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ABSTRACT

Self-training is one of the earliest and simplest semi-supervised methods. The key
idea is to augment the original labeled dataset with unlabeled data paired with the
model’s prediction (i.e. the pseudo-parallel data). While self-training has been ex-
tensively studied on classification problems, in complex sequence generation tasks
(e.g. machine translation) it is still unclear how self-training works due to the com-
positionality of the target space. In this work, we first empirically show that self-
training is able to decently improve the supervised baseline on neural sequence
generation tasks. Through careful examination of the performance gains, we find
that the perturbation on the hidden states (i.e. dropout) is critical for self-training
to benefit from the pseudo-parallel data, which acts as a regularizer and forces the
model to yield close predictions for similar unlabeled inputs. Such effect helps
the model correct some incorrect predictions on unlabeled data. To further en-
courage this mechanism, we propose to inject noise to the input space, resulting
in a “noisy” version of self-training. Empirical study on standard machine trans-
lation and text summarization benchmarks shows that noisy self-training is able to
effectively utilize unlabeled data and improve the performance of the supervised
baseline by a large margin.1

1 INTRODUCTION

Deep neural networks often require large amounts of labeled data to achieve good performance.
However, acquiring labels is a costly process, which motivates research on methods that can ef-
fectively utilize unlabeled data to improve performance. Towards this goal, semi-supervised learn-
ing (Chapelle et al., 2009) methods that take advantage of both labeled and unlabeled data are a
natural starting point. In the context of sequence generation problems, semi-supervised approaches
have been shown to work well in some cases. For example, back-translation (Sennrich et al., 2015)
makes use of the monolingual data on the target side to improve machine translation systems, latent
variable models (Kingma et al., 2014) are employed to incorporate unlabeled source data to facilitate
sentence compression (Miao & Blunsom, 2016) or code generation (Yin et al., 2018).

In this work, we revisit a much older and simpler semi-supervised method, self-training (ST, Scudder
(1965)), where a base model trained with labeled data acts as a “teacher” to label the unannotated
data, which is then used to augment the original small training set. Then, a “student” model is
trained with this new training set to yield the final model. Originally designed for classification
problems, common wisdom suggests that this method may be effective only when a good fraction of
the predictions on unlabeled samples are correct, otherwise mistakes are going to be reinforced (Zhu
& Goldberg, 2009). In the field of natural language processing, some early work have successfully
applied self-training to word sense disambiguation (Yarowsky, 1995) and parsing (McClosky et al.,
2006; Reichart & Rappoport, 2007; Huang & Harper, 2009).

However, self-training has not been studied extensively when the target output is natural language.
This is partially because in language generation applications (e.g. machine translation) hypotheses
are often very far from the ground-truth target, especially in low-resource settings. It is natural to
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1Code is available at https://github.com/jxhe/self-training-text-generation.
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Algorithm 1 Classic Self-training

1: Train a base model fθ on L = {xi,yi}li=1
2: repeat
3: Apply fθ to the unlabeled instances U
4: Select a subset S ⊂ {(x, fθ(x))|x ∈ U}
5: Train a new model fθ on S ∪ L
6: until convergence or maximum iterations are reached

ask whether self-training can be useful at all in this case. While Ueffing (2006) and Zhang & Zong
(2016) explored self-training in statistical and neural machine translation, only relatively limited
gains were reported and, to the best of our knowledge, it is still unclear what makes self-training
work. Moreover, Zhang & Zong (2016) did not update the decoder parameters when using pseudo
parallel data noting that “synthetic target parts may negatively influence the decoder model of NMT”.

In this paper, we aim to answer two questions: (1) How does self-training perform in sequence
generation tasks like machine translation and text summarization? Are “bad” pseudo targets indeed
catastrophic for self-training? (2) If self-training helps improving the baseline, what contributes to
its success? What are the important ingredients to make it work?

Towards this end, we first evaluate self-training on a small-scale machine translation task and em-
pirically observe significant performance gains over the supervised baseline (§3.2), then we perform
a comprehensive ablation analysis to understand the key factors that contribute to its success (§3.3).
We find that the decoding method to generate pseudo targets accounts for part of the improvement,
but more importantly, the perturbation of hidden states – dropout (Hinton et al., 2012) – turns out
to be a crucial ingredient to prevent self-training from falling into the same local optimum as the
base model, and this is responsible for most of the gains. To understand the role of such noise in
self-training, we use a toy experiment to analyze how noise effectively propagates labels to nearby
inputs, sometimes helping correct incorrect predictions (§4.1). Motivated by this analysis, we pro-
pose to inject additional noise by perturbing also the input. Comprehensive experiments on machine
translation and text summarization tasks demonstrate the effectiveness of noisy self-training.

2 SELF-TRAINING

Formally, in conditional sequence generation tasks like machine translation, we have a parallel
dataset L = {xi,yi}li=1 and a large unlabeled dataset U = {xj}l+u

j=l+1, where |U | > |L| in most
cases. As shown in Algorithm 1, classic self-training starts from a base model trained with parallel
data L, and iteratively applies the current model to obtain predictions on unlabeled instances U , then
it incorporates a subset of the pseudo parallel data S to update the current model.

There are two key factors: (1) Selection of the subset S. S is usually selected based on some
confidence scores (e.g. log probability) (Yarowsky, 1995) but it is also possible for S to be the
whole pseudo parallel data (Zhu & Goldberg, 2009). (2) Combination of real and pseudo paral-
lel data. A new model is often trained on the two datasets jointly as in back-translation, but this
introduces an additional hyper-parameter to weigh the importance of the parallel data relative to
the pseudo data (Edunov et al., 2018). Another way is to treat them separately – first we train
the model on pseudo parallel data S, and then fine-tune it on real data L. In our preliminary ex-
periments, we find that the separate training strategy with the whole pseudo parallel dataset (i.e.
S = {(x, fθ(x))|x ∈ U}) produces better or equal performance for neural sequence generation
while being simpler. Therefore, in the remainder of this paper we use this simpler setting. We in-
clude quantitative comparison regarding joint training, separate training, and pseudo-parallel data
filtering in Appendix B, where separate training is able to match (or surpass) the performance of
joint training.

In self-training, the unsupervised loss LU from unlabeled instances is defined as:

LU = −Ex∼p(x)Ey∼pθ∗ (y|x) log pθ(y|x), (1)

where p(x) is the empirical data distribution approximated with samples from S, pθ(y|x) is the
conditional distribution defined by the model. θ∗ is the parameter from the last iteration (initially it
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Figure 1: BLEU on WMT100K dataset from the supervised base-
line and different self-training variants. We plot the results over 3
iterations. “ST” denotes self-training while “NST” denotes noisy
self training.

Methods PT FT

baseline – 15.6
ST (scratch) 16.8 17.9
ST (baseline) 16.5 17.5

Table 1: Test tokenized BLEU
on WMT100K. Self-training re-
sults are from the first itera-
tion. “Scratch” denotes that the
system is initialized randomly
and trained from scratch, while
“baseline” means it is initialized
with the baseline model.

is set as the parameter of the supervised baseline), and fixed within the current iteration. Eq. 1 re-
veals the connection between self-training and entropy regularization (Grandvalet & Bengio, 2005).
In the context of classification, self-training can be understood from the view of entropy regulariza-
tion (Lee, 2013), which favors a low-density separation between classes, a commonly assumed prior
for semi-supervised learning (Chapelle & Zien, 2005).

3 A CASE STUDY ON MACHINE TRANSLATION

To examine the effectiveness of self-training on neural sequence generation, we start by analyzing a
machine translation task. We then perform ablation analysis to understand the contributing factors
of the performance gains.

3.1 SETUP

We work with the standard WMT 2014 English-German dataset consisting of about 3.9 million
training sentence pairs after filtering long and imbalanced pairs. Sentences are encoded using 40K
byte-pair codes (Sennrich et al., 2016). As a preliminary experiment, we randomly sample 100K
sentences from the training set to train the model and use the remaining English sentences as the
unlabeled monolingual data. For convenience, we refer to this dataset as WMT100K. Such synthetic
setting allows us to have high-quality unlabeled data to verify the performance of self-training. We
train with the Base Transformer architecture (Vaswani et al., 2017) and dropout rate at 0.3. Full
training and optimization parameters can be found in Appendix A.1. All experiments throughout
this paper including the transformer implementation are based on the fairseq toolkit (Ott et al., 2019),
and all results are in terms of case-sensitive tokenized BLEU (Papineni et al., 2002). We use beam
search decoding (beam size 5) to create the pseudo targets and to report BLEU on test set.

3.2 OBSERVATIONS

In Figure 1, we use green bars to show the result of applying self-training for three iterations. We
include both (1) pseudo-training (PT): the first step of self-training where we train a new model
(from scratch) using only the pseudo parallel data generated by the current model, and (2) fine-
tuning (FT): the fine-tuned system using real parallel data based on the pretrained model from the
PT step. Note that in the fine-tuning step the system is re-initialized from scratch. Surprisingly, we
find that the pseudo-training step at the first iteration is able to improve BLEU even if the model is
only trained on its own predictions, and fine-tuning further boosts the performance. The test BLEU
keeps improving over the first three iterations, until convergence to outperform the initial baseline
by 3 BLEU points.
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Methods PT FT

baseline – 15.6
baseline (w/o dropout) – 5.2
ST (beam search, w/ dropout) 16.5 17.5
ST (sampling, w/ dropout) 16.1 17.0
ST (beam search, w/o dropout) 15.8 16.3
ST (sampling, w/o dropout) 15.5 16.0

Noisy ST (beam search, w/o dropout) 15.8 17.9
Noisy ST (beam search, w/ dropout) 16.6 19.3

Table 2: Ablation study on WMT100K data. For ST and noisy ST, we initialize the model with
the baseline and results are from one single iteration. Dropout is varied only in the PT step, while
dropout is always applied in FT step. Different decoding methods refer to the strategy used to create
the pseudo target. At test time we use beam search decoding for all models.

This behaviour is unexpected because no new information seems to be injected during this iterative
process – target sentences of the monolingual data are from the base model’s predictions, thus trans-
lation errors are likely to remain, if not magnified. This is different from back-translation where
new knowledge may originate from an additional backward translation model and real monolingual
targets may help the decoder generate more fluent sentences.

One straightforward hypothesis is that the added pseudo-parallel data might implicitly change the
training trajectory towards a (somehow) better local optimum, given that we train a new model
from scratch at each iteration. To rule out this hypothesis, we perform an ablation experiment and
initialize θ from the last iteration (i.e. θ∗). Formally, based on Eq. 1 we have:

∇θLU |θ=θ∗ = −Ex∼p(x)
[
∇θEy∼pθ∗ (y|x) log pθ(y|x)|θ=θ∗

]
= 0, (2)

because the conditional log likelihood is maximized when pθ(y|x) matches the underlying data
distribution pθ∗(y|x). Therefore, the parameter θ should not (at least not significantly) change if
we initialize it with θ∗ from the last iteration.

Table 1 shows the comparison results of these two initialization schemes at the first iteration. Surpris-
ingly, continuing training from the baseline model also yields an improvement of 1.9 BLEU points,
comparable to initializing from random. While stochastic optimization introduces randomness in
the training process, it is startling that continuing training gives such a non-trivial improvement.
Next, we investigate the underlying reasons for this.

3.3 THE SECRET BEHIND SELF-TRAINING

To understand why continuing training contradicts Eq. 2 and improves translation performance,
we examine possible discrepancies between our assumptions and the actual implementation, and
formulate two new hypotheses:

H1. Decoding Strategy. According to this hypothesis, the gains come from the use of beam
search for decoding unlabeled data. Since our focus is a sequence generation task, we decode y
with beam search to approximate the expectation in Ey∼pθ∗ (y|x) log pθ(y|x), yielding a biased es-
timate, while sampling decoding would result in an unbiased Monte Carlo estimator. The results in
Table 2 demonstrate that the performance drops by 0.5 BLEU when we change the decoding strategy
to sampling, which implies that beam search does contribute a bit to the performance gains. This
phenomenon makes sense intuitively since beam search tends to generate higher-quality pseudo tar-
gets than sampling, and the subsequent cross-entropy training might benefit from implicitly learning
the decoding process. However, the decoding strategy hypothesis does not fully explain it, as we
still observe a gain of 1.4 BLEU points over the baseline from sampling decoding with dropout.

H2. Dropout (Hinton et al., 2012). Eq. 1 and Eq. 2 implicitly ignore a (seemingly) small dif-
ference between the model used to produce the pseudo targets and the model used for training: at
test/decoding time the model does not use dropout while at training time dropout noise is injected
in the model hidden states. At training time, the model is forced to produce the same (pseudo)
targets given the same set of inputs and the same parameter set but various noisy versions of the

4



Published as a conference paper at ICLR 2020

hidden states. The conjecture is that the additional expectation over dropout noise renders Eq. 2
false. To verify this, we remove dropout in the pseudo training step2. The results in Table 2 indicate
that without dropout the performance of beam search decoding drops by 1.2 BLEU, just 0.7 BLEU
higher than the baseline. Moreover, the pseudo-training performance of sampling without dropout
is almost the same as the baseline, which finally agrees with our intuitions from Eq. 2.

In summary, Table 2 suggests that beam-search decoding contributes only partially to the perfor-
mance gains, while the implicit perturbation – dropout – accounts for most of it. However, it is still
mysterious why such perturbation results in such large performance gains. If dropout is meant to
avoid overfitting and fit the target distribution better in the pseudo-training step, why does it bring
advantages over the baseline given that the target distribution is from the baseline model itself ? This
is the subject of the investigation in the next section.

4 NOISE IN SELF-TRAINING

4.1 THE ROLE OF NOISE

Methods smoothness symmetric error

baseline 9.1 9.8 7.6
ST 8.2 9.0 6.2
noisy ST 7.3 8.2 4.5

Table 3: Results on the toy sum dataset. For ST
and noisy ST, smoothness (↓) and symmetric (↓)
results are from the pseudo-training step, while
test errors (↓) are from fine-tuning, all at the first
iteration.

One hypothesis as to why noise (perturbation) is
beneficial for self-training, is that it enforces lo-
cal smoothness for this task, that is, semantically
similar inputs are mapped to the same or simi-
lar targets. Since the assumption that similar in-
put should ideally produce similar target largely
holds for most tasks in practice, this smooth-
ing effect of pseudo-training step may provide a
favorable regularization for the subsequent fine-
tuning step. Unlike standard regularization in su-
pervised training which is local to the real parallel
data, self-training smooths the data space covered
by the additional and much larger monolingual
data.

To verify this hypothesis more easily, we work with the toy task of summing two integers in the
range 0 to 99. We concatenate the two integers and view them as a sequence of digits, the sum
is also predicted at the digit level, thus this is still a sequence to sequence task. There are 10000
possible data points in the entire space, and we randomly sample 250 instances for training,3 100 for
validation, 5000 for test, and 4000 as the unlabeled data. Test errors are computed as the absolute
difference between the predicted integer and the ground-truth integer. We use an LSTM model to
tackle this task. We perform self-training for one iteration on this toy sum dataset and initialize
the model with the base model to rule out differences due to the initialization. Setup details are in
Appendix A.1.

For any integer pair (x1, x2), we measure local smoothness as the standard deviation of the predic-
tions in a 3 × 3 neighborhood of (x1, x2). These values are averaged over all the 10000 points to
obtain the overall smoothness. We compare smoothness between baseline and ST pseudo-training
in Table 3. To demonstrate the effect of smoothing on the fine-tuning step, we also report test er-
rors after fine-tuning. We observe that ST pseudo-training attains better smoothness, which helps
reducing test errors in the subsequent fine-tuning step.

One natural question is whether we could further improve performance by encouraging even lower
smoothness value, although there is a clear trade-off, as a totally smooth model that outputs a con-
stant value is also a bad predictor. One way to decrease smoothness is by increasing the dropout
probability in the pseudo-training step, but a large dropout (like 0.5) makes the model too unstable
and slow at converging. Therefore, we consider a simple model-agnostic perturbation process –
perturbing the input, which we refer to as noisy self-training (noisy ST).

2 During finetuning, we still use dropout.
3We choose 250 instances since we find that 500 training samples already yields perfect performance on this

task. However, we want to mimic real seq2seq tasks where the supervised models are often far from perfect.
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Figure 2: Two examples of error heat map on the toy sum dataset that shows the effect of smoothness.
The left panel of each composition is from the baseline, and the right one is from the pseudo-training
step at the first iteration. x and y axes represent the two input integers. Deeper color represent larger
errors.

4.2 NOISY SELF-TRAINING

If we perturb the input during the pseudo-training step, then Eq. 1 would be modified to:

LU = −Ex′∼g(x),x∼p(x)Ey∼pθ∗ (y|x) log pθ(y|x
′), (3)

where g(x) is a perturbation function. Note that we apply both input perturbation and dropout in
the pseudo-training step for noisy ST throughout the paper, but include ablation analysis in §4.3.
We first validate noisy ST in the toy sum task. We shuffle the two integers in the input as the
perturbation function. Such perturbation is suitable for this task since it would help the model learn
the commutative law as well. To check that, we also measure the symmetry of the output space.
Specifically, for any point (x1, x2), we compute |f(x1, x2) − f(x2, x1)| and average it over all the
points. Both smoothness and symmetry values are reported in Table 3. While we do not explicitly
perturb the input at nearby integers, the shuffling perturbation greatly improves the smoothness
metric as well. Furthermore, predictions are more symmetric and test errors are reduced.

In order to illustrate the effect of smoothness, in Figure 2 we show two examples of error heat map.4
When a point with large error is surrounded by points with small errors, the labels might propagate
due to smoothing and its error is likely to become smaller, resulting in a “self-correcting” behaviour,
as demonstrated in the left example of Figure 2. However, the prediction of some points might
become worse due to the opposite phenomenon too, as shown in the right example of Figure 2.
Therefore, the smoothing effect by itself does not guarantee a performance gain in the pseudo-
training step, but fine-tuning benefits from it and seems to consistently improve the baseline in all
datasets we experiment with.

4.3 OBSERVATIONS ON MACHINE TRANSLATION

Next, we apply noisy self-training to the more realistic WMT100 translation task. We try two dif-
ferent perturbation functions: (1) Synthetic noise as used in unsupervised MT (Lample et al., 2018),
where the input tokens are randomly dropped, masked, and shuffled. We use the default noising
parameters as in unsupervised MT but study the influence of noise level in §5.4. (2) Paraphrase. We
translate the source English sentences to German and translate it back to obtain a paraphrase as the
perturbation. Figure 1 shows the results over three iterations. Noisy ST (NST) greatly outperforms
the supervised baseline by over 6 BLEU points and normal ST by 3 BLEU points, while synthetic
noise does not exhibit much difference from paraphrasing. Since synthetic noise is much simpler
and more general, in the remaining experiments we use synthetic noise unless otherwise specified.

Next, we report an ablation analysis of noisy ST when removing dropout at the pseudo-training step
in Table 2. Noisy ST without dropout improves the baseline by 2.3 BLEU points and is comparable
to normal ST with dropout. When combined together, noisy ST with dropout produces another 1.4
BLEU improvement, indicating that the two perturbations are complementary.

4Error heat map for the entire space can be found in Appendix C.
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Methods WMT English-German FloRes English-Nepali
100K (+3.8M mono) 3.9M (+20M mono) En-Origin Ne-Origin Overall

baseline 15.6 28.3 6.7 2.3 4.8
BT 20.5 – 8.2 4.5 6.5
noisy ST 21.4 29.3 8.9 3.5 6.5

Table 4: Results on two machine translation datasets. For WMT100K, we use the remaining 3.8M
English and German sentences from training data as unlabeled data for noisy ST and BT, respec-
tively.

5 EXPERIMENTS

Our experiments below are designed to examine whether the noisy self-training is generally useful
across different sequence generation tasks and resource settings. To this end, we conduct experi-
ments on two machine translation datasets and one text summarization dataset to test the effective-
ness under both high-resource and low-resource settings.

5.1 GENERAL SETUP

We run noisy self-training for three iterations or until performance converges. The model is trained
from scratch in the pseudo-training step at each iteration since we found this strategy to work slightly
better empirically. Full model and training details for all the experiments can be found in Ap-
pendix A.1. In some settings, we also include back-translation (BT, Sennrich et al., 2015) as a
reference point, since this is probably the most successful semi-supervised learning method for ma-
chine translation. However, we want to emphasize that BT is not directly comparable to ST since
they use different resources (ST utilizes the unlabeled data on the source side while BT leverages
target monolingual data) and use cases. For example, BT is not very effective when we translate
English to extremely low-resource languages where there is almost no in-domain target monolingual
data available. We follow the practice in (Edunov et al., 2018) to implement BT where we use unre-
stricted sampling to translate the target data back to the source. Then, we train the real and pseudo
parallel data jointly and tune the upsampling ratio of real parallel data.

5.2 MACHINE TRANSLATION

We test the proposed noisy self-training on a high-resource translation benchmark: WMT14 English-
German and a low-resource translation benchmark: FloRes English-Nepali.

• WMT14 English-German: In addition to WMT100K, we also report results with all 3.9M
training examples. For WMT100K we use the Base Transformer architecture, and the remaining
parallel data as the monolingual data. For the full setting, we use the Big Transformer architec-
ture (Vaswani et al., 2017) and randomly sample 20M English sentences from the News Crawl
corpus for noisy ST.

• FloRes English-Nepali: We evaluate noisy self-training on a low-resource machine translation
dataset FloRes (Guzmán et al., 2019) from English (en) to Nepali (ne), where we have 560K train-
ing pairs and a very weak supervised system that attains BLEU smaller than 5 points. For this
dataset we have 3.6M Nepali monolingual instances in total (for BT) but 68M English Wikipedia
sentences.5 We randomly sample 5M English sentences for noisy ST. We use the same trans-
former architecture as in (Guzmán et al., 2019).

The overall results are shown in Table 4. For almost all cases in both datasets, the noisy ST outper-
forms the baselines by a large margin (1 ∼ 5 BLEU scores), and we see that noisy ST still improves
the baseline even when this is very weak.

Effect of Domain Mismatch. Test sets of the FloRes benchmark were built with mixed original-
translationese – some sentences are from English sources and some are from Nepali sources. In-
tuitively, English monolingual data should be more in-domain with English-origin sentences and

5http://www.statmt.org/wmt19/parallel-corpus-filtering.html
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Methods 100K (+3.7M mono) 640K (+3.2M mono) 3.8M (+4M mono)
R1 R2 RL R1 R2 RL R1 R2 RL

MASS (Song et al., 2019)∗ – – – – – – 38.7 19.7 36.0

baseline 30.4 12.4 27.8 35.8 17.0 33.2 37.9 19.0 35.2
BT 32.2 13.8 29.6 37.3 18.4 34.6 – – –
noisy ST 34.1 15.6 31.4 36.6 18.2 33.9 38.6 19.5 35.9

Table 5: Rouge scores on Gigaword datasets. For the 100K setting we use the remaining 3.7M
training data as unlabeled instances for noisy ST and BT. In the 3.8M setting we use 4M unlabeled
data for noisy ST. Stared entry (∗) denotes that the system uses a much larger dataset for pretraining.
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Figure 3: Analysis of noisy self-training on WMT English-German dataset, demonstrating the effect
of parallel data size, monolingual data size, and noise level.

Nepali monolingual data should help more for Nepali-origin sentences. To demonstrate this possi-
ble domain-mismatch effect, in Table 4 we report BLEU on the two different test sets separately.6
As expected, ST is very effective when the source sentences originate from English.

Comparison to Back-Translation. Table 4 shows that noisy ST is able to beat BT on WMT100K
and on the en-origin test set of FloRes. In contrast, BT is more effective on the ne-origin test set
according to BLEU, which is not surprising as the ne-origin test is likely to benefit more from Nepali
than English monolingual data.

5.3 TEXT SUMMARIZATION

We further evaluate noisy self-training on the Gigaword summarization dataset (Rush et al., 2015)
that has 3.8M training sentences. We encode the data with 30K byte-pair codes and use the Base
Transformer architecture. Similar to the setting of WMT100K, for Gigaword we create two settings
where we sample 100K or 640K training examples and use the remaining as unlabeled data to
compare with BT. We also consider the setting where all the 3.8M parallel samples are used and
we mine in-domain monolingual data by revisiting the original preprocessing procedure7 and using
the ∼4M samples that Rush et al. (2015) disregarded because they had low-quality targets. We
report ROUGE scores (Lin, 2004) in Table 5. Noisy ST consistently outperforms the baseline in
all settings, sometimes by a large margin (100K and 640K). It outperforms BT with 100K parallel
data but underperforms with 640K parallel data. We conjecture that BT is still effective in this
case because the task is still somewhat symmetric as Gigaword mostly contains short sentences and
their compressed summaries. Notably, noisy ST in the full setting approaches the performance of
state-of-the-art systems which use much larger datasets for pretraining (Song et al., 2019).

5.4 ANALYSIS

In this section, we focus on the WMT English-German dataset to examine the effect of three factors
on noisy self-training: the size of the parallel dataset, the size of the monolingual dataset, and the
noise level. All the noisy ST results are after the fine-tuning step.

6Test set split is obtained through personal communication with the authors.
7https://github.com/facebookarchive/NAMAS
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Parallel data size. We fix the monolingual data size as 20M from News Crawl dataset, and vary the
parallel data size as shown in Figure 3(a). We use a small LSTM model for 10K, Base Transformer
for 100K/640K, and Big Transformer for 3.9M.8 Noisy ST is repeated for three iterations. We see
that in all cases noisy ST is able to improve upon the baseline, while the performance gain is larger
for intermediate value of the size of the parallel dataset, as expected.

Monolingual data size. We fix the parallel data size to 100K samples, and use the rest 3.8M
English sentences from the parallel data as monolingual data. We sample from this set 100K, 500K,
1.5M, and 3.8M sentences. We also include another point that uses 20M monolingual sentences
from a subset of News Crawl dataset. We report performance at the first iteration of noisy ST.
Figure 3(b) illustrates that the performance keeps improving as the monolingual data size increases,
albeit with diminishing returns.

Noise level. We have shown that noisy ST outperforms ST, but intuitively larger noise must not
always be better since at some point it may destroy all the information present in the input. We
adopt the WMT100K setting with 100K parallel data and 3.8M monolingual data, and set the word
blanking probability in the synthetic noise (Lample et al., 2018) to 0.2 (default number), 0.4, 0.6,
and 0.8. We also include the baseline ST without any synthetic noise. Figure 3(c) demonstrates
that performance is quite sensitive to noise level, and that intermediate values work best. It is still
unclear how to select the noise level a priori, besides the usual hyper-parameter search to maximize
BLEU on the validation set.

5.5 NOISE PROCESS ON PARALLEL DATA ONLY

In this section, we justify whether the proposed noisy self-training process would help the supervised
baseline alone without the help of any monolingual data. Similar to the training process on the
monolingual data, we first train the model on the noisy source data (pseudo-training), and then fine-
tune it on clean parallel data. Different from using monolingual data, there are two variations here
in the “pseudo-training” step: we can either train with the fake target predicted by the model as on
monolingual data, or train with the real target paired with noisy source. We denote them as “parallel
+ fake target” and “parallel + real target” respectively, and report the performance on WMT100K in
Table 6. We use the same synthetic noise as used in previous experiments.

When applying the same noise process to parallel data using fake target, the smoothing effect is not
significant since it is restricted into the limited parallel data space, producing marginal improvement
over the baseline (+0.4 BLEU). As a comparison, 100K monolingual data produces +1.0 BLEU
and the effect is enhanced when we increase the monolingual data to 3.8M, which leads to +3.7
BLEU. Interestingly, pairing the noisy source with real target results in much worse performance
than the baseline (-4.3 BLEU), which implies that the use of fake target predicted by the model (i.e.
distillation) instead of real target is important for the success of noisy self-training, at least in the
case where parallel data size is small. Intuitively, the distilled fake target is simpler and relatively
easy for the model to fit, but the real target paired with noisy source makes learning even harder than
training with real target and real source, which might lead to a bad starting point for fine-tuning.
This issue would be particularly severe when the parallel data size is small, in that case the model
would have difficulties to fit real target even with clean source.

6 RELATED WORK

Self-training belongs to a broader class of “pseudo-label” semi-supervised learning approaches.
These approaches all learn from pseudo labels assigned to unlabelled data, with different methods on
how to assign such labels. For instance, co-training (Blum & Mitchell, 1998) learns models on two
independent feature sets of the same data, and assigns confident labels to unlabeled data from one of
the models. Co-training reduces modeling bias by taking into account confidence scores from two
models. In the same spirit, democratic co-training (Zhou & Goldman, 2004) or tri-training (Zhou
& Li, 2005) trains multiple models with different configurations on the same data feature set, and a
subset of the models act as teachers for others.

8These architectures are selected based on validation loss.
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Methods PT FT

parallel baseline – 15.6
noisy ST, 100K mono + fake target 10.2 16.6
noisy ST, 3.8M mono + fake target 16.6 19.3

noisy ST, 100K parallel + real target 6.7 11.3
noisy ST, 100K parallel + fake target 10.4 16.0

Table 6: Results on WMT100K data. All results are from one single iteration. “Parallel + real/fake
target” denotes the noise process applied on parallel data but using real/fake target in the “pseudo-
training” step. “Mono + fake target” is the normal noisy self-training process described in previous
sections.

Another line of more recent work perturb the input or feature space of the student’s inputs as data
augmentation techniques. Self-training with dropout or noisy self-training can be viewed as an in-
stantiation of this. These approaches have been very successful on classification tasks (Rasmus
et al., 2015; Miyato et al., 2017; Laine & Aila, 2017; Miyato et al., 2018; Xie et al., 2019) given that
a reasonable amount of predictions of unlabeled data (at least the ones with high confidence) are
correct, but their effect on language generation tasks is largely unknown and poorly understood be-
cause the pseudo language targets are often very different from the ground-truth labels. Recent work
on sequence generation employs auxiliary decoders (Clark et al., 2018) when processing unlabeled
data, overall showing rather limited gains.

7 CONCLUSION

In this paper we revisit self-training for neural sequence generation, and show that it can be an
effective method to improve generalization, particularly when labeled data is scarce. Through a
comprehensive ablation analysis and synthetic experiments, we identify that noise injected during
self-training plays a critical role for its success due to its smoothing effect. To encourage this be-
haviour, we explicitly perturb the input to obtain a new variant of self-training, dubbed noisy self-
training. Experiments on machine translation and text summarization demonstrate the effectiveness
of this approach in both low and high resource settings.
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A EXPERIMENTS DETAILS

A.1 SETUP DETAILS

For all experiments, we optimize with Adam (Kingma & Ba, 2014) using β1 = 0.9, β2 = 0.98, ε =
1e − 8. All implementations are based on fairseq (Ott et al., 2019), and we basically use the same
learning rate schedule and label smoothing as in fairseq examples to train the transformers.9 Except
for the toy sum dataset which we runs on a single GPU and each batch contains 32 examples, all
other experiments are run on 8 GPUs with an effective batch size of 33K tokens. All experiments are
validated with loss on the validation set. For self-training or noisy self-training, the pseudo-training
takes 300K synchronous updates while the fine-tuning step takes 100K steps.

We use the downloading and preprocessing scripts in fairseq to obtain the WMT 2014 English-
German dataset,10 which hold out a small fraction of the original training data as the validation
set.

The model architecture for the toy sum dataset is a single-layer LSTM with word embedding size
32, hidden state size 32, and dropout rate 0.3. The model architecture of WMT10K baseline in
Figure 3(a) is a single layer LSTM with word embeddings size 256, hidden state size 256, and
dropout rate 0.3.

A.2 JUSTIFICATION OF THE WMT100K BASELINE

We provide more details and evidence to show that our baseline model on WMT100K dataset is
trained properly. In all the experiments on WMT100K dataset including baseline and self-training
ones, we use Adam optimizer with learning rate 0.0005, which is defaulted in fairseq. We do not
use early stop during training but select the best model in terms of the validation loss. We train with
30K update steps for the baseline model and (300K pseudo-training + 100K fine-tuning) update
steps for self-training. In both cases we verified that the models are trained sufficiently to fully
converge through observing the increase of validation loss. Figure 4 shows the validation curve of
the baseline model. Note that the model starts to overfit, and we select the model checkpoint at the
lowest point. We also varied the learning rate hyperparameter as 0.0002, 0.0005, and 0.001, which
produced BLEU score 15.0, 15.6 (reported in the paper), and 15.5 respectively – our baseline model
in previous sections obtained the best performance.
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Figure 4: Validation loss v.s. number of update steps, for the baseline model on WMT100K dataset.

9https://github.com/pytorch/fairseq/blob/master/examples/translation.
10https://github.com/pytorch/fairseq/tree/master/examples/translation.
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B COMPARISON REGARDING SEPARATE TRAINING, JOINT TRAINING, AND
FILTERING

In the paper we perform self-training with separate pseudo-training and fine-tuning steps and always
use all monolingual data. However, there are other variants such as joint training or iteratively adding
confident examples. Here we compare these variants on WMT100K dataset, noisy self-training uses
paraphrase as the perturbation function. For joint training, we tune the upsampling ratio of parallel
data just as in back-translation (Edunov et al., 2018). We perform noisy self-training for 3 iterations,
and for filtering experiments we iteratively use the most confident 2.5M, 3M, and 3.8M monolingual
data respectively in these 3 iterations. Table 7 shows that the filtering process helps joint training but
still underperforms separate-training methods by over 1.5 BLEU points. Within separate training
filtering produces comparable results to using all data. Since separate training with all data is the
simplest method and produces the best performance, we stick to this version in the paper.

Methods BLEU

baseline 15.6
noisy ST (separate training, all data) 21.8
noisy ST (separate training, filtering) 21.6
noisy ST (joint training, all data) 18.8
noisy ST (joint training, filtering) 20.0

Table 7: Ablation analysis on WMT100K dataset.

C ADDITIONAL RESULTS ON THE TOY SUM DATASET

We additionally show the error heat maps of the entire data space on the toy sum datasets for the first
two iterations. Here the model at pseudo-training step is initialized as the model from last iteration
to clearly examine how the decodings change due to injected noise. As shown in Figure 5, for each
iteration the pseudo-training step smooths the space and fine-tuning step benefits from it and greatly
reduces the errors
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(a) baseline
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(b) noisy ST (PT, iter=1)
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(c) noisy ST (FT, iter=1)
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(d) noisy ST (PT, iter=2)
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(e) noisy ST (FT, iter=2)

Figure 5: Error heat maps on the toy sum dataset over the first two iterations. Deeper color represent
larger errors.
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