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ABSTRACT

Generative models often use human evaluations to determine and justify progress.
Unfortunately, existing human evaluation methods are ad-hoc: there is currently
no standardized, validated evaluation that: (1) measures perceptual fidelity, (2) is
reliable, (3) separates models into clear rank order, and (4) ensures high-quality
measurement without intractable cost. In response, we construct HUMAN EYE
PERCEPTUAL EVALUATION (HYPE), a human metric that is (1) grounded in psy-
chophysics research in perception, (2) reliable across different sets of randomly
sampled outputs from a model, (3) results in separable model performances, and
(4) efficient in cost and time. We introduce two methods. The first, HYPEtime,
measures visual perception under adaptive time constraints to determine the mini-
mum length of time (e.g., 250ms) that model output such as a generated face needs
to be visible for people to distinguish it as real or fake. The second, HYPE∞, mea-
sures human error rate on fake and real images with no time constraints, maintain-
ing stability and drastically reducing time and cost. We test HYPE across four
state-of-the-art generative adversarial networks (GANs) on unconditional image
generation using two datasets, the popular CelebA and the newer higher-resolution
FFHQ, and two sampling techniques of model outputs. By simulating HYPE’s
evaluation multiple times, we demonstrate consistent ranking of different models,
identifying StyleGAN with truncation trick sampling (27.6% HYPE∞ deception
rate, with roughly one quarter of images being misclassified by humans) as supe-
rior to StyleGAN without truncation (19.0%) on FFHQ.

Figure 1: Our human evaluation metric, HYPE, consistently distinguishes models from each other:
here, HYPE∞ scores compare StyleGAN, ProGAN, BEGAN, and WGAN-GP on CelebA, and
StyleGAN with and without truncation trick sampling on FFHQ.

1 INTRODUCTION

Historically, likelihood-based estimation techniques served as the de-facto evaluation metric for
generative models (Hinton, 2002; Bishop, 2006). But recently, with the application of generative
models to complex tasks such as image and text generation (Goodfellow et al., 2014; Papineni et al.,
2002), likelihood or density estimation grew no longer tractable (Theis et al., 2015). Moreover, for
high-dimensional problems, even likelihood-based evaluation has been called into question (Theis
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et al., 2015). Consequently, most generative tasks today resort to analyzing model outputs (Rössler
et al., 2019; Salimans et al., 2016; Denton et al., 2015; Karras et al., 2018; Brock et al., 2018;
Radford et al., 2015). These output evaluation metrics consist of either automatic algorithms that
do not reach the ideals of likelihood-based estimation, or ad-hoc human-derived methods that are
unreliable and inconsistent (Rössler et al., 2019; Denton et al., 2015).

Consider the well-examined and popular computer vision task of realistic face generation (Goodfel-
low et al., 2014). Automatic algorithms used for this task include Inception Score (IS) (Salimans
et al., 2016) and Fréchet Inception Distance (FID) (Heusel et al., 2017). Both have been discredited
for evaluation on non-ImageNet datasets such as faces (Barratt & Sharma, 2018; Rosca et al., 2017;
Borji, 2018; Ravuri et al., 2018). They are also much more sensitive to visual corruptions such as
salt and pepper noise than to semantic distortions such as swirled images (Heusel et al., 2017). So,
while automatic metrics are consistent and standardized, they cannot fully capture the semantic side
of perceptual fidelity (Borji, 2018).

Realizing the constraints of the available automatic metrics, many generative modeling challenges
resort to summative assessments that are completely human (Rössler et al., 2019; Salimans et al.,
2016; Denton et al., 2015). These human measures are (1) ad-hoc, each executed in idiosyncrasy
without proof of reliability or grounding to theory, and (2) high variance in their estimates (Salimans
et al., 2016; Denton et al., 2015; Olsson et al., 2018). These characteristics combine to a lack of
reliability, and downstream, (3) a lack of clear separability between models. Theoretically, given
sufficiently large sample sizes of human evaluators and model outputs, the law of large numbers
would smooth out the variance and reach eventual convergence; but this would occur at (4) a high
cost and a long delay.

In this paper, we present HYPE (HUMAN EYE PERCEPTUAL EVALUATION) that addresses these
criteria in turn. It: (1) measures the perceptual fidelity of generative model outputs via a grounded
method inspired by psychophysics methods in perceptual psychology, (2) is a reliable and consis-
tent estimator, (3) is statistically separable to enable a comparative ranking, and (4) ensures a cost
and time efficient method through modern crowdsourcing techniques such as training and aggre-
gation. We present two methods of evaluation. The first, called HYPEtime, is drawn directly from
psychophysics literature (Klein, 2001) and displays images using adaptive time constraints to deter-
mine the time-limited perceptual threshold a person needs to distinguish real from fake (Cornsweet,
1962). The HYPEtime score is understood as the minimum time, in milliseconds, that a person needs
to see the model’s output before they can distinguish it as real or fake. Small HYPEtime scores in-
dicate that model outputs can be identified even at a glance; large scores suggest that people need
to dedicate substantial time and attention. The second method, called HYPE∞, is derived from the
first to make it simpler, faster, and cheaper while maintaining reliability. It measures human decep-
tion from fake images with no time constraints. The HYPE∞ score is interpretable as the rate at
which people mistake fake images and real images, given unlimited time to make their decisions.

We demonstrate HYPE’s performance on unconditional generation of human faces using generative
adversarial networks (GANs) (Goodfellow et al., 2014). We evaluate four state-of-the-art GANs:
WGAN-GP (Gulrajani et al., 2017), BEGAN (Berthelot et al., 2017), ProGAN (Karras et al., 2017),
and the most recent StyleGAN (Karras et al., 2018). First, we track progress across the years on the
popular CelebA dataset (Liu et al., 2015). We derive a ranking based on perception (HYPEtime, in
milliseconds) and error rate (HYPE∞, as a percentage) as follows: StyleGAN (439.4ms, 50.7%),
ProGAN (363.7ms, 40.3%), BEGAN (111.1ms, 10.0%), WGAN-GP (100.0ms, 3.8%). A score
of 500ms on HYPEtime indicates that outputs from the model become indistinguishable from real,
when shown for 500ms or less, but any more would start to reveal notable differences. A score of
50% on HYPE∞ represents indistinguishable results from real, conditioned on the real training set,
while a score above 50% through 100% represents hyper-realism in which generated images appear
more real than real ones when drawn from a mixed pool of both. Next, we test StyleGAN trained on
the newer FFHQ dataset (Karras et al., 2018), comparing between outputs generated when sampled
with and without the truncation trick, a technique used to prune low-fidelity generated images (Brock
et al., 2018; Karras et al., 2018). We find that outputs generated with the truncation trick (363.2ms,
27.6%) significantly outperforms those without it (240.7ms, 19.0%), which runs counter to scores
reported by FID.

HYPE indicates that GANs have clear, measurable perceptual differences between them. HYPE
produces identical rankings between HYPEtime and HYPE∞. We also find that even the best eval-
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Figure 2: Example images sampled with the truncation trick from StyleGAN trained on FFHQ.
Images on the right exhibit the highest HYPE scores, the highest human perceptual fidelity.

uated model, StyleGAN trained on FFHQ and sampled with the truncation trick, only performs at
27.6% HYPE∞, suggesting substantial opportunity for improvement. Finally, we show that we can
reliably reproduce these results with 95% confidence intervals using 30 human evaluators at $60 in
a task that takes 10 minutes. While important measures, we do not focus on diversity, overfitting,
entanglement, training stability, and computational and sample efficiency of the model (Borji, 2018;
Lucic et al., 2018) and instead aim to construct the gold standard for human perceptual fidelity.

We deploy HYPE as a rapid solution for researchers to measure their generative models, requir-
ing just a single click to produce reliable scores and measure progress. We deploy HYPE at
https://hype.stanford.edu, where researchers can upload a model and retrieve a HYPE score in 10
minutes for $60. Future work would extend HYPE to adapt to other generative tasks such as text
generation or abstractive summarization.

2 HYPE: HUMAN EYE PERCEPTUAL EVALUATION

Model creators can choose to perform two different evaluations and receive two different scores:
the HYPEtime score, which gathers time-limited perceptual thresholds to measure the psychometric
function and report the minimum time people need to make accurate classifications, and the HYPE∞
score, a simplified approach which assesses people’s error rate under no time constraint. HYPE
displays a series of images one by one to crowdsourced evaluators on Amazon Mechanical Turk
and asks the evaluators to assess whether each image is real or fake. Half of the images are drawn
from the model’s training set (e.g., FFHQ or CelebA), which constitute the real images. The other
half are drawn from the model’s output. We use modern crowdsourcing training and quality control
techniques to ensure high quality labels (Mitra et al., 2015).

2.1 PERCEPTUAL FIDELITY GROUNDED IN PSYCHOPHYSICS: HYPETIME

Our first method, HYPEtime, measures time-limited perceptual thresholds. It is rooted in psy-
chophysics literature, a field devoted to the study of how humans perceive stimuli, to evaluate human
time thresholds upon perceiving an image. Our evaluation protocol follows the procedure known as
the adaptive staircase method (Cornsweet, 1962) (see Figure 3). An image is flashed for a limited
length of time, after which the evaluator is asked to judge whether it is real or fake. If the evaluator
consistently answers correctly, the staircase descends and flashes the next image with less time. If
the evaluator is incorrect, the staircase ascends and provides more time.

This process requires sufficient iterations to converge on the minimum time needed for each eval-
uator to sustain correct guesses in a sample-efficient manner (Cornsweet, 1962), producing what is
known as the psychometric function (Wichmann & Hill, 2001), the relationship of timed stimulus
exposure to accuracy. For example, for an easily distinguishable set of generated images, a human
evaluator would immediately drop to the lowest millisecond exposure. However, for a harder set, it
takes longer to converge and the person would remain at a longer exposure level in order to com-
plete the task accurately. The modal time value is the evaluator’s perceptual threshold: the shortest
exposure time at which they can maintain effective performance (Cornsweet, 1962; Greene & Oliva,
2009).
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HYPEtime displays three blocks of staircases for each evaluator. An image evaluation begins with a
3-2-1 countdown clock, each number displaying for 500 ms. The sampled image is then displayed
for the current exposure time. Immediately after each image, four perceptual mask images are
rapidly displayed for 30ms each. These noise masks are distorted to prevent visual afterimages and
further sensory processing on the image afterwards (Greene & Oliva, 2009). We generate masks
from the test images, using an existing texture-synthesis algorithm (Portilla & Simoncelli, 2000).
Upon each submission, HYPEtime reveals to the evaluator whether they were correct.

Figure 3: The adaptive staircase method shows
images to evaluators at different time exposures,
decreasing when correct and increasing when in-
correct. The modal exposure measures their per-
ceptual threshold. We repeat this method across
multiple blocks, producing multiple staircases per
evaluator per model.

Image exposure times fall in the range [100ms,
1000ms], which we derive from the perception
literature (Fraisse, 1984). All blocks begin at
500ms and last for 150 images (50% gener-
ated, 50% real), values empirically tuned from
prior work (Cornsweet, 1962; Dakin & Omigie,
2009). Exposure times are raised at 10ms
increments and reduced at 30ms decrements,
following the 3-up/1-down adaptive staircase
approach. This 3-up/1-down approach theo-
retically leads to a 75% accuracy threshold
that approximates the human perceptual thresh-
old (Levitt, 1971; Greene & Oliva, 2009; Corn-
sweet, 1962).

Every evaluator completes multiple staircases,
called blocks, on different sets of images.
As a result, we observe multiple measures
for the model. We employ three blocks, to
balance quality estimates against evaluators’
fatigue (Krueger, 1989; Rzeszotarski et al.,
2013). We average the modal exposure times
across blocks to calculate a final value for
each evaluator. Higher scores indicate a better
model, whose outputs take longer time expo-
sures to discern from real.

2.2 COST-EFFECTIVE APPROXIMATION: HYPE∞

Building on the previous method, we introduce HYPE∞: a simpler, faster, and cheaper method
after ablating HYPEtime to optimize for speed, cost, and ease of interpretation. HYPE∞ shifts from
a measure of perceptual time to a measure of human deception rate, given infinite evaluation time.
The HYPE∞ score gauges total error on the task, enabling the measure to capture errors on both
fake and real images, and effects of hyperrealistic generation when fake images look even more
realistic than real images. HYPE∞ requires fewer images than HYPEtime to find a stable value, at a
6x reduction in time and cost (10 minutes per evaluator instead of 60 minutes, at the same rate of $12
per hour). Higher scores are better, like HYPEtime: a HYPE∞ value of 10% indicates that only 10%
of images deceive people, whereas 50% indicates that people are mistaking real and fake images at
chance, rendering fake images indistinguishable from real. Scores above 50% suggest hyperrealistic
images, as evaluators mistake images at a rate greater than chance, on average mistaking more fake
images to be real than real ones and vice versa.

HYPE∞ shows each evaluator a total of 100 images: 50 real and 50 fake. We calculate the propor-
tion of images that were judged incorrectly, and aggregate the judgments over the n evaluators on k
images to produce the final score for a given model.

2.3 CONSISTENT AND RELIABLE DESIGN

To ensure that our reported scores are consistent and reliable, we need to sample sufficient model
outputs, select suitable real images for comparison, and hire, qualify, and appropriately pay enough
evaluators. To ensure a wide coverage of images, we randomly select the fake and real images
provided to workers from a pool of 5000 images (see Sampling sufficient model outputs, below).
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Comparing results between single evaluators can be problematic. To ensure HYPE is reliable, we
must use a sufficiently large number of evaluators, n, which can be treated as a hyperparameter. To
determine a suitable number, we use our experimental results (further discussed in the Results sec-
tion) to compute bootstrapped 95% confidence intervals (CI) across various values of n evaluators.

Quality of evaluators. To obtain a high-quality pool of evaluators, each is required to pass a quali-
fication task. Such a pre-task filtering approach, sometimes referred to as a person-oriented strategy,
is known to outperform process-oriented strategies that perform post-task data filtering or process-
ing (Mitra et al., 2015). Our qualification task displays 100 images (50 real and 50 fake) with no
time limits. Evaluators pass if they correctly classify 65% of both real and fake images. This thresh-
old should be treated as a hyperparameter and may change depending upon the GANs used in the
tutorial and the desired discernment ability of the chosen evaluators. We choose 65% based on the
cumulative binomial probability of 65 binary choice answers out of 100 total answers: there is only
a one in one-thousand chance that an evaluator will qualify by random guessing. Unlike in the stair-
case task itself, fake qualification images are drawn equally from multiple different GANs. This is to
ensure an equitable qualification across all GANs, as to avoid a qualification that is biased towards
evaluators who are particularly good at detecting one type of GAN. The qualification is designed to
be taken occasionally, such that a pool of evaluators can assess new models on demand.

Payment. Evaluators are paid a base rate of $1 for working on the qualification task. To incentivize
evaluators to remained engaged throughout the task, all further pay after the qualification comes
from a bonus of $0.02 per correctly labeled image. This pay rate typically results in a wage of
approximately $12 per hour, which is above a minimum wage in our local state.

Sampling sufficient model outputs. The selection of K images to evaluate from a particular model
is a critical component of a fair and useful evaluation. We must sample a large enough number of
images that fully capture a model’s generative diversity, yet balance that against tractable costs in
the evaluation. We follow existing work on evaluating generative output by sampling K = 5000
generated images from each model (Salimans et al., 2016; Miyato et al., 2018; Warde-Farley &
Bengio, 2016) and K = 5000 real images from the training set. From these samples, we randomly
select images to give to each evaluator.

3 EXPERIMENTS

Datasets. We evaluate on two datasets of human faces:

1. CelebA-64 (Liu et al., 2015) is popular dataset for unconditional image generation, used
since 2015. CelebA-64 includes 202,599 images of human faces, which we align and crop
to be 64× 64 pixel images using a standard mechanism. We train all models without using
attributes.

2. FFHQ-1024 (Karras et al., 2018) is a newer dataset released in 2018 with StyleGAN and
includes 70,000 images of size 1024× 1024 pixels.

Architectures. We evaluate on four state-of-the-art models trained on CelebA-64: StyleGAN (Kar-
ras et al., 2018), ProGAN (Karras et al., 2017), BEGAN (Berthelot et al., 2017), and WGAN-
GP (Gulrajani et al., 2017). We also evaluate on two types of sampling from StyleGAN trained
on FFHQ-1024: with and without the truncation trick, which we denote StyleGANtrunc and
StyleGANno-trunc respectively. For parity on our best models across datasets, StyleGAN trained
on CelebA-64 is sampled with the truncation trick.

We train StyleGAN, ProGAN, BEGAN, and WGAN-GP on CelebA-64 using 8 Tesla V100
GPUs for approximately 5 days. We use the official released pretrained StyleGAN model on
FFHQ-1024 (Karras et al., 2018).

We sample noise vectors from the d-dimensional spherical Gaussian noise prior z ∈ Rd ∼ N (0, I)
during training and test times. We specifically opted to use the same standard noise prior for com-
parison, yet are aware of other priors that optimize for FID and IS scores (Brock et al., 2018). We
select training hyperparameters published in the corresponding papers for each model.

We evaluate all models for each task with the two HYPE methods: (1) HYPEtime and (2) HYPE∞.
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Evaluator recruitment. We recruit 360 total human evaluators across our 12 evaluations, each of
which included 30 evaluators, from Amazon Mechanical Turk. Each completed a single evaluation
in {CelebA-64, FFHQ-1024} × {HYPEtime, HYPE∞}. To maintain a between subjects study in
this evaluation, we did not allow duplicate evaluators across tasks or methods.

In total, we recorded (4 CelebA-64 + 2 FFHQ-1024) models × 30 evaluators × 550 responses =
99, 000 total responses for our HYPEtime evaluation and (4 CelebA-64 + 2 FFHQ-1024) models ×
30 evaluators × 100 responses = 18, 000 total responses for our HYPE∞ evaluation.

Metrics. For HYPEtime, we report the modal perceptual threshold in milliseconds. For HYPE∞,
we report the error rate as a percentage of images, as well as the breakdown of this rate on real and
fake images individually. To show that our results for each model are separable, we report a one-
way ANOVA with Tukey pairwise post-hoc tests to compare all models within each {CelebA-64,
FFHQ-1024} × {HYPEtime, HYPE∞} combination.

As mentioned previously, reliability is a critical component of HYPE, as an evaluation is not useful
if a researcher can re-run it and get a different answer. To show the reliability of HYPE, we use
bootstrap (Felsenstein, 1985), a form of simulation, to simulate what the results would be if we
resample with replacement from this set of labels. Our goal is to see how much variation we may
get in the outcome. We therefore report evaluator 95% bootstrapped confidence intervals, along with
standard deviation of the bootstrap sample distribution.

Confidence intervals (CIs) are defined as the region that captures where the modal exposure might be
estimated to be if the same sampling procedure were repeated many times. For this and all following
results, bootstrapped confidence intervals were calculated by randomly sampling 30 evaluators with
replacement from the original set of evaluators across 10, 000 iterations. Note that bootstrapped CIs
do not represent that there necessarily exists substantial uncertainty—our reported modal exposure
(for HYPEtime) or detection rate (for HYPE∞) is still the best point estimate of the value. We
discuss bootstrapped CIs for other numbers of evaluators later on in the Cost Tradeoffs section.

4 RESULTS

First, we report results using the above datasets, models and metrics using HYPEtime. Next, we
demonstrate the HYPE∞’s results approximates the ones from HYPEtime at a fraction of the cost
and time. Next, we trade off the accuracy of our scores with time. We end with comparisons to FID.

4.1 HYPETIME

CelebA-64. We find that StyleGANtrunc resulted in the highest HYPEtime score (modal exposure
time), at a mean of 439.3ms, indicating that evaluators required nearly a half-second of exposure
to accurately classify StyleGANtrunc images (Table 1). StyleGANtrunc is followed by ProGAN at
363.7ms, a 17% drop in time. BEGAN and WGAN-GP are both easily identifiable as fake, so
they are tied in third place around the minimum possible exposure time available of 100ms. Both
BEGAN and WGAN-GP exhibit a bottoming out effect — reaching our minimum time exposure
of 100ms quickly and consistently1. This means that humans can detect fake generated images at
100ms and possibly lower. Thus, their scores are identical and indistinguishable.

To demonstrate separability between StyleGANtrunc, ProGAN, BEGAN, and WGAN-GP together,
we report results from a one-way analysis of variance (ANOVA) test between all four models, where
each model’s input is the list of modes from each model’s 30 evaluators. The ANOVA results confirm
that there is a statistically significant omnibus difference (F (3, 29) = 83.5, p < 0.0001). Pairwise
post-hoc analysis using Tukey tests confirms that all pairs of models are separable (all p < 0.05),
with the exception of BEGAN and WGAN-GP (n.s.).

FFHQ-1024. We find that StyleGANtrunc resulted in a higher exposure time than StyleGANno-trunc,
at 363.2ms and 240.7ms, respectively (Table 2). While the 95% confidence intervals that represent a
very conservative overlap of 2.7ms, an unpaired t-test confirms that the difference between the two
models is significant (t(58) = 2.3, p = 0.02).

1We do not pursue time exposures under 100ms due to constraints on JavaScript browser rendering times.
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Rank GAN HYPEtime (ms) Std. 95% CI

1 StyleGANtrunc 439.4 35.7 306.7 – 400.8
2 ProGAN 363.7 29.6 227.0 – 304.7
3 BEGAN 111.1 8.7 100.0 – 130.3
3 WGAN-GP 100.0 0.0 100.0 – 100.0

Table 1: HYPEtime on four GANs, trained on CelebA-64. Evaluators required the longest exposure
times to distinguish StyleGANtrunc images, followed by ProGAN, and a tie between BEGAN and
WGAN-GP. Note that the CI width for WGAN-GP is zero because the modal time exposure for all
evaluators was 100ms, the lowest time displayed.

Rank GAN HYPEtime (ms) Std. 95% CI

1 StyleGANtrunc 363.2 32.1 300.0 – 424.3
2 StyleGANno-trunc 240.7 29.9 184.7 – 302.7

Table 2: HYPEtime on StyleGANtrunc and StyleGANno-trunc trained on FFHQ-1024. Evaluators re-
quired the longest time exposure to distinguish StyleGANtrunc images, thus making StyleGANtrunc
generation significantly more realistic than that of StyleGANno-trunc.

4.2 HYPE∞

CelebA-64. Table 3 reports results for HYPE∞ on CelebA-64. We find that StyleGANtrunc resulted
in the highest HYPE∞ score, fooling evaluators 50.7% of the time. StyleGANtrunc is followed
by ProGAN at 40.3%, BEGAN at 10.0%, and WGAN-GP at 3.8%. No confidence intervals are
overlapping and an ANOVA test is significant (F (3, 29) = 404.4, p < 0.001). Pairwise post-hoc
Tukey tests show that all pairs of models are separable (all p < 0.05). Notably, HYPE∞ results in
separable results for BEGAN and WGAN-GP, unlike in HYPEtime where they were not separable
due to a bottoming-out effect.

Rank GAN HYPE∞ (%) Fakes Error Reals Error Std. 95% CI

1 StyleGANtrunc 50.7% 62.2% 39.3% 1.3 48.2 – 53.1
2 ProGAN 40.3% 46.2% 34.4% 0.9 38.5 – 42.0
3 BEGAN 10.0% 6.2% 13.8% 1.6 7.2 – 13.3
4 WGAN-GP 3.8% 1.7% 5.9% 0.6 3.2 – 5.7

Table 3: HYPE∞ on four GANs trained on CelebA-64. Evaluators were deceived most often by
StyleGANtrunc images, followed by ProGAN, BEGAN, and WGAN-GP. We also display the break-
down of the deception rate on real and fake images individually; counterintuitively, real errors in-
crease with the errors on fake images, because evaluators become more confused and distinguishing
factors between the two distributions become harder to discern.

FFHQ-1024. We observe a consistently separable difference between StyleGANtrunc and
StyleGANno-trunc and clear delineations between models (Table 4). HYPE∞ ranks StyleGANtrunc
(27.6%) above StyleGANno-trunc (19.0%) with no overlapping CIs. Separability is confirmed by an
unpaired t-test (t(58) = 8.3, p < 0.001).

4.3 COST TRADEOFFS WITH ACCURACY AND TIME

One of HYPE’s goals is to be cost and time efficient. When running HYPE, there is an inherent
tradeoff between accuracy and time, as well as between accuracy and cost. This is driven by the
law of large numbers: recruiting additional evaluators in a crowdsourcing task often produces more
consistent results, but at a higher cost (as each evaluator is paid for their work) and a longer amount
of time until completion (as more evaluators must be recruited and they must complete their work).

To manage this tradeoff, we run an experiment with HYPE∞ on StyleGANtrunc. We completed
an additional evaluation with 60 evaluators, and compute 95% bootstrapped confidence intervals,
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Rank GAN HYPE∞ (%) Fakes Error Reals Error Std. 95% CI

1 StyleGANtrunc 27.6% 28.4% 26.8% 2.4 22.9 – 32.4
2 StyleGANno-trunc 19.0% 18.5% 19.5% 1.8 15.5 – 22.4

Table 4: HYPE∞ on StyleGANtrunc and StyleGANno-trunc trained on FFHQ-1024. Evaluators were
deceived most often by StyleGANtrunc. Similar to CelebA-64, fake errors and real errors track each
other as the line between real and fake distributions blurs.

choosing from 10 to 120 evaluators (Figure 4). We see that the CI begins to converge around 30
evaluators, our recommended number of evaluators to recruit and the default that we build into our
system.

Figure 4: We completed an additional evaluation of
HYPE∞ on FFHQ-1024 with 60 evaluators, and com-
pute 95% bootstrapped confidence intervals, choosing
from 10 to 120 evaluators. We see that the CI begins to
converge around 30 evaluators.

Payment to evaluators was calculated as
described in the Approach section. At 30
evaluators, the cost of running HYPEtime
on one model was approximately $360,
while the cost of running HYPE∞ on
the same model was approximately $60.
Payment per evaluator for both tasks
was approximately $12/hr, and evaluators
spent an average of one hour each on a
HYPEtime task and 10 minutes each on a
HYPE∞ task. Thus, HYPE∞ achieves its
goals of being significantly cheaper to run
than HYPEtime while maintaining consis-
tency.

4.4 COMPARISON TO FID

As FID is one of the most frequently used
evaluation methods for unconditional im-
age generation, it is imperative to com-
pare HYPE against FID on the same mod-
els (Table 5). We show through Spearman
rank-order correlation coefficients that FID is correlated with neither human judgment measure, not
HYPEtime (ρ = −0.0286) nor with HYPE∞ (ρ = −0.0857), where a Spearman correlation of
-1.0 is ideal because lower FID and higher HYPE scores indicate stronger models. Meanwhile,
HYPEtime and HYPE∞ exhibit strong correlation (ρ = 0.9429), where 1.0 is ideal because they
are directly related. We calculate FID across the standard protocol of evaluating 50K generated and
50K real images for both CelebA-64 and FFHQ-1024, reproducing scores for StyleGANno-trunc.

Metric WGAN-GP BEGAN ProGAN StyleGANtrunc StyleGANtrunc StyleGANno-trunc

HYPEtime 100.0 111.1 363.7 439.4* 363.2* 240.7
HYPE∞ 3.8 10.0 40.3 50.7* 27.6* 19.0

FID 43.6 67.7 2.5* 131.7 13.8 4.4*

Table 5: HYPE scores compared to FID. We put an asterisk on the most realistic GAN for each score
(lower the better for FID, higher the better for HYPE). FID scores do not correlate fully with the
human evaluation scores of HYPE∞ on both CelebA-64 and FFHQ-1024 tasks. FID scores were
calculated using 50K real (CelebA-64 or FFHQ-1024) and 50K generated images for each model.

5 RELATED WORK

Cognitive psychology. We leverage decades of cognitive psychology to motivate how we use stim-
ulus timing to gauge the perceptual realism of generated images. It takes an average of 150ms of
focused visual attention for people to process and interpret an image, but only 120ms to respond to
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faces because our inferotemporal cortex has dedicated neural resources for face detection (Rayner
et al., 2009; Chellappa et al., 2010). Perceptual masks are placed between a person’s response to
a stimulus and their perception of it to eliminate post-processing of the stimuli after the desired
time exposure (Sperling, 1963). Prior work in determining human perceptual thresholds (Greene &
Oliva, 2009) generates masks from their test images using the texture-synthesis algorithm (Portilla
& Simoncelli, 2000). We leverage this literature to establish feasible lower bounds on the exposure
time of images, the time between images, and the use of noise masks.

Success of automatic metrics. Common generative modeling tasks include realistic image gen-
eration (Goodfellow et al., 2014), machine translation (Bahdanau et al., 2014), image caption-
ing (Vinyals et al., 2015), and abstract summarization (Mani, 1999), among others. These tasks
often resort to automatic metrics like the Inception Score (IS) (Salimans et al., 2016) and Fréchet
Inception Distance (FID) (Heusel et al., 2017) to evaluate images and BLEU (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015) and METEOR (Banerjee & Lavie, 2005) scores to evaluate text.
While we focus on how realistic generated content appears, other automatic metrics also measure
diversity of output, overfitting, entanglement, training stability, and computational and sample effi-
ciency of the model (Borji, 2018; Lucic et al., 2018; Barratt & Sharma, 2018). Our metric may also
capture one aspect of output diversity, insofar as human evaluators can detect similarities or patterns
across images. Our evaluation is not meant to replace existing methods but to complement them.

Limitations of automatic metrics. Prior work has asserted that there exists coarse correlation
of human judgment to FID (Heusel et al., 2017) and IS (Salimans et al., 2016), leading to their
widespread adoption. Both metrics depend on the Inception v3 Network (Szegedy et al., 2016), a
pretrained ImageNet model, to calculate statistics on the generated output (for IS) and on the real
and generated distributions (for FID). The validity of these metrics when applied to other datasets
has been repeatedly called into question (Barratt & Sharma, 2018; Rosca et al., 2017; Borji, 2018;
Ravuri et al., 2018). Perturbations imperceptible to humans alter their values, similar to the behavior
of adversarial examples (Kurakin et al., 2016). Finally, similar to our metric, FID depends on a set
of real examples and a set of generated examples to compute high-level differences between the
distributions, and there is inherent variance to the metric depending on the number of images and
which images were chosen—in fact, there exists a correlation between accuracy and budget (cost
of computation) in improving FID scores, because spending a longer time and thus higher cost on
compute will yield better FID scores (Lucic et al., 2018). Nevertheless, this cost is still lower than
paid human annotators per image.

Human evaluations. Many human-based evaluations have been attempted to varying degrees of
success in prior work, either to evaluate models directly (Denton et al., 2015; Olsson et al., 2018)
or to motivate using automated metrics (Salimans et al., 2016; Heusel et al., 2017). Prior work
also used people to evaluate GAN outputs on CIFAR-10 and MNIST and even provided immediate
feedback after every judgment (Salimans et al., 2016). They found that generated MNIST samples
have saturated human performance—that is, people cannot distinguish generated numbers from real
MNIST numbers, while still finding 21.3% error rate on CIFAR-10 with the same model (Salimans
et al., 2016). This suggests that different datasets will have different levels of complexity for crossing
realistic or hyper-realistic thresholds. The closest recent work to ours compares models using a
tournament of discriminators (Olsson et al., 2018). While reported to have anecdotal correlation
with human judgment, this comparison was not yet rigorously evaluated and human discriminators
were not presented experimentally. The framework we present would enable such a tournament
evaluation to be performed reliably and easily.

6 DISCUSSION AND FUTURE WORK

We develop HYPE (1) grounded in psychophysics to measure human perceptual fidelity. Through
empirical analysis, we find that (2) HYPE is reliable in its ability to replicate human perceptual
performance measures across models and tasks, demonstrating non-overlapping 95% bootstrapped
confidence intervals across all models with 30 evaluators. (3) HYPE also produces separable results
and ranks models consistently using two methods: HYPEtime and HYPE∞. HYPE∞ builds on
HYPEtime to (4) optimize for cost and time, enabling an efficient evaluation of a single model to
occur within 10 minutes at $60.
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Envisioned Use. We created HYPE to be a simple and rapid method of human evaluation of gen-
erative models. We envision that researchers will use HYPE via https://hype.stanford.edu to upload
their model, receive a score, and compare progress. We also envision that HYPE, and specifically
the variant HYPE∞ or HYPEtime that fits best, to be used in generative model competitions, e.g. a
HYPE∞ leaderboard on CelebA-64. Competition organizers can have the license to choose whether
the model alone should be compared, or that automatic sampling methods such as the truncation trick
should be included as part of the system.

During periods of high usage, such as competitions, a retainer model (Bernstein et al., 2011) enables
nearly instantaneous availability of evaluators, meaning evaluation using HYPE∞ could take as few
as 10 minutes. Without the retainer model, however, we estimate that time rises to 30 minutes.

Limitations. Extensions of HYPE may require different task designs. For example, conditional
image generation will need to isolate different categories into individual blocks (e.g. cats in one
block, dogs in another, etc.) (Krishna et al., 2016). The design would likely affect humans’ absolute
thresholds, as cognitive load may be of consideration; the number of humans required per task may
require significant increase if evaluating fairly across all possible categories. Practically, the most
valuable direction for the community to pursue with HYPE is likely one that includes the most
difficult categories, especially when progress on those is hard to measure using automatic metrics.
In the case of text generation (translation, caption generation), HYPEtime may require much longer
and much higher range adjustments to the perceptual time thresholds for text comprehensibility than
those used in visual perception (Krishna et al., 2016).

Future Work. We plan to extend HYPE to different imaging datasets and imaging tasks such as
conditional image generation, as well as to text and video, such as translation (Papineni et al., 2002)
and video captioning (Krishna et al., 2017). Future work would also explore budget-optimal estima-
tion of HYPE scores and adaptive estimation of evaluator quality (Karger et al., 2014). Additional
improvements involve identifying images that require more evaluators (Weld et al., 2015). We also
aim to build in faster time exposures under 100ms — ideally down to 13ms, the minimum time
exposure of human perception (Potter et al., 2014) — for tasks that require that level of granularity.
Doing so requires careful engineering solution, since 100ms appears to be the minimum time that is
trustable before we are throttled by JavaScript paint and rendering times on modern browsers.

We will investigate the ecological validity of our methods – that is, whether HYPE’s evaluation is
representative of how a person would perceive a GAN in everyday life. For instance, HYPE shows
evaluators whether they classified an image correctly immediately after they answer. While this is
standard practice in the psychophysics literature for staircase tasks, it likely does not reflect how one
might encounter generated content in everyday life. Notably, in pilot studies, we found that without
such feedback, evaluators were far less consistent and our metric would not be stable.

Finally, we plan to investigate whether the reliability of HYPE may be impacted by the month or
year at which it is run, as the population of available crowdsourced workers may differ across these
factors. Anecdotally, we have found HYPE to be reliable regardless of the time of day.

7 CONCLUSION

HYPE provides researchers with two human evaluation methods for GANs that (1) are grounded
in psychopisics to measure human perceptual fidelity directly, (2) provide task designs that re-
sult in consistent and reliable results, (3) distinguishes between different model performances
through separable results, (4) is cost and time efficient. We report two metrics: HYPEtime and
HYPE∞. HYPEtime uses time perceptual thresholds where longer time constraints are more diffi-
cult to achieve because they give humans more time to interpret the generated content and observe
artifacts. HYPE∞ reports the error rate under unlimited time, where higher rates indicate a more
realistic set of outputs. We demonstrate the efficacy of our approach on unconditional image gen-
eration across four GANs {StyleGAN, ProGAN, BEGAN, WGAN-GP} and two datasets of human
faces {CelebA-64, FFHQ-1024}, with two types of output sampling on StyleGAN {with the trun-
cation trick, without the truncation trick}. To encourage progress of generative models towards
human-level visual fidelity, we deploy our evaluation system at https://hype.stanford.edu, so anyone
can upload and evaluate their models based on HYPE at the click of a button.
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APPENDIX

A. CONFIDENCE INTERVALS

Table 6: Full bootstrapped 95% confidence intervals from HYPE∞

.

Model Std Deception Rate 95% CI Number of Evaluators

WGAN-GP 0.84 3.79 2.29–5.52 10
WGAN-GP 0.69 3.78 2.5–5.21 15
WGAN-GP 0.61 3.78 2.66–5.05 20
WGAN-GP 0.54 3.79 2.79–4.92 25
WGAN-GP 0.49 3.78 2.85–4.76 30
WGAN-GP 0.45 3.78 2.95–4.7 35
WGAN-GP 0.43 3.79 2.97–4.64 40
BEGAN 2.65 10.04 5.73–15.83 10
BEGAN 2.20 9.99 6.18–14.72 15
BEGAN 1.86 9.97 6.72–13.91 20
BEGAN 1.67 10.01 7.04–13.62 25
BEGAN 1.55 9.99 7.26–13.3 30
BEGAN 1.42 10.00 7.44–12.95 35
BEGAN 1.33 10.00 7.6–12.76 40
ProGAN 1.53 40.30 37.19–43.23 10
ProGAN 1.24 40.28 37.78–42.57 15
ProGAN 1.08 40.29 38.12–42.4 20
ProGAN 0.97 40.27 38.38–42.12 25
ProGAN 0.87 40.29 38.54–41.94 30
ProGAN 0.83 40.27 38.6–41.87 35
ProGAN 0.76 40.29 38.75–41.74 40
StyleGAN 2.19 50.66 46.35–54.9 10
StyleGAN 1.79 50.68 47.08–54.17 15
StyleGAN 1.57 50.67 47.6–53.7 20
StyleGAN 1.38 50.65 47.92–53.29 25
StyleGAN 1.27 50.66 48.16–53.16 30
StyleGAN 1.16 50.68 48.39–52.95 35
StyleGAN 1.09 50.64 48.49–52.71 40
StyleGANtrunc 4.21 27.59 19.7–35.9 10
StyleGANtrunc 3.46 27.60 20.93–34.53 15
StyleGANtrunc 2.95 27.65 22.0–33.55 20
StyleGANtrunc 2.69 27.58 22.44–32.96 25
StyleGANtrunc 2.44 27.60 22.9–32.43 30
StyleGANtrunc 2.25 27.64 23.34–32.17 35
StyleGANtrunc 2.13 27.62 23.5–31.87 40
StyleGANno-trunc 3.04 19.06 13.1–25.1 10
StyleGANno-trunc 2.50 19.02 14.13–23.93 15
StyleGANno-trunc 2.17 18.99 14.75–23.25 20
StyleGANno-trunc 1.96 18.96 15.08–22.84 25
StyleGANno-trunc 1.77 18.95 15.5–22.43 30
StyleGANno-trunc 1.62 18.98 15.8–22.23 35
StyleGANno-trunc 1.52 18.98 16.0–22.05 40
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Table 7: Full bootstrapped 95% confidence intervals from HYPEtime

.

Model Std Mean 95% CI Number of Evaluators

WGAN-GP 0.00 100.00 100.0–100.0 10
WGAN-GP 0.00 100.00 100.0–100.0 15
WGAN-GP 0.00 100.00 100.0–100.0 20
WGAN-GP 0.00 100.00 100.0–100.0 25
WGAN-GP 0.00 100.00 100.0–100.0 30
BEGAN 12.50 107.28 100.0–100.0 10
BEGAN 10.08 107.33 100.0–100.0 15
BEGAN 8.85 107.41 100.0–100.0 20
BEGAN 7.86 107.34 100.0–108.8 25
BEGAN 7.06 107.24 100.0–107.33 30
StyleGANtrunc 52.29 364.88 243.0–365.0 10
StyleGANtrunc 42.95 365.84 266.0–366.0 15
StyleGANtrunc 37.54 365.35 279.0–365.0 20
StyleGANtrunc 33.21 365.33 288.0–365.2 25
StyleGANtrunc 30.34 365.59 295.67–365.0 30
StyleGANtrunc 28.12 365.20 301.43–364.57 35
StyleGANtrunc 26.22 365.60 305.5–365.25 40
StyleGANno-trunc 49.28 242.99 143.0–239.0 10
StyleGANno-trunc 40.33 243.07 157.33–240.67 15
StyleGANno-trunc 34.75 243.71 171.5–241.5 20
StyleGANno-trunc 31.31 243.16 176.4–241.6 25
StyleGANno-trunc 28.32 243.33 182.0–241.67 30
StyleGANno-trunc 26.19 243.19 187.14–242.0 35
StyleGANno-trunc 24.37 243.03 191.25–241.75 40
ProGAN 51.03 335.55 221.0–335.0 10
ProGAN 41.97 336.14 241.33–335.33 15
ProGAN 36.31 335.38 252.0–335.0 20
ProGAN 32.25 336.05 262.4–335.2 25
ProGAN 29.72 335.17 268.0–334.67 30
StyleGAN 56.36 368.82 237.0–368.0 10
StyleGAN 46.07 369.46 262.0–368.67 15
StyleGAN 39.94 368.86 277.0–368.5 20
StyleGAN 35.66 368.66 285.2–368.4 25
StyleGAN 32.53 368.82 295.33–368.33 30
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