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Abstract. As adenocarcinoma is the most common cancer, the pathol-
ogy diagnoses for it is of great significance. In the field of digital pathol-
ogy, although deep learning method has achieved good results, it is theo-
rem agnostic and the accumulated pathology-level knowledge is ignored.
Specifically, the degree of gland differentiation is vital for defining the
grade of adenocarcinoma. Following this domain knowledge, we encoded
gland tissue regions as prior information in a multi-task convolutional
neural network (CNN), guiding the network’s preference for gland in-
formation when inferring. Firstly, we validated the effectiveness of the
gland prior information by single task with gland ground truth annota-
tions. Then we constructed a multi-task framework with segmentation
and classification branches simultaneously. In this architecture, the seg-
mentation probability map acted as the spatial attention for classifica-
tion, emphasizing the region of gland and masking the noise of irrele-
vant parts. Experiments showed that the proposed prior consistent CNN
with a multi-task learning method achieved 97.04% accuracy, compared
with 93.82% of the single task classification model. Meanwhile, proposed
multi-task model outputted gland tissue segmentation results. Most im-
portantly, our model is based on the clinical-pathological diagnostic cri-
teria of adenocarcinoma, which provides more ideas on how to make deep
learning methods in the field of digital pathology more interpretable.
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1 Introduction

Nowadays, with the development of computer vision (CV), more and more ad-
vanced image processing algorithms are applied to the field of medical images[2].
In the field of digital pathology, deep learning plays an increasingly important
role because of its excellent performance in image classification, tissue segmenta-
tion and cell detection[6]. Usually, deep learning method was simply implemented
to process image pixels for final label predictions. Although it achieved or even
exceeded human-level performance, it lacks pathology-level interpretation. Also,
few studies analyzed inference process of models or considered the domain prior
information of pathology to guide model inference once models were designed.
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Adenocarcinomas are the most common form of cancer. In pathological diag-
nosis of several adenocarcinomas including prostate, lung, and colon, the degree
of gland differentiation is vital for defining the grade of adenocarcinoma, and it
is the important criterion on grading for pathologists[4]. Therefore, CV-based
studies of these adenocarcinomas often depend on quantitative description of
glands. Xu et al. employed a geodesic active contour model for gland segmen-
tation in prostate[10]. Ali et al. adopted adaptive active contour scheme with a
shape prior for gland-related nuclei segmentation[1]. Also, Zhang et al. utilized
nuclei shape prior for segmentation by spectral clustering and sparse coding[14].
Important pathological prior knowledge such as gland regions can be segmented,
encoded and fused into CNN for constraining, guiding model’s inferring prefer-
ence for tissue prior information and improving pathology-level interpretation.

Multi-task learning is a branch of machine learning, it is an algorithm that
can learn multiple tasks at the same time[3]. It improved robustness of features
and generalization of models through sharing domain-specific information and
joint learning. Yoon et al. employed a multi-task CNN for automated extraction
of the primary cancer site and its laterality, achieved further performance im-
provement than single task[11]. Here, we adopted multi-task learning for classifi-
cation and segmentation, which can improve the performance and generalization
of models by sharing the feature representation.

In our work, to utilize strong points of deep learning and improve pathology-
level interpretation, we encoded gland regions as prior attention for deep learning
network, guiding the model’s preference for gland information when inferring.
We performed multi-task learning for image binary classification and glands seg-
mentation. Also, we transferred the probability map of automatic gland segmen-
tation to the classification branch for constraining, which achieved benign and
malignant discrimination of pathological images based on automated segmented
gland prior information.

2 Methods

Our proposed prior consistent CNN for classification is based on multi-task
learning and gland prior weighted guidance. Fig.1 shows the overall network
framework. The entire structure includes a feature learning backbone part and
two parallel branches: classification branch and segmentation branch, which are
expressed as Branch-C and Branch-S. The backbone part is acted as feature
extractor and Branch-C is utilized for making decisions between benign and
malignant images, Branch-S is for automatic segmentation of glandular tissue.
Branch-S can not only output the segmented results of gland but also can trans-
fer gland’s probability map information to Branch-C as prior guidance, which
constrains Branch-C on reasoning the category of pathological images. The two
branches share features of the backbone part and perform target optimization
jointly. We described each module in detail in the following sections.
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Fig. 1. Proposed overall network framework. Our network is composed of a backbone
and two parallel branches: classification and segmentation. For an input image, the
backbone part is responsible for general feature extraction; Obtained feature maps are
then utilized for benign/malignant classification and gland segmentation in Branch-C
and Branch-S, separately. Prior transmission is the process of fusing Branch-S output
probability map with general feature maps as the input for classification guidance.

2.1 Features learning backbone

The Backbone section was adopted for high-level semantic features learning of
pathological images through stacking of convolution layers. Here, benefiting from
residual network[5], we experienced the backbone part similar to ResNet50[5].

As Fig.1 shown, for an input image X ∈ R3∗h∗w, 1/4 down-sampling oper-
ation is firstly performed by 3 convolution layers with 3 ∗ 3 kernels and a max-
pooling operation with 3 ∗ 3 kernels and stride 2. Then, a 4-part convolution
portion contained 3, 4, 6, and 3 residual blocks, respectively, wherein the second
convolution portion operated 1/2 down-sampling. In order to obtain greater re-
ceptive fields and pay attention to the scale information, we adopted the dilated
convolution strategy[13] in the 3rd and 4th portions. Finally, the backbone part

outputs feature maps representation V ∈ R2048∗h
8 ∗

w
8 .

2.2 Multi tasks with automated segmentation and classification

Branch-S was used to implement automatic gland segmentation. In order to im-
prove the ability to obtain context content and global information, the pyramid
pooling module (PPM)[15] was utilized. PPM composed of four global pooling
operations with outputs of 1∗1, 2∗2, 3∗3, and 6∗6, followed by 1∗1 convolution
for channel dimensionality reduction. Then, bilinear interpolation operation was
added to obtain the same size features V ′bin = {V ′1 , V ′2 , V ′3 , V ′6} as V . We then
concatenated V and V ′bin to make model integrative to scale information. At last,
there are two convolutions mapping [V, V ′bin] features to the final prediction P .
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The prediction map can be passed to Branch-C as gland prior information and
converted to binary gland prediction via bilinear interpolation method.

Branch-C was adopted to achieve benign and malignant classification. To uti-
lize gland prior information, weights assignment Wprior on the input V was
performed, obtaining feature maps Vw. Then 3 convolutional operations with
3 ∗ 3 kernels followed by a global pooling operation and a fully connected layer
were added for feature learning and dimension reduction. Finally, the output
vectors v were normalized to class probabilities.

Loss optimization plays an important role in the multi-task learning network.
We minimized the objective function of our model. The overall loss function
LMT for each image sample is defined as:

LMT (c∗, s∗) = LCE(c, c∗) + λ

w∑
j=1

h∑
i=1

LCE(sij , s
∗
ij) λ ∈ {0, 1}

Here, c∗ and s∗ represent predicted binary probabilities and probability maps
of Branch-C and Branch-S respectively. Both branches are optimized by cross-
entropy loss, denoted by LCE . c is the binary label, and s is the gland ground
truth of the corresponding image, where sij represents the pixel point label of
row i and column j. The two terms are balanced by hyper-parameter λ, which
we took 0 for the single task classification and 1 for multi tasks with Branch-S.

2.3 Gland prior information transmission

Gland prior information transmission is the foundation of reasoning and inter-
pretation, it is also the core of our architecture. It reconstructed the input feature
maps of Branch-C by weighted attention encoding and guided the inference.

In this paper, two methods of gland prior information transmission were
proposed. One approach is to utilize the Hadamard product X ′ of the original
image X and glandular ground truth annotation M ∈ R1∗h∗w as network’s input
for feature learning, ignoring non-glandular tissue directly. The significance of
this method is for verifying effectiveness of gland prior information via the single
task classification model. Another method is to constrain the feature maps V via
the segmented gland probability map. In that way, not only can we verify the
prior effectiveness, but also achieve automated segmentation. Probability map
information approximates ground truth content when Branch-S optimization
approximates optimal solution; moreover, probability information is in line with
the idea of weight attention compared with binary information.

3 Experiments Design

3.1 Data and preprocessing

Warwick-QU Colorectal Cancer dataset[8, 9] on gland segmentation task was
utilized. It includes gland region instance annotations and images diagnostic
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information. The entire dataset was divided into the training set with 37 benign
and 48 malignant images and test set with 37 benign and 43 malignant images,
totally 165 images scanned at 20x magnification.

We cropped 5 patches pairs with a size of 320 ∗ 320 from each image and
its corresponding gland instance annotation. Then gland instance annotations
were converted to semantic annotations and each histology image performed
color standardization via color transfer[7]. Finally, data enhancement including 3
rotations and 2 mirror operations was carried out for each patch pair. Obtained
multi-task learning overall dataset included training set with 984 benign and
1386 malignant and testing set with 1050 benign and 1182 malignant samples.

3.2 Stage I, Single task hypothesis validation

The purpose of this experiments stage is to verify the effectiveness of gland prior
information. For our multi-task learning network, we first removed Branch-S,
and the feature maps output from the backbone was only used as the input of
Branch-C, which means that the network structure is a single task classifier. We
compared the experimental results of three network models: single task classifier
without prior, single task classifier with prior on the image and single task clas-
sifier with prior on the feature maps, which we denoted as ST noP, ST PoI and
ST PoF. For all experiments of this stage, parameters were 100 training epochs,
Adam optimizer, cross-entropy loss, kaiming-uniform weights initialization. The
initial learning rate was 0.001 and its decay strategy was 0.5 per 10 epochs. The
evaluation indexes were accuracy and AUC values.

3.3 Stage II, Multi tasks with automated segmentation

In this stage, Branch-S was reserved. Two tasks including image classification
and gland segmentation were achieved by sharing backbone’s feature represen-
tation. The first experiment in this stage is to carry out the joint optimization
of Branch-C and Branch-S without gland prior information transmission. For
the second experiment, Branch-C and Branch-S were optimized simultaneously,
and the prediction probability map of Branch-S was transmitted to Branch-C.
The experimental parameter settings were consistent with the first stage. Also,
mIOU index for segmentation was for evaluation.

In addition, due to the kaiming-uniform weights initialization, the initial
segmentation results could be introduced into the Branch-C too early, which
led to noise. Therefore, we carried out a comparative experiment with pre-
trained model for parameter initialization. We denoted these three experiments
as MT noP, MT P Uniform and MT P Pretrained, respectively. The pre-trained
model of MT P Pretrained was fine-tuned from trained model of MT noP.

4 Results and Discussion

Table.1 presents an overview of all experiments’ performances in terms of ac-
curacy, AUC for classification and mIOU index for segmentation. The top half
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shows performances of hypothesis validation experiments of stage I and the bot-
tom half provides stage II evaluation results.

Table 1. Overview of all experiments’ performances in terms of accuracy, AUC value
for classification and mIOU index for segmentation. (ST and MT denote single task
and multi tasks, individually. P denotes gland prior attention, I denotes original input
image and F denotes backbone output feature maps)

Experiments Model
Classification Segmentation

Accuracy AUC mIOU

Experiments Stage I
ST noP 93.82% 0.978 -
ST PoI 95.70% 0.9835 -
ST PoF 96.77% 0.9939 -

Experiments Stage II
MT noP 95.97% 0.9828 0.8086

MT P Uniform 95.70% 0.9901 0.7347
MT P Pretrained 97.04% 0.9971 0.8134

For stage I, experiments with gland prior both showed better performances
than that without gland prior, achieving about 2% and 3% increasing on ac-
curacy, individually. This validated our hypothesis that classification based on
gland prior is beneficial. In addition, it is better to transmit gland prior informa-
tion to feature maps than to the origin image. This performance gain suggested
that gland prior on feature maps is equivalent to the attention mechanism[12].

In stage II, MT noP, MT P Uniform and MT P Pretrained reached 95.97%,
95.70% and 97.04% on accuracy, respectively. On the one hand, MT noP model
achieved 2.15% increasing than ST noP on accuracy. This is consistent with that
shared backbone part of multi-task learning network can learn more robust fea-
tures and representation. On the other hand, MT P Pretrained model got better
performance than MT noP, more than 1% improvement on accuracy and 0.015
on AUC value. These results further support the hypothesis of importance and
effectiveness of gland prior information. Further analysis showed that MT noP
and MT P Pretrained models produced almost the same mIOU performances,
0.8086 and 0.8134, respectively. Automatic glandular segmentation can perform
well whether gland prior information was transmitted to Branch-C or not. A
common view is that Branch-S was not affected although prior information at-
tention was transferred into Branch-C. It is worth noting that no significant im-
provement on MT P Uniform model was found compared with MT noP. Also,
it is apparent from the table that the mIOU of MT P Uniform was poor. These
indicated that network optimization became difficult due to gland probability
map transmission at the beginning of training and the performance was affected
because Branch-S is not well optimized and noise was added.

In addition to the evaluation index, we also show some segmentation re-
sults of Branch-S in multi-task model. Furthermore, we utilized Class Activa-
tion Mapping (CAM) algorithm[16] to generate features and visualize atten-
tion maps of Branch-C classifier. Fig.2 shows segmentation results, classification
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Fig. 2. Gland segmentation results, classification predictions and classifier’s attention
maps for different samples on MT noP and MT P Pretrained models.

predictions and classifier’s attention maps of pathological samples on MT noP
and MT P Pretrained models. The first two samples were correctly classified
by both models, and their gland tissue were well segmented. Also, correspond-
ing attention maps were observed. Branch-C of MT noP model has focused on
glandular tissue although there is no prior constraint. After that, Branch-C of
MT P Pretrained model paid more attention to glandular tissue content under
the constraint of gland prior information. For following two samples, their gland
tissue was also well segmented. However, they were misclassified by MT noP
model but correctly predicted by MT P Pretrained model. We observed their
attention maps. Branch-C of MT noP model focused on non-tissue regions (lu-
men and background) thus appeared error recognition. But MT P Pretrained
model paid attention to gland tissue regions because gland prior information
was transferred. The classifier are targeted, that’s why it achieved better perfor-
mance. And this again confirmed the benefits of gland prior weights attention.

5 Conclusion

In this work, we proposed prior consistent CNN with multi-task learning for
colon image classification, which achieved automated glands segmentation and
images classification simultaneously. We encoded segmented gland probability
map from Branch-S as prior attention for Branch-C, constraining and guiding
Branch-C’s preference for gland regions when inferring. Also, we improved the
robustness of features by means of feature sharing representation and multi-task
joint learning. Our method achieved excellent results on GlaS dataset, compared
with single task model. The progressiveness and applicability of our method have
been validated. Importantly, our framework was based on the clinical pathologi-
cal diagnostic criteria, which provides more ideas on how to make deep learning
methods in the field of digital pathology more interpretable.
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