonomy. Naively executing BR training on the entire
taxonomy, i.e., the BR-all model, does not improve performance. This indicates that if not properly
incorporated, the label taxonomy does not benefit performance.

In contrast, the HLCP model is indeed able to match BR-leaf’s performance on the leaf-node
labels, despite also being able to provide high-level predictions. HLUP-finetune goes further by
exceeding BR-leaf’s performance, demonstrating that our two-stage training process can produce
tangible improvements. This is underscored when comparing HLUP-finetune with HLUP, which
highlights that without the two-stage training, HLUP training cannot reach the same performance.
If we limit ourselves to models incorporating the entire taxonomy, our final HLUP-finetune model
outperforms BR-all by 2% and 2.9% in leaf-node mean AUC and AP values, respectively. Figure 3
provides more details on these improvements, demonstrating that AUC values are higher for HLUP-
finetune compared to the baseline method for all leaf-node and high-level disease patterns. Although
not graphed here for clarity reasons, HLUP-finetune also outperformed the HLCP method for all
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Disease Indices:
1. Abnormality (6516)
2. Bone lesion (906)
3. Pulmonary (2522)
4. Pulmonary nodules and masses (3261)
5. Cardiac abnormality (809)
6. COPD (466)
7. Opacity (155)
8. Scarring (1448)
9. Distortion of pulmonary architecture (4)
10. Pleural abnormality (684)
11. Mass (91)
12. Nodule (1068)
13. Hilar (80)
14. Granuloma (2135)
15. Pleural based mass (33)
16. Infiltration (145)
17. Major atelecstasis (12)
18. Pleural fibrosis (650)
19. Fluid in pleural space (35)

BR-all

HLUP-finetune

Figure 3: Comparison of AUC scores for all leaf-node and high-level disease patterns for the BR-all
and HLUP-finetune models. The dashed line separates the leaf-node from the high-level
disease patterns. Bolded labels and larger graph markers, denote disease patterns exhibit-
ing statistically significant improvement (p < 0.05) using the StAR software implemen-
tation (Vergara et al., 2008) of the non-parametric test of DeLong et al. (1988).

disease patterns. Of note, is that significance values also respect the disease hierarchy, and if a child
disease pattern demonstrates statistically significant improvement, so does its parent.

Because more than one label can be positive, multi-label classification performance has expo-
nentially more facets for evaluation than single-label or even multi-class settings. Here, we explore
one such facet, namely model performance conditioned on high-level nodes being positive. We re-
strict our focus to CXRs exhibiting one or more disease patterns, i.e., abnormality being positive.
As such, this sheds light on model performance when it may be critical to discriminate what combi-
nation of disease patterns are present, which is crucial for proper CXR interpretation (Folio, 2012).
The last column of Table 1 depicts these results. As can be seen, in such settings, HLUP-finetune
still exhibits increased performance over the baseline models and also the next-best hierarchical
model. Importantly, if we compare the conditional AUCs between BR-all and HLUP-finetune, we
see a 2.4% increase. As a result, in the critical setting of a CXR exhibiting at least one disease
pattern, our HLUP-finetune still manages to provide key performance improvements.

Finally, we compare our numerically stable implementation of HLUP CE loss in (5) to: (a)
the naive approach of directly optimizing (3); and (b) to a recent rescaling approximation, origi-
nally introduced for the multiplication of independent, rather than conditional probabilities, seen in
multi-instance learning (Li et al., 2018). This latter approach rescales each individual probability
multiplicand in (3) to guarantee that the product is greater than or equal to 1e-7. Similar to the naive
approach, the product is then optimized directly using CE loss. Based on a maximum depth of four
for our taxonomy, we implement this approach by rescaling each multiplicand in (3) to [0.02,1]. As
Table 2 demonstrates, regardless if we train from ImageNet or finetune from the HLCP model, our
numerically stable formulation far outperforms this rescaling approximation. However, while our
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Table 2: Comparison of AUCs produced using different HLUP CE loss implementations.

HLUP
(naive)

HLUP
(rescale)

HLUP
(ours)

HLUP-
finetune
(naive)

HLUP-
finetune
(rescale)

HLUP-
finetune
(ours)

0.864 0.853 0.872 0.886 0.867 0.887

HLUP loss outperforms the naive implementation when training from ImageNet weights, it does not
exhibit improvements when fine-tuning from the HLCP model. We hypothesize that the predictions
for the HLCP are already at a good enough quality that the numerical instabilities of the naive HLUP
CE loss are not severe enough to impair performance. Nonetheless, given the improvements when
training from ImageNet weights, these results indicate that our HLCP CE loss does indeed provide
tangible improvements in convergence stability. We expect these improvements to be greater given
taxonomies of greater depth, and our formulation should also prove valuable to multi-instance se-
tups which must optimize CE loss over the product of large numbers of probabilities, e.g., the 256
multiplicands seen in Li et al. (2018).

4. Conclusion

We have presented a two-stage approach for deep HMLC of CXRs that combines conditional train-
ing with an unconditional probability fine-tuning step. To effect the latter, we introduce a new and
numerically stable formulation for HLUP CE loss, which we expect would also prove valuable in
other training scenarios involving the multiplication of probability predictions, e.g., multi-instance
learning. Through comprehensive evaluations, we report the highest yet mean AUC on the PLCO
dataset, outperforming hierarchical and non-hierarchical alternatives. We also show performance
improvements conditioned on one or more abnormalities being present, i.e., predicting the spe-
cific combination of disease patterns, which is crucial for CXR interpretation. Experiments also
demonstrate that HLUP fine-tuning is crucial in achieving these results. Future work should focus
on characterizing improvements against the recently released CheXpert dataset (Irvin et al., 2019)
and also on computer vision benchmarks. Additionally, another potential strength of the HMLC
approach is handling incomplete labels, which also deserves further investigation. Finally, another
interesting focus would be exploring whether using hierarchical features, rather than the shared ones
of our approach, would improve results further.
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Appendix A. Numerically Stable Formulation of HLUP CE Loss

Denoting the network’s output logits as ŷ(.), the predicted unconditional probability of label m can
be written as:

p̂m = ∏
m′

1
1+ exp(−ym′)

, (8)

where we use m′ to denote m′ ∈ A(m) for notational simplicity.
The HLUP CE loss is calculated as:

LHLUP =−zm log(p̂m)− (1− zm) log(1− p̂m), (9)

=−zm log

(
∏
m′

1
1+ exp(−ym′)

)
− (1− zm) log

(
1−

(
∏
m′

1
1+ exp(−ym′)

))
, (10)

where zm is the ground truth label of m.
We would like to break up the second term in (10) to produce the following formulation:

LHLUP =−zm log

(
∏
m′

1
1+ exp(−ym′)

)
− (1− zm) log

(
∏
m′

(
1− 1

1+ exp(−ym′)

))
+ γ (11)

= ∑
m′

(
−zm log

(
1

1+ exp(−ym′)

)
− (1− zm) log

(
1− 1

1+ exp(−ym′)

))
+ γ, (12)

which can be simplified to a sum of individual CE losses plus γ:

LHLUP = ∑
m′
`m′+ γ , (13)

where `m are individual cross entropy terms, using zm and ym′ as the ground truth and logit input,
respectively, and γ is the scalar quantity we want to formulate. Note that (13) allows us to take
advantage of numerically stable CE implementations, e.g., those within Tensorflow, to calculate
∑m′ `m′ .

To satisfy (12), we will need γ to satisfy:

−(1− zm) log

(
∏
m′

(
1− 1

1+ exp(−ym′)

))
+ γ =−(1− zm) log

(
1−

(
∏
m′

1
1+ exp(−ym′)

))
,

log

(
∏
m′

(
1− 1

1+ exp(−ym′)

))
− γ

1− zm
= log

(
1−

(
∏
m′

1
1+ exp(−ym′)

))
,(

∏
m′

(
1− 1

1+ exp(−ym′)

))
exp(− γ

1− zm
) = 1−

(
∏
m′

1
1+ exp(−ym′)

)
. (14)

Denoting

α = exp(− γ

1− zm
), (15)
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we have:

α

(
∏
m′

(
1− 1

1+ exp(−ym′)

))
= 1−∏

m′

1
1+ exp(−ym′)

, (16)

α

(
∏m′ exp(−ym′)

∏m′(1+ exp(−ym′))

)
=

∏m′(1+ exp(−ym′))−1
∏m′(1+ exp(−ym′))

, (17)

α =
∏m′(1+ exp(−ym′))−1

exp(∑m′−ym′)
. (18)

Substituting the left side of (18) into (15) gives us:

γ =−(1− zm) log(α)

=−(1− zm)

(
∑
m′

ym′+ log

(
∏
m′
(1+ exp(−ym′))−1

))
. (19)

If the log-product term of (19) is expanded, with 1 subtracted, it will result in

γ =−(1− zm)

(
∑
m′

ym′+ log

(
∑

S∈P(A(m))\{ /0}
exp

(
∑
j∈S
−y j

)))
, (20)

where S enumerates all possible subsets of the powerset of A(m), excluding the empty set. For
example if there were two logits, y1 and y2, the summation inside the log would be:

exp(−y1)+ exp(−y2)+ exp(−y1− y2). (21)

The expression in (20) can be written as

γ =−(1− zm)

(
∑
m′

ym′+LSE

({
∑
j∈S
−y j ∀S ∈P(A(m))\{ /0}

}))
, (22)

where LSE is the LogSumExp function. Many numerical packages, including TensorFlow, provide
numerically stable implementations of LSE, and its derivative. By substituting (22) into (12), a
numerically stable version of the HLUP CE loss can be calculated.

Should the cardinality of the powerset be too high, the LogSumExp expression can be approxi-
mated as a maximum function, which can be calculated using an O(|A(m)|) scan of ym′ values:

γ ≈−(1− zm)

(
∑
m′

ym′+max

({
∑
j∈S
−y j ∀S ∈P(A(m))\{ /0}

}))
, (23)

=

{
−(1− zm)

(
∑m′ ym′+∑ j:y j<0−y j

)
, if ∃ym′ < 0

−(1− zm)(∑m′ ym′+max({−ym′})) , otherwise
. (24)
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