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ABSTRACT

We introduce a new measure for evaluating the quality of distributions learned by
Generative Adversarial Networks (GANs). This measure computes the Kullback-
Leibler divergence from a GAN-generated image set to a real image set. Since our
measure utilizes a GAN’s whole distribution, our measure penalizes outputs lack-
ing in diversity, and it contrasts with evaluating GANs based upon a few cherry-
picked examples. We demonstrate the measure’s efficacy on the MNIST, SVHN,
and CIFAR-10 datasets.

1 INTRODUCTION

Generative adversarial networks (GANs) are a class of generative models that use neural networks
for realistic data generation Goodfellow et al. (2014). While there have been numerous works on
the subject, a remaining problem is a grounded way to compare GANs. Currently, comparisons
are largely qualitative and based upon cherry-picked samples from a GAN. Cherry-picked examples
emphasize small sections of the distribution learned by a GAN, while a more meaningful evalua-
tion would utilize entire GAN distributions. We are interested in approximating a natural image
distribution not approximating a handful of points from said distribution.

There are few prior quantitative measures to evaluate GANs. For example, Im et al. (2016) proposes
a relative measure between two GANs that essentially compares the ability of the discriminator to
discriminate between real and fake. Another metric is the Inception score (Salimans et al., 2016)
which is a “rough guideline.” This useful guideline is unfortunately ineffective should the GAN
learn to constantly generate a single compelling example, and this measure is limited to images like
CIFAR-10. Other measures such as total variation and calculating the number of missing modes
can be useful features but assuredly do not capture most generative modeling desiderata. The work
by Lopez-Paz & Oquab (2017) provides a parametric approach to compare distributions through a
discriminator. Comparing GAN performance can be done in a semi-supervised setting where GANs
generate a large corpus of data from a small number of labeled data (Salimans et al., 2016).

Another technique to evaluate GANs is Parzen window estimation. This non-parametric method can
be used to compute the log-likelihood of GAN samples. However as Theis et al. (2015) show Parzen
window estimates can be a poor approximation when the data is high-dimensional. We show that
this is indeed the case for a complex dataset like CIFAR-10. Our measure addresses the concerns
facing kernel density estimators by embedding the samples into a lower dimensional space and by
using KL-divergence instead of computing log-likelihoods.

This work provides a measure that can quantitatively evaluate the quality of GAN models. To do
this, we measure the similarity of a GAN’s generated distribution to the distribution of a held out
test set. By using the entire distribution, our measure penalizes against GANs which lack diverse
outputs. Since it compares entire distributions, it contrasts with the current trend of summarizing a
GAN’s quality via unrepresentative cherry-picked samples like in Figure 2.

Our contributions are as follows:

∗Equal contribution. Author ordering determined by coin flip.
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• The measure approximates the divergence between generated and real distributions. The
measure compares entire distributions rather than comparing on a per-image basis.
• The measure tracks image quality.
• The measure penalizes GANs that miss modes.

2 MEASURES

We now establish notation to define to define our measure. The GAN distribution is approximated
through m images sampled from the GAN, giving us the images G = {gi}mi=1, gi ∈ Rd. The set of
n real images is denoted R = {ri}ni=1. We desire to find the divergence from the GAN distribution
to the real image distribution, but finding the KL divergence from our empirical GAN distributionG
toR would likely be infinite because not all images inR are inG. To meet this challenge, we make a
continuous approximation of the distributions G and R. We will use the empirical distribution G to
make a Gaussian mixture model with each image gi defining a component of this Gaussian mixture
model. Likewise we use R to create a Gaussian mixture model for real images to approximate the
real image distribution. We approximate the GAN distribution by sampling images and letting each
image become a component of a Gaussian mixture model.

The representation of images with a Gaussian mixture is described below. First, we compute the
singular value decomposition UG,ΣG, VG ofG and replace each image gi with the image’s principal
component coefficients g′i. Then each image is replaced with the Gaussian centered around g′i,
N (g′i,ΣG). Each Gaussian in the Gaussian mixture model has equal weight. We also truncate the
coefficient vector g′i and the diagonal(**is it necessarily diag**) matrix ΣG so as to preserve the most
important reconstruction information while reducing dimensionality. Thus the GAN distribution is
represented as DGAN = 1

m

∑m
i=1N (g′i,ΣG). We do the same process to create a Gaussian mixture

model for the set R.

We would now like to capture the statistical distance between the GAN Gaussian mixture model and
real Gaussian mixture model, so we compute KL[DReal‖DGAN]. To accomplish this we will use a
fast approximation. First, note that the KL divergence between any two d-dimensional Gaussians
has the closed form value

KL[N (r′i,ΣR)‖N (g′j ,ΣG)] =
1

2

[
log
|ΣG|
|ΣR|

+ Tr(Σ−1G ΣR)− d+ (r′i − g′j)TΣ−1G (r′i − g′j)
]
.

Unfortunately, this does not give us the KL divergence between two Gaussian mixture models.
Goldberger et al. (2003) approximates the KL divergence between Gaussian mixture models by
computing the KL divergence from a Gaussian in a mixture model and its closest Gaussian from the
other mixture. That is, they let

π(i) = argmin
j

KL[N (r′i,ΣR)‖N (g′j ,Σg)],

and approximate the KL divergence between Gaussian mixtures with

1

n

n∑
i=1

KL[N (r′i,ΣR)‖N (g′π(i),ΣG)].

This KL divergence approximation is how we compute our GAN quality measure.

3 EXPERIMENTS

On MNIST, SVHN, and CIFAR-10, we visualize our measure as GANs train.

For MNIST, we use DCGAN (Radford et al., 2016) and DCGAN without batch normalization (Ioffe
& Szegedy, 2015). Removing batch normalization makes the samples of far lower quality. When
replacing the images with their principal component coefficients in the Gaussian mixture model, we
keep the first 150 coefficients to preserve most of the data variance. In Figure 1, we observe that
the DCGAN without batch normalization produces low-quality and redundant outputs. In contrast,
DCGAN with batch normalization improves sample quality and diversity. Our measure correctly
reflects this in Figure 3.
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For SVHN, we use a DCGAN and the higher-quality Improved GAN (Salimans et al., 2016) for
our comparisons. When replacing the images with their principal component coefficients in the
Gaussian mixture model, we keep the first 50 coefficients to preserve most of the data variance.
Figure 4 shows samples from DCGAN and the Improved GAN. Figure 5 shows that the divergence
is less for the higher quality images from the Improved GAN distribution, as it should be.

For CIFAR-10, we use the Improved GAN for high-quality examples and we remove batch normal-
ization to create lower quality examples. When replacing the images with their principal component
coefficients in the Gaussian mixture model, we keep the first 500 coefficients to preserve most of
the data variance. Figure 6 shows samples from the Improved GAN without and with batch normal-
ization. Figure 7 shows smaller divergence for the higher quality images made by the unhindered
Improved GAN.

As a comparison to our measure, Parzen windows allows us to compute the log-likelihoods for the
examples generated by the Improved GAN and Improved GAN without batch normalization. Figure
8 shows how Parzen window estimation does not provide a desirable measure for comparing the two
GAN distributions, and at the same time Figure 9 exhibits how our measure is unlike compressing
examples with their primary PCA coefficients and then using Parzen windows. This shows how our
method better captures the quality differences between the two distributions.

4 CONCLUSION

We considered a measure which aimed to approximate the divergence from a GAN’s distribution to a
real distribution. The measure penalized low-quality samples and mode-missing GANs. Ultimately,
we hope that this nonparametric measure can be used as an informative guideline in future research.
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APPENDIX: FIGURES
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Figure 1: MNIST samples from DCGAN without batch normalization and DCGAN.
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Figure 2: MNIST learned by a DCGAN without Batch Normalization show that cherry-picked
examples accrued from a GAN can be deceptive.
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Figure 3: MNIST results. The Gaussian divergence of the DCGAN without batch normalization
was several orders of magnitude larger than the normal DCGAN (over one million) and thus is not
depicted. The black line indicates the divergence approximation between train and test images.
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Figure 4: SVHN samples from DCGAN and Improved GAN. Images are randomly sampled during
the end of training.

0 10 20 30 40 50 60
Epoch

50

100

150

200

250

KL

Normal
Without BatchNorm
Train-Test Divergence

Figure 5: SVHN results. The black line indicates the divergence approximation between train and
test images.
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Figure 6: CIFAR samples from Improved GAN without batch normalization and the normal Im-
proved GAN. Images are randomly sampled during the end of training.
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Figure 7: CIFAR-10 results. The black line indicates the divergence approximation between train
and test images.
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Figure 8: Parzen window estimation on CIFAR-10. The samples from the model without Batch
Normalization never achieve good image quality, yet they improve beyond the normal model with
respect to log-likelihood.
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Figure 9: Parzen window estimation on CIFAR-10 examples truncated at the first 500 principal
components coefficients. Consequently, a lower dimensional embedding is not sufficient for Parzen
window estimates to track image quality.
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