
Under review as a conference paper at ICLR 2019

EXPLOITING ENVIRONMENTAL VARIATION TO
IMPROVE POLICY ROBUSTNESS IN REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional reinforcement learning rarely considers how the physical variations
in the environment (eg. mass, drag, etc.) affect the policy learned by the agent. In
this paper, we explore how changes in the environment affect policy generaliza-
tion. We observe experimentally that, for each task we considered, there exists an
optimal environment setting that results in the most robust policy that generalizes
well to future environments. We propose a novel method to exploit this obser-
vation to develop robust actor policies, by automatically developing a sampling
curriculum over environment settings to use in training. Ours is a model-free ap-
proach and experiments demonstrate that the performance of our method is on par
with the best policies found by an exhaustive grid search, while bearing a signifi-
cantly lower computational cost.

1 INTRODUCTION

How does the agent’s environment affect the robustness of policies it learns through deep reinforce-
ment learning? Previous work has addressed the sensitivity of RL to changing visual environments
by applying domain randomization, i.e. training on randomized visual environments (Tobin et al.,
2017; Sadeghi et al., 2017), but there is limited work on the variability caused by the physics of the
environment, such as object weight, surface friction, arm dynamics, etc. (Peng et al., 2018; Devin
et al., 2017; Yu et al., 2017). In practical applications, one cannot assume the the task environment at
test time has the same properties as the training environment, particularly if the training is conducted
in simulation, and in most cases it is unfeasible to measure and categorize the changes. At the same
time, enumerating all possible physical properties during training is extremely time-consuming and
may still not lead to the best policy.

In this paper, we propose to develop RL algorithms that learn to exploit the training environment
to discover the most robust and useful policy to handle any potential future environment, without
needing explicit information about that future environment’s underlying settings. We observe an
interesting phenomenon, which we term ‘inadvertent generalization’: training a task under certain
physical settings results in more robust policies than others. For example, a pendulum policy trained
on a low weight solves the task perfectly, but then fails on a higher weight setting. However, training
on a single high weight leads to success on all lower weights. We observe forms of inadvertent
generalization across multiple tasks - [i] simple pendulum inversion (with two different physics
simulators), [ii] cart-pole balancing, [iii] ball-pushing (where the agent is required to push a ball
to an arbitrarily specified goal). Curiously, intuition gained to explain the phenomenon on any
one task does not necessarily extend to the others. We speculate that this may be because certain
environments make the task harder and thus require more robust policies to solve the task.

Motivated by these observations, we propose to exploit variations in environments during training
to learn a single policy that is capable of generalizing across environmental setting variations with-
out incurring a significant additional cost, i.e. making the inadvertent generalization deliberate.
We develop an approach called Reward-guided Stochastic Curriculum that automatically constructs
a training curriculum for each learner to best motivate the learning of robust actor policies. We
accomplish this by formulating the training curriculum as a multi-armed bandit problem, which
seeks to maximize episodic rewards over all environmental settings of interest, utilizing separate
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bandits for each environmental variable (where different physics properties correspond to different
variables), thus ensuring linear growth with the introduction of additional variables, as opposed to
polynomial. Experiments show that our method yields policies with performance similar to the best
policies identified by an exhaustive grid search, while being computationally less expensive, since
we only need to train one policy as opposed to one for each environmental setting.

2 PROBLEM DEFINITION

The primary focus of this paper is to characterize and exploit the phenomenon of inadvertent gener-
alization so that we may better guide and utilize experiences gained to develop action policies that
are more robust to environmental perturbation and variation. We build our analyses on the Deep
Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2016). DDPG is one of a class
of actor-critic algorithms, where there exist separate actor and critic policies (each represented by
a deep neural network). The critic attempts to learn the value of actions taken for a given state,
which is then used to inform the improvement of the actor policy. We chose DDPG for its ability to
handle continuous state and action spaces, which we consider to be important for both coarse and
fine control, and for its status as a well-studied baseline algorithm with good stability and sample
efficiency while learning (Duan et al., 2016).

We first motivate the problem by demonstrating inadvertent generalization on the inverted pendulum
task. The aim of the pendulum task is to train an agent to hold a pendulum mass steady above its
pivot point (as shown in Appendix A, Figure 2) . This is a task that can be considered solved by
many of the existing deep-RL architectures (Schulman et al., 2017; Lillicrap et al., 2016; Wang et al.,
2016; Wu et al., 2017; Schulman et al., 2015), but to the best of our knowledge, the robustness of RL
policies to changes in the pendulum environment (or many classical control tasks) has not been well
explored. We test whether an agent policy would still be capable of controlling the pendulum if the
mass of the pendulum were changed. Our initial intuition was as follows: [i] decreasing the mass
of the pendulum may result in significant overshoot of the vertical steady-point, potentially with a
significant jitter in the motion, and [ii] increasing the mass might result in an inability to effectively
swing-up the mass, resulting in failure. Both of these observations would make intuitive sense and
could then be attributed to policies lacking an understanding of the environment dynamics. What we
observed however is that, while hypothesis [ii] appears to hold, pendulum control policies trained
with heavier masses generalized to a wider range of masses without a perceptible cost to stability.
Table 1 provides a breakdown of the success rates of policies trained on individual OpenAI-gym
Pendulum (Brockman et al., 2016) environment settings - in this case, with the only variable being
the pendulum’s mass. Observe that policies trained on heavier pendulums consistently outperform
those trained on lower masses. It is important to note that all other aspects of the environment and
action space were held equal - i.e. the maximum torque that the agent was allowed to apply was not
changed and no other changes were made to how the physics in the environment are computed. To
verify that these observations were not simply an anomaly of the physics simulator, tests were con-
ducted on a separate pendulum environment built with the Unity game engine, which uses Nvidia’s
PhysX physics engine to simulate rigid-body dynamics. Our tests on the Unity pendulum environ-
ment show similar trends in behavior (as shown in Appendix C, Table 6), further establishing the

Table 1: OpenAI-Gym Pendulum policy success rate (higher is better). We evaluate multiple policies trained
and tested on different OpenAI-Gym Pendulum-v0 environment settings. Rows represent performance for
policies trained on a specific mass, columns correspond to specific test masses. Success rate is computed as
the fraction of 8 trials with an average maximum deviation of less than 15 degrees, over 6 tests per test mass
per trial, from the vertical steady point over the last 100 steps of a 300-step episode. Darker shading indicates
worse performance.

Train\Test 1 2 3 4 5 6 7 8 9 10 Avg
2 0.75 0.63 0.50 0.25 0.38 0.38 0.38 0.25 0.13 0.13 0.38
4 0.75 0.88 0.75 0.75 0.75 0.63 0.50 0.38 0.38 0.13 0.59
6 0.88 1.00 1.00 1.00 1.00 0.88 0.88 0.75 0.38 0.25 0.80
8 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 2: Unity Ball-pushing policy error (lower is better). Performance evaluation of multiple policies trained
and tested on different custom Unity ball-pushing environment settings. Rows represent performance for poli-
cies trained on a specific ball mass, columns correspond to specific test masses. Errors are computed as the
mean Euclidean distance of the ball from the goal evaluated on 6 separate trials, with 50 pre-defined tests per
trial (to ensure fair comparison between policies).

Train\Test 2 4 6 8 10 Avg
2 0.21 0.21 0.22 0.22 0.22 0.22
4 0.40 0.23 0.25 0.25 0.25 0.28
6 0.66 0.37 0.36 0.36 0.37 0.43
8 1.25 0.66 0.63 0.63 0.64 0.76
10 1.15 0.54 0.46 0.45 0.46 0.61

effects of inadvertent generalization. Similarly, from training in the OpenAI-Gym CartPole-v1 en-
vironment (with minor modifications to support continuous control), we observe that training with
heavier carts and poles seems to promote better generalization within the task, with cart masses
having a stronger influence (see Appendix C, Table 7).

One might attribute these observations to the difference in physical inertia of pendulums, carts and
poles of different masses - with a heavier pendulum presenting with higher inertia than a lighter
one. This might further suggest that prioritizing high-inertia settings would result in improved gen-
eralization across environmental variations. Further testing with additional tasks however revealed
that this is not the case. By analyzing the behavior of trained policies on a simple ball-pushing task
(results presented in Table 2), where the agent is tasked with rolling a ball from an arbitrary starting
position to an arbitrarily defined goal on a 2D plane, we observe that it is in fact the policies trained
on lighter balls that do better at generalizing to variations in the environment when solving this task.
Furthermore, policies trained with lighter balls also outperform their heavy-ball trained counterparts
on test settings employing heavier balls. Independently, these observations can be rationalized to
suggest that the higher inertia of the heavier balls requires the agents to exert more force on the
ball to manipulate its position, resulting in a loss of finer control that might be developed with the
lower-inertia (low mass) cases. However, it is clear that such intuition would in fact run counter to
the behavior on the pendulum and cart-pole tasks.

Taken together, our observations and analyses demonstrate that there are classes of tasks, at least
within the realm of continuous control, for which the following statement holds: given a task, there
exists a window of generalizability for which training under a specific ideal set of environmental
conditions results in a policy capable of generalizing to variations in the environmental settings.
When the variations are limited, a grid search over the variants may be reasonable, but as the number
of variables and the degree of variability increases, this quickly becomes impractical. This leads us
to our problem statement: we seek a principled approach that reliably and deliberately promotes
the development of policies that are robust to environmental changes, similar to policies trained
under ‘ideal’ settings, however, without the need for prior knowledge of the task/environment and
without incurring significant additional computational cost over the cost of training a single policy.

3 RELATED WORK

To the best of our knowledge, there have not been many explorations of robustness to the environ-
ment of a single task, as studied in this paper, however, we are able to draw insight from studies into
multi-task reinforcement learning, specifically those where a single policy is trained to be utilized
for all relevant tasks. Many of the existing single-policy methods appear to share a core idea: ex-
pose the agent to all the relevant task variations, attempt to account for different value associations
that different tasks might encourage, and hope that some level of generalization might be achiev-
able. Single-policy methods offer a key advantage towards generalization: they can be developed
to function even when exact task specifications are not known. This was demonstrated in the per-
formance of various approaches proposed/attempted in the OpenAI Gym Retro Challenge (Nichol
et al., 2018), which was conducted in an attempt to systematically test algorithms abilities to gen-
eralize to unseen environments by having agents play levels of Sonic the Hedgehog. Interestingly,
the best-performing approaches were achieved primarily by tuning the baselines “joint PPO”, based
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on the PPO (Schulman et al., 2017) architecture, and “joint Rainbow”, based on Rainbow (Hes-
sel et al., 2017). These “joint” networks were constructed with separate replay buffers for each
trained level (task). During training, agents are exposed to a sampling of levels, and the gradients
for each of these levels are averaged to produce an update to the universal policy, which is then used
to update each level’s agents. Similar approaches were taken by Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017) and DeepMind’s IMPALA (Espeholt et al., 2018). Key differences
however are that they apply importance weighting to experience gained. MAML iteratively updates
the policy in small steps relative to post-update losses of a series of proposed updates to the policy
computed at the end of each episode (where each episode samples a new task). After sampling a set
of tasks, MAML generates a final update to its primary policy from a scaled sum of the gradients
generated from each proposed update. Instead of a direct averaging of agents, IMPALA applies their
v-trace algorithm for importance weighting to compensate for the fact that their algorithm operates
in a distributed manner with multiple (potentially un-synced) agents and learners, with some agents
operating with outdated policies. IMPALA is primarily introduced as a distributed-learning frame-
work, which conveniently possesses properties that allow it to be used in multi-task learning (where
multiple agents can simultaneously train in different environments).

Yu et al. (2017) attempt to address a problem most similar to the one studied in this paper. The
authors attempt to get around the problem of environmental variation by utilizing a separately trained
online physics parameter(s) identifier to inform a joint ‘universal’ policy on the current state of
the environment. However, there is a non-trivial cost associated with training the online identifier
and the approach inherently limits itself to cases encountered in training (as demonstrated by their
evaluations where the policy was not able to generalize beyond a certain threshold).

We also consider approaches that employ a sense of intrinsic motivation. While recent works in
curiosity-driven learning achieve impressive results without any extrinsically defined reward signals
from the environment (Burda et al., 2018), we focused on first addressing the more traditional RL
problem structure with extrinsically defined rewards. One such approach to intrinsic prioritization
of experience is implemented in Prioritized Experience Replay (PER) (Schaul et al., 2016), where
experiences are sampled from the replay buffer proportionally to the magnitude of their Temporal-
Difference (TD) error. A key inspiration for the method presented in this paper however comes
from Graves et al. (2017), who tackle multi-task Natural Language Processing (NLP), utilizing a
curriculum formulated as a multi-armed bandit. The advantage of this approach is that the cur-
riculum can be automatically generated and would adapt to the experiences of individual learners,
unlike the hand-tuned or goal-oriented curricula typically employed in RL. We borrow a similar
idea, also building our curriculum on the Exp3 algorithm proposed by Auer et al. (2003), however,
as discussed in Section 4, we employ a different valuation of the ‘prediction gain’.

4 REWARD-GUIDED STOCHASTIC CURRICULUM

As stated in Section 2, we seek to exploit the environment to find settings that lead to the most
general policy for the task. We assume that all tasks have specific environment settings which can
be controlled during training. The best policy is relatively straightforward to train when the ideal
settings are known, however, these may not always be known a priori, and as the number of possible
settings to consider increases, so too does the computational cost of exploring all variations of the
settings in order to determine such settings.

Drawing inspiration from Graves et al. (2017), who tackle a multi-task NLP problem, we formulate
the problem of developing an automated curriculum for learning generalization over environment
settings for a given RL task as a multi-armed bandit problem, focused on minimizing regret and
maximizing the actor’s rewards. Each of the arms of the multi-armed bandit corresponds to an
‘action’ that the bandit can take, and each action would have a corresponding value (or payoff). The
goal of the bandit is to maximize the payoff of every action, which would be trivial if the values of
each arm is known, however, when action-values are not known, it is necessary to estimate the value
by exploring the action space.

We define a curriculum as a sampling policy on the different environmental settings associated with
a given task. A basic curriculum over N possible environmental settings can be constructed as an
N -armed bandit, with the syllabus of the developed curriculum intended to maximize the reward
that the actor achieves over all the tasks. Over T rounds of ’play’, the bandit agent selects an action,
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at ∈ {1, . . . , N}, corresponding to a decision to train under a specific environment setting, and
observes a payoff rt, computed as the difference in mean rewards observed before and after training
on the selected environment setting. The goal of the bandit/curriculum is to consistently select the
settings which offer the best learning gains.

A key difference in our method from that employed by Graves et al. (2017) is in how we define the
payoff, or the value gained by training on a specific setting. Graves et al. (2017) perform a com-
parison on the training loss before and after training, utilizing the same loss metric that is employed
by the network. We instead compute our payoff based on the difference in mean episodic rewards
before and after training. This choice was made based on an analysis of the Q values and TD errors
of policies that generalized well on settings they were not trained on. We noted that, despite the
‘good’ performance of the actor, the critic was consistently wrong in its value predictions for any
state/action pair, which was to be expected given that we do not model the physical environment.
This led us to conclude that, in order to prioritize the performance of the actor policy, we would
need to utilize a direct evaluation of the actor, which is reflected by the episodic rewards.

4.1 SINGLE VARIABLE ENVIRONMENTAL SETTING

To motivate the best choice of action that yields the lowest regret, we employ the Exponentially-
weighted algorithm for Exploration and Exploitation (Exp3) (Auer et al., 2003). Specifically, we
employ the Exp3.S variant of the algorithm to develop our multi-armed bandit’s policy, which em-
ploys an ε-greedy strategy and additively mixes weights to ensure that the probabilities of selecting
any particular action is not driven to insignificance. We define ε to limit the maximum probability
of any setting being selected. (Note: we present Exp3.S similarly to Graves et al. (2017), which is
mathematically equivalent to the algorithm as it is presented in Auer et al. (2003)).

For a bandit policy defined by weights, wi for i ∈ {1, . . . , N}, corresponding to the N possible
environment settings, at bandit-step t and the bandit’s action, ai, the sampling probability, πExp3.S

t (i)
of action i is given by:

ai ∼ πExp3.S
t → πExp3.S

t (i) := (1− ε) expwi,t∑
j expwj,t

+
ε

N
(1)

At the end of each bandit step, the weights are updated based on observed payoff, rt:

wt+1,i := log

(1− αt) exp(wt,i + r̂βt−1,i

)
+

αt
N − 1

∑
j 6=i

exp
(
wt,j + r̂βt,j

) (2)

where w1 = 0, αt := t−1, and the importance sampled payoff is computed as:

r̂βt,i :=
rtI[at=i] + β

πExp3.S
t (i)

(3)

To bound the magnitude by which an arm’s weight might change at any given step, payoffs, rt, per
bandit step, t are scaled such that rt ∈ [−1, 1]:

rt :=


−1 δRt < µ20

t

1 δRt > µ80
t

2(δRt−µ20
t )

µ80
t −µ20

t
− 1 otherwise

(4)

where δRt = Rt − Rt−1 is the true bandit policy payoff at step t, computed based on mean re-
wards achieved by the actor on the set of environment setting of interest, and µx represents the xth

percentile of payoffs achieved: {rs ∀ s ≤ t}.

4.2 MULTIPLE VARIABLE ENVIRONMENTAL SETTINGS

In addition to handling a single variable environment setting, we are also interested in efficiently han-
dling environments where multiple settings might change - examples of single and multi-variable en-
vironments would respectively be the Pendulum environment, where the mass of the pendulum may
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change, or the Cart-Pole environment, where the masses of both the cart and pole could change. Con-
sidering the combinatorial enumeration of all possible combinations of environment variables would
cause the number of settings (and corresponding bandit arms) to grow by order O(

∏
m∈M Nm). In-

stead, we propose a multi-multi-armed bandit solution, where a separate bandit is maintained for
each variable. Crucially, this results in a linear growth in the number of arms to be maintained.

There are two primary differences between our approaches to the multi-variable and single variable
settings for M variables:

(i) The importance weighting of the scaled rewards (equation 3) is adjusted to account for the joint
probabilities of the (assumed to be independent) variables:

r̂βM,t,i :=
rt
∏
m∈M I[am,t=im] + β∏
m∈M πExp3.S

m,t (im)
(5)

where the pre-superscript m reflects the actions and properties of the the mth bandit (corresponding
to the mth environment variable.

(ii) The bandit weight policy weights are then updated per variable, effectively just as it was in
equation 2, but using the importance sampled reward computed by equation 5:

wm,t+1,i := log

(1− αt) exp(wm,t,i + r̂βM,t−1,i

)
+

αt
Nm − 1

∑
j 6=i

exp
(
wm,t,j + r̂βM,t,j

) (6)

Algorithm 1: Reward-guided curriculum for improving policy robustness
1 Initialize: wm,i = 0 ∀ i ∈ Nm ∀m ∈M ;
2 for t = 1 . . . T do
3 Sample M task-variable values im under sampling properties defined by equation 1 for each of

the M systems of policy weights;
4 Sample K task initializations uniformly from a valid space of initializations;
5 for k ∈ K do
6 Compute Initial Reward of actor-network policy pθ on initialization k: Rprek ;
7 end
8 Train network pθ on k ∈ K;
9 for k ∈ K do

10 Compute Post-training Reward of network pθ on initialization k: Rpostk ;
11 end
12 Compute learning progress δRt := mean({Rpostk −Rprek } ∀ k ∈ K);
13 Map δRt to [−1, 1] by equation 4;
14 Update weights wm,i by equation 6;
15 end

5 EVALUATION

Evaluations are conducted on the three task environments that were previously discussed: [i] Pen-
dulum, [ii] Cart-Pole, and [iii] Ball-pushing. While the pendulum and ball-pushing environments
have only a single variable environment setting (the pendulum and ball mass respectively), cart-pole
has two variables (the pole mass and the cart mass), thus allowing us to evaluate the multi-variable
version of our algorithm.

To meter the performance of our method, our results are compared against two key baselines: [i] The
best results observed via a grid search (oracle) on policies trained exclusively on specific individual
environment settings (i.e. the best inadvertently generalizing agent for each task, as presented in
Tables 1, 2 and Appendix C, Table 7), and [ii] Policies trained under a joint/mixed training structure
(joint), where the environment settings are varied every episode during training, with the episode
settings drawn uniformly at random from a list of values of interest. This is similar to domain ran-
domization. Additionally, for the pendulum task, which served as our primary sandbox for testing
different ideas, we also provide comparisons against policies trained with Prioritized Experience
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Replay (PER) and also policies where the curriculum’s key payoff indicator was determined by the
changes in TD-error instead of the episodic rewards but otherwise followed Algorithm 1. These
baselines are motivated by initial attempts to guide training with respect to the TD-error, which
seems reasonable given that it is the primary error metric for policy training in RL. Performance
metrics for the Pendulum, Cart-Pole and Ball-pushing tasks are provided in Tables 3, 4 and 5 re-
spectively.

Table 3: Pendulum policy success rate comparisons (higher is better)

Test Mass Policy
Oracle Joint PER TD-error-guided Curriculum Reward-guided Curriculum (ours)

1 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 0.93 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 0.93 1.00 1.00
6 1.00 1.00 0.79 0.85 1.00
7 1.00 1.00 0.64 0.77 1.00
8 1.00 0.93 0.57 0.69 1.00
9 1.00 0.86 0.29 0.69 1.00
10 1.00 0.57 0.14 0.46 0.93

Avg 1.00 0.94 0.73 0.85 0.99

Table 4: Cart-Pole policy success rate comparisons (higher is better)

Cart Mass Pole Mass Policy
Oracle Joint Reward-guided Curriculum (ours)

1.0 0.10 1.00 0.83 1.00
0.25 0.83 0.83 1.00
0.50 1.00 0.83 1.00
1.00 0.83 0.83 0.93

3.0 0.10 0.83 1.00 0.86
0.25 0.83 1.00 0.79
0.50 0.83 0.83 0.79
1.00 0.83 0.67 0.86

5.0 0.10 0.83 0.33 0.57
0.25 0.83 0.33 0.64
0.50 0.83 0.17 0.64
1.00 0.67 0.17 0.64

Avg 0.85 0.65 0.81

Table 5: Ball pushing policy error rate comparisons (lower is better)

Test Mass Policy
Oracle Joint PER Reward-guided Curriculum (ours)

2 0.21 0.55 4.85 0.44
4 0.21 0.64 4.77 0.44
6 0.22 0.68 4.71 0.45
8 0.22 0.68 4.66 0.45

10 0.22 0.69 4.65 0.45
Avg 0.22 0.65 4.72 0.45

It is immediately clear that our method outperforms policies built on joint sampling, PER (where
tested) and the TD-error-guided curriculum (where tested), and achieves a performance closest to
our oracle, of all the methods tested - with the Pendulum and Cart-Pole getting within 1% and 4% of
their oracles’ success rate respectively (noting that the Pendulum’s oracle achieved a 100% success
rate). In the case of the ball-pushing task, where we did not have a binary definition of success,

7



Under review as a conference paper at ICLR 2019

it can be noted that the average error is improved over joint sampling, being within 2× of the
oracle’s error, as opposed to 3×. Our method also has a significantly lower computational cost than
the oracle, needing to train only a single policy as opposed to

∏
m∈M Nm policies. Additionally, as

evidenced by Figure 1, the curricula developed appear to address the needs of each learner, adjusting
the curriculum policies as necessary.

Figure 1: Cherry-picked comparison of two separate curricula evolution during training, represented as a
heat-map to demonstrate probability distribution. Given the pseudo-random nature of episodic experience and
policy-network training, it is important for curriculum to be able to adapt to the training experience. Note that
Figure 1-left presents with a relatively clear sense of priority, initially favoring mass 2, then 10, then 4, then
6 and then 4 again. Contrast this with Figure 1-right, where there is no obvious pattern. Despite this, policies
trained under both curricula present with equally successful performance, implying the ability of this training
scheme to adapt consistently to different experiences when attempting to learn to solve a task. Note also that
neither curriculum is uniform. Additional curriculum visualizations are provided in Appendix D.

It is interesting to note that TD error is apparently a bad metric for guiding curriculum choice and
evolution. This is observed both with PER and the TD-error-guided curriculum - where the former
samples the replay buffer proportionally to a transition’s TD-error, and the latter adjusts the curricu-
lum based on the TD-errors of transitions associated with previously tested settings. We hypothesize
that prioritizing TD-error, which is inherently a measure of the next-state prediction capabilities of
the critic, negatively impacts performance due to the fact that the critic is expected to always be
wrong when working without a model of the environment and its settings - without explicitly know-
ing the current setting of the environment, it may simply be impossible to develop good predictions
of expected future reward. Prioritizing TD-error as a metric by which to guide multi-setting (and
possibly multi-task) learning may therefore wrongly bias policies towards minimizing the variance
in TD-error across settings (or tasks). Rudimentary tests on the TD-errors on trained policies appear
to support this hypothesis, however, due to time constraints, we have not been able to test this idea
sufficiently to make a conclusive claim.

6 CONCLUSION

We proposed learning a stochastic curriculum, guided by episodic reward signals, to get the most
out of an agent’s environment and develop action policies robust to environmental perturbation. Fur-
thermore, the curricula developed adapt to the experiences of each learner, allowing for a notion of
self-reflection and self-correction. Not only does our method achieve performance close to the best
policies found by an exhaustive grid search, it does so with a significantly lower computational cost,
needing to train only a single policy, with minimal additional overhead, as opposed to

∏
m∈M Nm

policies. We also further demonstrate that neither uniformly sampling tasks, nor focusing on TD-
error, as is common in multi-task RL, extends well to developing robust models for individual tasks.
While our current approach is not designed to handle environments with sparse rewards or continu-
ously varying settings, we hope to address these limitations with future work.
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A TRAINING ENVIRONMENTS

We primarily use 4 training environments in all our experiments:

1. Pendulum-v0 from OpenAI Gym (Brockman et al., 2016), modified minimally to allow for
programmatic control of the pendulum’s mass. State space: sinθ, cos θ, θ̇, Action space:
Torque. Sample environment shown in Figure 2

2. Custom Unity Pendulum Environment - designed to provide a similar interface and re-
sponse to the OpenAI Gym Pendulum implementation, however making use of Unity’s
built-in PhysX physics engine. State space: θ, θ̇, Action space: Torque

3. CartPole-v1 from OpenAI Gym, modified to allow programmatic control of the pole and
cart masses, as well as to be treated as a continuous control task, as opposed to one with
discrete actions. State space: x, ẋ (of cart), θ, θ̇ of pole. Action Space: Force

4. Custom Unity Ball-pushing task. State space: xg, yg position of goal, xb, yb position of
ball, ẋb, ẏb velocity of ball

Figure 2: Sample renders from Gym Pendulum-v0 (Left) Random Initialization, (Right) Successful
Completion

Figure 3: Sample renders from Unity Pendulum (Left) Random Initialization, (Right) Successful
Completion
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Figure 4: Sample render from Gym CartPole-v1 Success is determined by maintaining the pole
steady

Figure 5: Sample renders from Unity Ball-pushing (Left) Random Initialization, (Right) Successful
Completion

B EXPERIMENTAL DETAILS

Policy network configuration:

• Network Architecture: DDPG
• Hidden layer configuration: (400,300)
• Additional notes: Code adapted from Patrick Emami’s code which is available on Github.

Modifications were made to remove the use of tflearn and use only tensorflow. Additionally,
the OpenAI’s replay buffer code from their baselines (Dhariwal et al., 2017) was adapted
into this code to allow for the easy implementation of PER (Schaul et al., 2016)

Reward-Guided stochastic curriculum parameters:

• ε: 0.05 for pendulum and ball-pushing, 0.2 for cart-pole
• β: 0.05 for pendulum and ball-pushing, 0.2 for cart-pole
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C ADDITIONAL EXPERIMENTAL RESULTS

Table 6: Unity-pendulum success rate for policies trained on individual environment settings (higher
is better)

Train\Test 1 2 3 4 5 6 7 8 9 10 AVG
2 0.83 0.83 0.50 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.25
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.83 0.67 0.92
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.67 0.93
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 7: Cart-pole success rate for policies trained on individual environment settings (higher is
better). Note that the column and row headings contain the trained/tested pole and cart masses
respectively within brackets

Train/Test (0.1,1) (0.1,3) (0.1,5) (0.25,1) (0.25,3) (0.25,5) (0.5,1) (0.5,3) (0.5,5) (1,1) (1,3) (1,5) AVG
(0.1,1) 1.00 0.00 0.00 0.83 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.21
(0.1,3) 0.20 0.20 0.00 0.20 0.60 0.00 0.20 0.40 0.00 0.20 0.20 0.00 0.18
(0.1,5) 1.00 1.00 1.00 1.00 1.00 0.83 0.67 0.67 0.67 1.00 0.50 0.50 0.82

(0.25,1) 0.83 0.00 0.00 0.83 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.19
(0.25,3) 0.80 0.80 0.00 0.80 0.80 0.00 0.80 0.60 0.00 0.80 0.20 0.00 0.47
(0.25,5) 1.00 0.75 1.00 1.00 0.75 1.00 1.00 0.75 0.50 0.75 0.75 0.50 0.81
(0.5,1) 1.00 0.00 0.00 1.00 0.00 0.00 0.83 0.00 0.00 0.17 0.00 0.00 0.25
(0.5,3) 0.67 0.83 0.33 0.67 0.83 0.33 0.67 0.83 0.17 0.67 0.50 0.17 0.56
(0.5,5) 1.00 0.83 0.83 1.00 0.67 0.67 1.00 0.83 0.83 1.00 0.83 0.50 0.83
(1,1) 0.80 0.00 0.00 0.80 0.00 0.00 0.80 0.00 0.00 0.60 0.00 0.00 0.25
(1,3) 0.83 0.83 0.17 0.83 0.83 0.17 0.83 0.83 0.17 0.83 0.67 0.17 0.60
(1,5) 1.00 0.83 0.83 0.83 0.83 0.83 1.00 0.83 0.83 0.83 0.83 0.67 0.85

D PENDULUM CURRICULUM EVOLUTION

Figure 6: Additional Sample Curricula for Pendulum training by Reward-guided Stochastic Cur-
riculum
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