
Sample Complexity Lower Bounds for
Compressive Sensing with Generative Models

Zhaoqiang Liu
National University of Singapore

dcslizha@nus.edu.sg

Jonathan Scarlett
National University of Singapore
scarlett@comp.nus.edu.sg

Abstract

The goal of standard compressive sensing is to estimate an unknown vector from
linear measurements under the assumption of sparsity in some basis. Recently,
it has been shown that significantly fewer measurements may be required if the
sparsity assumption is replaced by the assumption that the unknown vector lies
near the range of a suitably-chosen generative model. In particular, in (Bora et
al., 2017) it was shown that roughly O(k logL) random Gaussian measurements
suffice for accurate recovery when the k-input generative model is bounded and L-
Lipschitz, and that O(kd logw) measurements suffice for k-input ReLU networks
with depth d and width w. In this paper, we establish corresponding algorithm-
independent lower bounds on the sample complexity using tools from minimax
statistical analysis. In accordance with the above upper bounds, our results are
summarized as follows: (i) We construct an L-Lipschitz generative model capable
of generating group-sparse signals, and show that the resulting necessary number of
measurements is Ω(k logL); (ii) Using similar ideas, we construct two-layer ReLU
networks of high width requiring Ω(k logw) measurements, as well as lower-width
deep ReLU networks requiring Ω(kd) measurements. As a result, we establish that
the scaling laws derived in (Bora et al., 2017) are optimal or near-optimal in the
absence of further assumptions.

1 Introduction

The problem of sparse estimation via linear measurements (commonly referred to as compressive
sensing) is well-understood, with theoretical developments including sharp performance bounds for
both practical algorithms [1, 2, 3, 4] and (potentially intractable) information-theoretically optimal
algorithms [5, 6, 7, 8]. Following the tremendous success of deep generative models in a variety of
applications [9], a new perspective on compressive sensing was recently introduced, in which the
sparsity assumption is replaced by the assumption of the underlying signal being well-modeled by a
generative model (typically corresponding to a deep neural network) [10]. This approach was seen to
exhibit impressive performance in experiments, with reductions in the number of measurements by
large factors such as 5 to 10 compared to sparsity-based methods.

In addition, [10] provided theoretical guarantees on their proposed algorithm, essentially showing that
an L-Lipschitz generative model with bounded k-dimensional inputs leads to reliable recovery with
m = O(k logL) random Gaussian measurements (see Section 2 for a precise statement). Moreover,
for a ReLU network generative model from Rk to Rn with width w and depth d, it suffices to have
m = O(kd logw). A variety of follow-up works provided additional theoretical guarantees (e.g., for
more specific optimization algorithms [11, 12], more general models [13], or under random neural
network weights [14, 15]) for compressive sensing with generative models, but the main results of
[10] are by far the most relevant to ours.

In this paper, we address a prominent gap in the existing literature by establishing algorithm-
independent lower bounds on the number of measurements needed (e.g., this is explicitly posed as an



open problem in [15]). Using tools from minimax statistical analysis, we show that for generative
models satisfying the assumptions of [10], the above-mentioned dependencies m = O(k logL) and
m = O(kd logw) cannot be improved (or in the latter case, cannot be improved by more than a log n
factor) without further assumptions. Our argument is essentially based on a reduction to compressive
sensing with a group sparsity model (e.g., see [16]), i.e., forming a neural network that is capable of
producing such signals. The proofs are presented in the full paper [17].

2 Bounded Lipschitz-Continuous Generative Models

We begin by stating a simple corollary of a main result of Bora et al. [10]. As we show in [17], this is
obtained by extending [10, Thm. 1.2] from spherical to rectangular domains, and then converting the
high-probability bound to an average one. In [17], we also handle the case of spherical domains.
Corollary 1. (Adapted from [10, Thm. 1.2]) Fix r > 0, and let G : Bk∞(r) → Rn be an L-
Lipschitz function, and let A ∈ Rm×n be a random measurement matrix whose entries are i.i.d. with
distribution Aij ∼ N (0, 1

m ). Given the observed vector y = Ax∗ + η with i.i.d. Gaussian noise
η ∼ N (0, αmIm) for some α > 0, let ẑ be the global minimizer of ‖y −AG(z)‖2 over z ∈ Bk∞(r).

Then, when m ≥ Ck log Lr
√
k√
α

for a universal constant C, we have for a universal constant C ′ that

sup
x∗∈Range(G)

E
[
‖G(ẑ)− x∗‖22

]
≤ C ′α. (1)

In the following, we construct a Lipschitz-continuous generative model that can generate bounded k-
group-sparse vectors. Then, by making use of minimax statistical analysis for group-sparse recovery,
we provide an information-theoretic lower bounds that matches the upper bound in Corollary 1.

More precisely, we say that a signal in Rn is k-group-sparse if, when divided into k blocks of size n
k ,

each block contains at most one non-zero entry. We define

Sk =
{
x ∈ Rn : x is k-group-sparse

}
, (2)

Sk(xmax) =
{
x ∈ Sk : ‖x‖∞ ≤ xmax

}
. (3)

Our construction of the generative function G : Bk∞(r) → Sk(xmax) is given as follows:
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Figure 1: Generative model that produces sparse signals. This
figure shows the mapping from z1 → (x1, . . . , xn/k), and the
same relation holds for z2 → (xn/k+1, . . . , x2n/k), etc. up to
zk → (xn−k+1, . . . , xn).

• The output x ∈ Rn is divided into
k sub-sequences of length n

k , de-
noted x(1), . . . ,x(k) ∈ Rn

k .
• A given block x(i) is only a func-

tion of the corresponding input zi,
for i = 1, . . . , k.

• The mapping from zi to x(i) is
as shown in Figure 1. The inter-
val [−r, r] is divided into n

k in-
tervals of length 2rk

n , and the j-
th entry of x(i) can only be non-
zero if zi takes a value in the
j-th interval. Within that inter-
val, the mapping takes a “double-
triangular” shape – the endpoints
and midpoint are mapped to zero,
the points 1

4 and 3
4 of the way into

the interval are mapped to xmax

and −xmax respectively, and the
remaining points are formed via a
linear interpolation.
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It is easy to show that the generative
model G : Bk∞(r) → Sk(xmax) described above is L Lipschitz continuous with L = 2nxmax

kr .
In addition, using similar steps to the case of k-sparse recovery [7, 18], we are able to obtain a
minimax lower bound for k-group-sparse recovery, which holds when xmax is not too small. Based
on these results, the following sample complexity lower bound is proved in [17].
Theorem 1. Consider the problem of compressive sensing with L-Lipschitz generative models with
input domain Bk∞(r), and i.i.d. N

(
0, αm

)
noise. Let C1 > 0 and CA > 0 be fixed constants,

and assume that L ≥ Ω
(
1
r

√
α
k

)
with a sufficiently large implied constant. Then there exists an

L-Lipschitz generative model G : Bk∞(r)→ Rn (and associated output dimension n) such that, for
any A ∈ Rm×n satisfying ‖A‖2F = CAn, any algorithm that produces some x̂ satisfying

sup
x∗∈Range(G)

E
[
‖x̂− x∗‖22

]
≤ C1α (4)

must also have m = Ω
(
k log Lr

√
k√
α

)
.

Theorem 1 not only shows that the scaling laws of Corollary 1 cannot be improved under
i.i.d. N

(
0, 1

m

)
measurements (in which case ‖A‖2F is close to n with high probability), but also

that no further improvements (beyond constant factors) are possible even for general measurement
matrices having a similar Frobenius norm. The result holds under the assumption that L ≥ Ω

(
1
r

√
α
k

)
with a sufficiently large implied constant, which is a very mild assumption since for fixed r and α,
the right-hand side tends to zero as k grows large (whereas typical Lipschitz constants are at least
equal to one, if not much higher).

3 Generative Models Based on ReLU Networks

In this section, as opposed to considering general Lipschitz-continuous generative models, we focus
on generative models given by neural networks with ReLU activations. Similar to the derivation of
Corollary 1, we have the following corollary for ReLU-based networks from [10, Thm. 1.1].
Corollary 2. (Adapted from [10, Thm. 1.1]) LetG : Rk → Rn be a generative model from a d-layer
neural network with ReLU activations and at most w nodes per layer. The linear measurements
model is the same as that in Corollary 1 with the domain of G(·) being Rk and the measurement
matrix A being deterministic. Then, when m ≥ Ckd logw for a universal constant C, there exists
some A ∈ Rm×n with n

2 ≤ ‖A‖2F ≤ 3n
2 such that for a universal constant C ′,

sup
x∗∈Range(G)

E
[
‖G(ẑ)− x∗‖22

]
≤ C ′α. (5)

Note that this result holds even when the domain D = Rk, so we do not need to distinguish between
the rectangular and spherical domains. Moreover, this result makes no assumptions about the neural
network weights (nor domain size), but rather, only the input size, width, and depth.

Thus far, we have considered forming a generative model G : Rk → Rn capable of producing
k-group-sparse signals, which leads to a lower bound of m = Ω(k log n). While this precise
approach does not appear to be suited to properly understanding the dependence on width and depth
in Corollary 2, we now show that a simple variant indeed suffices: We form a wide and/or deep
ReLU network G : Rk → Rn capable of producing all (kk0)-group-sparse signals having non-zero
entries ±ξ, where k0 is a certain positive integer that may be much larger than one. The idea of
the construction is illustrated in Figure 2, which shows the mappings for k = 1 (the general case
simply repeats this structure in parallel to get an output dimension n = n0k). Note also that we
need to replace the rectangular shapes by trapeziums (with high-gradient diagonals) to make them
implementable with a ReLU network.

Again using the minimax lower bound for group-sparse recovery and a suitable choice of ξ, the
following is proved in [17].
Theorem 2. Fix C1, CA > 0, and consider the problem of compressive sensing with generative
models under i.i.d. N

(
0, αm

)
noise, a measurement matrix A ∈ Rm×n satisfying ‖A‖2F = CAn, and

the above-described generative model G : Rk → Rn with parameters k, k0, n0, and ξ. Then, if
n0 ≥ C0k0 for an absolute constant C0, then there exists a constant C2 = Θ(1) such that the choice

ξ =
√

C2α
k yields the following:
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• Any algorithm producing some x̂ satisfying supx∗∈Range(G) E
[
‖x̂− x∗‖22

]
≤ C1α must also

have m = Ω
(
kk0 log n

kk0

)
(or equivalently m = Ω

(
kk0 log n0

k0

)
, since n = n0k).

• The generative function G can be implemented as a ReLU network with a single hidden layer
(i.e., d = 2) of width at most w = O(k(n0

k0
)k0).

• Alternatively, if n0

k0
is an integer power of two, the generative function G can be implemented as

a ReLU network with depth d = O
(
k0 log n0

k0

)
and width w = O(n).

In the settings described in the second and third dot points, the sample complexity from Corollary 2
behaves as kd logw = O

(
kk0 log n0

k0
+ k log k

)
and kd logw = O

(
kk0 · log n0

k0
· log n

)
respectively.
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Figure 2: Recursively defined generative model mapping a single input z to Rn0 . Note that this
figure depicts an idealized version in which the mapping is discontinuous; the final generative model
used replaces each vertical line by a sharp (but finite-gradient) transition, creating pulses that are
trapezoidal rather than rectangular.

While we do not claim a lower bound for every possible combination of depth and width, the final
statement of Theorem 2 reveals that the upper and lower bounds match up to a constant factor
(high-width case with log k ≤ O

(
k0 log n0

k0

)
) or up to a log n factor (high-depth case).

The proof of the claim for the high-width case is based on the fact that in Figure 2, upon replacing the
rectangles by trapeziums, each mapping is piecewise linear, and at the `-th scale the number of pieces
is O

((
n0

k0

)`−1)
, which we sum over ` = 1, . . . , k0 to get the overall width. In the high-depth case, we

exploit the periodic nature of the signals in Figure 2, and use the fact that depth-d neural networks can
be used to produce periodic signals with O(2d) repetitions [19]. In our case, the maximum number
of repetitions is O

((
n0

k0

)k0 (at the finest scale in Figure 2).

4 Conclusion

We have established, to our knowledge, the first lower bounds on the sample complexity for compres-
sive sensing with generative models. To achieve these, we constructed generative models capable of
producing group-sparse signals, and then applied a minimax lower bound for group-sparse recovery.
For bounded Lipschitz-continuous generative models we matched the O(k logL) scaling law derived
in [10], and for ReLU-based generative models, we showed that the dependence of the O(kd logw)
bound from [10] has an optimal or near-optimal dependence on both the width and depth. A possible
direction for future research is to understand what additional assumptions could be placed on the
generative model to further reduce the sample complexity.
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