
Under review as a conference paper at ICLR 2018

PREDICTING MULTIPLE ACTIONS FOR STOCHASTIC
CONTINUOUS CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a new approach to estimate continuous actions using actor-critic
algorithms for reinforcement learning problems. Policy gradient methods usually
predict one continuous action estimate or parameters of a presumed distribution
(most commonly Gaussian) for any given state which might not be optimal as it
may not capture the complete description of the target distribution. Our approach
instead predicts M actions with the policy network (actor) and then uniformly
sample one action during training as well as testing at each state. This allows the
agent to learn a simple stochastic policy that has an easy to compute expected
return. In all experiments, this facilitates better exploration of the state space
during training and converges to a better policy.

1 INTRODUCTION

Reinforcement learning is a traditional branch of machine learning which focuses on learning com-
plex tasks by assigning rewards to agents that interact with their environment. It has recently gained
momentum thanks to the combination of novel algorithms for continuous control with deep learning
models, sometimes even matching human performance in tasks such as playing video games and
manipulating objects Mnih et al. (2015); Silver et al. (2016). Recent methods for continuous control
problems like Deep Deterministic Policy Gradient (DDPG) Lillicrap et al. (2016), Asynchronous
Advantage Actor Critic (A3C) Mnih et al. (2016) use actor-critic architectures, where an action
function is learned by mapping states to actions. DDPG works well on many tasks, but it does not
model the uncertainty in actions as it produces a point estimate of the action distribution over states.
The actor is forced to deterministically choose an action for every state. A3C and other stochas-
tic policy gradient algorithms output distribution parameters (e.g. Gaussian distributions) instead of
point estimate, which can be sampled for action values.

As a simple example where this is sub-optimal, consider the inverted pendulum task, where a pen-
dulum is attached to a cart and the agent needs to control the one dimensional movement of the
cart to balance the pendulum upside down. A deterministic agent chooses a single action for every
state. This breaks the inherent symmetry of the task. When the cart in not moving and the pendulum
is hanging down, two actions are equally promising: either moving left or right. The distribution
parameter estimation (e.g. A3C) might work better in this case as there are only two good options,
but in cases when there are more than two good actions to select, this will not be optimal. In our
approach we allow the agent to suggest multiple actions, which enables it to resolve cases like this
easily.

Further, we observe that a deterministic behavior of DDPG can lead to sub-optimal convergence
during training. The main limitation is that, especially in the beginning of the learning procedure,
the actor favors actions that lead to a good immediate reward but might end up being far from the
globally optimal choice.

This work is based on the intuition that if the actor is allowed to suggest, at each time step, multiple
actions rather than a single one, this can render the resulting policy non-deterministic, leading to a
better exploration of the entire solution space as well as a final solution of potentially higher quality.
This can also eliminate the external exploration mechanisms required during training e.g. Ornstein-
Uhlenbeck process noise Uhlenbeck & Ornstein (1930), parameter noise Plappert et al. (2017) or
differential entropy of normal distribution.

1

Under review as a conference paper at ICLR 2018

Here, we introduce an algorithm, which we refer to as Multiple Action Policy Gradients (MAPG),
that models a stochastic policy with several point estimates and allows to predict a pre-defined
numberM of actions at each time step, extending any policy gradient algorithm with little overhead.
We will demonstrate the working of this algorithm by adapting DDPG Lillicrap et al. (2016) to use
MAPG.

Another benefit of the proposed method is that the variance of the predicted actions can give ad-
ditional insights into the decision process during runtime. A low variance usually implies that the
model only sees one way to act in a certain situation. A wider or even multi-modal distribution
suggests that there exist several possibilities given the current state.

We evaluate the proposed method on six continuous control problems of the OpenAI Gym Brockman
et al. (2016) as well as a deep driving scenario using the TORCS car simulator Wymann et al. (2014).
For a fair evaluation we directly compare DDPG to our MAPG without changing hyper-parameters
or modifying the training scheme. In all experiments, we show an improved performance using
MAPG over DDPG. To verify if MAPG helps in better exploration during training, we also analyze
MAPG under no external exploration policy.

2 RELATED WORK

There is currently a wide adoption of deep neural networks for reinforcement learning. Deep Q
Networks (DQN) Mnih et al. (2015) directly learn the action-value function with a deep neural
network. Although this method can handle very high dimensional inputs, such as images, it can
only deal well with discrete and low dimensional action spaces. Guided Policy Search Levine &
Koltun (2013) can exploit high and low dimensional state descriptions by concatenating the low
dimensional state to a fully connected layer inside the network.

Recent methods for continuous control problems come in two flavours, vanilla policy gradient meth-
ods which directly optimize the policy and actor-critic methods which also approximate state-value
function in addition to policy optimization. Trust Region Policy Optimization (TRPO) Schulman
et al. (2015) and Proximal Policy Optimization Algorithms Schulman et al. (2017) can be used as
vanilla policy gradient as well as actor-critic methods. Whereas, Deep Deterministic Policy Gradient
(DDPG) Lillicrap et al. (2016) and Asynchronous Advantage Actor Critic (A3C) Mnih et al. (2016)
use actor-critic architectures, where state-action function is learned to calculate policy gradients.

Stochastic Value Gradients (SVG) Heess et al. (2015), Generalized Advantage Estimation (GAE)
Schulman et al. (2015), A3C, TRPO all use stochastic policy gradients and predict action probability
distribution parameters. The action values are then sampled from the predicted distribution. A
parametrized normal distribution is most commonly used as action distribution. This means that
this formulation models a kind of action noise instead of the true action distribution. For example a
distribution with two modes cannot be modeled with a Gaussian.

DDPG Lillicrap et al. (2016) which extends DPG Silver et al. (2014) uses deterministic policy gra-
dients and achieves stability when using neural networks to learn the actor-critic functions. The
limitation of DDPG is that it always gives a points which may not be desired in stochastic action
problems.

Lazaric et al. (2007) estimate stochastic action values using a sequential Monte Carlo method
(SMC). SMC has actor and critic models where the actor is represented by Monte Carlo sampling
weights instead of a general function approximator like a neural network. SMC learning works well
in small state space problems, but cannot be extended directly to high dimensional non-linear action
space problems.

Similar to our idea of predicting multiple instead of one output, but originating from the domain
of supervised learning, is Multiple Hypothesis Prediction Rupprecht et al. (2017), which in turn is
closely related to Multiple Choice Learning Lee et al. (2016) and Lee et al. (2017). In this line of
work, the model is trained to predict multiple possible answers for the given task. Specific care has
to be taken since often in supervised datasets not all possible outcomes are labeled, this leading to
loss functions that contain an argmin-like term and, as such, are hard to differentiate.

2

Under review as a conference paper at ICLR 2018

3 THE MULTIPLE ACTION POLICY GRADIENT ALGORITHM

In this section we will describe in detail how multiple action policy gradients can be derived and
compare it to DDPG. We will then analyze the differences to understand the performance gain.

3.1 BACKGROUND

We investigate a typical reinforcement learning setup Sutton & Barto (1998) where an agent interacts
with an environment E. At discrete time steps t, the agent observes the full state st ∈ S ⊂ Rc, and
after taking action at ∈ A ⊂ Rd, it receives the reward rt ∈ R. We are interested in learning a policy
π : S → P(A), that produces a probability distribution over actions for each state. Similarly to other
algorithms, we model the environment as a Markov Decision Process (MDP) with a probabilistic
transition between states p(st+1|st, at) and the rewards r(st, at).

We associate a state with its current and (discounted with γ ∈ [0, 1]) future rewards by using

Rt =

T∑
i=1

γi−tr(si, ai). (1)

Since π andE are stochastic, it is more meaningful to investigate the expected reward instead. Thus,
the agent tries to find a policy that maximizes the expected discounted reward from the starting state
distribution p(s1).

J = Eri,si∼E,ai∼π(R1) (2)

Here, it is useful to investigate the recursive Bellman equation that associates a value to a state-action
pair:

Qπ(st, at) = Ert,st+1∼E [r(st, at) + γEat+1∼π[Q
π(st+1, at+1)]] (3)

Methods such as (D)DPG use a deterministic policy where each state is deterministically mapped to
an action using a function µ : S → A which simplifies Equation 3 to

Qµ(st, at) = Ert,st+1∼E [r(st, at) + γQµ(st+1, µ(st+1))]. (4)

In Q-learning Watkins & Dayan (1992), µ selects the highest value action for the current state:

µ(st) = argmax
at

(Q(st, at)) (5)

The Q value of an action is approximated by a critic network which estimates Qµ(st, at) for the
action chosen by the actor network.

3.2 ALGORITHM

The key idea behind predicting multiple actions is that it is possible to learn a stochastic policy as
long as the inner expectation remains tractable. Multiple action prediction achieves this by predict-
ing a fixed number M of actions ρ : S → AM and uniformly sampling from them. The expected
value is then the mean over all M state-action pairs. The state-action value can then be defined as

Qρ(st, at) = Ert,st+1∼E

[
r(st, at) + γ

1

M

M∑
m=1

Qρ(st+1, ρm(st+1))

]
. (6)

This is beneficial since we not only enable the agent to employ a stochastic policy when necessary,
but we also approximate the action distribution of the policy with multiple samples instead of one.

There exists an intuitive proof that the outer expectation in Equation 6 will be maximal if and only
if the inner Qρ are all equal. The idea is based on the following argument: let us assume ρ as an
optimal policy maximizing Equation 2. Further, one of the M actions ρj(st+1)) for a state st+1 has
a lower expected return than another action k.

Qρ(st+1, ρj(st+1)) < Qρ(st+1, ρk(st+1)) (7)

Then there exists a policy ρ∗ that would score higher than ρ that is exactly the same as rho exept that
it predicts action k instead of j: ρ∗j (st+1) := ρk(st+1). However, this contradicts the assumption

3

Under review as a conference paper at ICLR 2018

Algorithm 1 MAPG algorithm

Modify actor network µ(s|θµ) to output M actions, At = {ρ1(st), . . . , ρM (st)}.
Randomly initialize actor µ(s|θµ) and critic Q(s|θQ) network weights.
Initialize target actor µ′ and critic Q′ networks, θ′µ ← θµ and θ′Q ← θQ.
for episode = 1 to N do

Initialize random process N for exploration.
Receive initial observation/state s1.
for t = 1 to T do

Predict M action proposals At = {ρ1(st), . . . , ρM (st)} = µ′(st|θµ).
Uniformly sample an action j from At: a

j
t = ρj(st) +Nt.

Execute action ajt and observe reward rt and state st+1.
Store transition (st, a

j
t , rt, st+1) to replay buffer R.

Sample a random batch of size B from R.
Set yi = ri +Q′(si+1, µ

′(si+1|θ′µ)|θ′Q).
Update critic by minimizing the loss,

L = 1
B

∑
i(yi −Q(si, a

j
i |θQ))2

Update all actor weights connected to ajt .
5θµJ ≈ 1

B

∑
i5ajiQ(s, a|θQ)|s=si,a=aji 5θµ−θ{1...M}

µ +θjµ
µ(s|θµ)|si

Update the target networks:
θ′µ ← τθ′µ + (1− τ)θµ
θ′Q ← τθ′Q + (1− τ)θQ

end for
end for

that we had learned an optimal policy beforehand. Thus in an optimal policy all M action proposals
will have the same expected return. More informal, this can also be seen as a derivation from the
training procedure. If we always select a random action from the M proposals, they should all be
equally good since the actor cannot decide which action should be executed.

This result has several interesting implications. From the proof, it directly follows that it is possible
- and sometimes necessary - that all proposed actions are identical. This is the case in situations
where there is just one single right action to take. When the action proposals do not collapse into
one, there are two possibilities: either it does not matter what action is currently performed, or all
proposed actions lead to a desired outcome.

Naturally, the set of stochastic policies includes all deterministic policies, since a deterministic pol-
icy is a stochastic policy with a single action having probability density equal to one. This means
that in theory we expect the multiple action version of a deterministic algorithm to perform better or
equally well, since it could always learn a deterministic policy by predicting M identical actions for
every state.

Algorithm 1 outlines the MAPG technique. The main change is that the actor is modified to produce
M instead of one output. For every timestep one action j is then selected. When updating the actor
network, a gradient is only applied to the action (head) that was selected during sampling. Over
time each head will be selected equally often, thus every head will be updated and learned during
training.

4 EXPERIMENTS

In this section we will investigate and analyze the performance of MAPG in different aspects. First,
we compare scores between DDPG, A3C and MAPG on six different tasks. Second, we analyze the
influence of the number of actions on the performance by training agents with different M on five
tasks. Further, to understand the benefit of multiple action prediction, we observe the variance over
actions of a trained agent: the goal is to analyze for which states the predicted actions greatly differ
from each other and for which ones they collapse into a single choice instead. Finally, we compare
the performance of DDPG and MAPG without any external noise for exploration during training.

4

Under review as a conference paper at ICLR 2018

Table 1: Tasks used for evaluation

TASK ACTION DIMENSION STATE DIMENSION DESCRIPTION

PENDULUM 1 3 PENDULUM ON A CART.
HOPPER 3 11 ONE LEGGED ROBOT.
WALKER2D 6 17 TWO DIMENSIONAL BIPEDAL ROBOT.
HUMANOID 17 376 THREE DIMENSIONAL BIPEDAL ROBOT.
HALFCHEETAH 6 17 TWO LEG ROBOT.
SWIMMER 2 6 THREE JOINT SWIMMING ROBOT.
TORCS 3 29 CONTROL CAR IN 3D SIMULATION.

Table 2: Average score ±3σ over 100 episodes for Mujoco tasks with different M . For better
readability we denote the highest mean score for each task in bold. Corresponding boxplots can be
found in Figure 1a and 1b and the appendix.

ENVIRONMENT DDPG A3C M = 10 M = 20 M = 50

HOPPER-V1 603 ± 76 532 ± 105 824 ± 94 923 ± 90 732 ± 34
WALKER2D-V1 960 ± 72 764 ± 112 1297 ± 70 1319 ± 50 1589 ± 45
HUMANOID-V1 1091 ± 65 281 ± 40 1248 ± 115 1112 ± 75 1212 ± 110
HALFCHEETAH-V1 4687 ± 455 3803 ± 125 6659 ± 570 4116 ± 85 4333 ± 70
SWIMMER-V1 38 ± 7 33 ± 10 51 ± 6 41 ± 4 40 ± 2

4.1 SETUP

In all our experiments, we use five continuous control tasks from the Mujoco Simulator Todorov
et al. (2012) and a driving task for The Open Racing Car Simulator (TORCS). A detailed description
about the tasks is given in Table 1. We use the OpenAI Gym Brockman et al. (2016) and OpenAI
baselines Hesse et al. (2017) for evaluating our experiments.

The base actor and critic networks are fixed in all experiments. Each network has two fully con-
nected hidden layers with 64 units each. Each fully-connected layer is followed by a ReLU non-
linearity. The actor network takes the current observed state st as input and produces M actions
a
(m)
t ∈ [−1, 1]d by applying tanh. From M actions a(m)

t , a single action at is randomly chosen
with equal probability. The critic uses the current state st and action at as input and outputs a scalar
value (Q-value). In the critic network, the action value is concatenated with the output of the first
layer followed by one hidden layer and an output layer with one unit.

The critic network is trained by minimizing the mean square loss between the calculated discounted
reward and the computed Q value. The actor network is trained by computing the policy gradient
from the Q-value of the chosen action. The network weights of the last layer are only updated for
the selected action. Ornstein-Uhlenbeck process noise is added to the action values from the actor
for exploration. The training is done for a total of two million steps in all tasks.

For A3C training, we use same actor-critic networks as for earlier experiment. The output of actor
network is a mean vector (µa) (one for each action value) and a scalar standard deviation (σ2,
shared for all actions). The actions values are sampled from the normal distribution (N (µa, σ

2)).
We used differential entropy of normal distribution to encourage exploration with weight 10−4. In
our experiments, A3C performed poorly than DDPG in all tasks and was not able to learn a good
policy for Humanoid task.

4.2 MUJOCO EXPERIMENTS

For more meaningful quantitative results, we report the average reward over 100 episodes with
different values of M for various tasks in 2. For all environments except HUMANOID we already
score higher with M = 5. The lower performance in the HUMANOID task might be explained by
the drastically higher dimensionality of the world state in this task which makes it more difficult to
observe.

5

Under review as a conference paper at ICLR 2018

The scores of policy based reinforcement learning algorithms can vary a lot depending on network
hyper-parameters, reward function and codebase/framework as outlined in Henderson et al. (2017).
To minimize the variation in score due to these factors, we fixed all parameters of different algo-
rithms and only studied changes on score by varying M . Our metric for performance in each task
is average reward over 100 episodes by an agent trained for 2 million steps. This evaluation hinders
actors with high M since in every training step only a single out of the M actions will be updated
per state. Thus, in general actors with higher number of action proposals, will need a longer time to
learn a meaningful distribution of action.

We show a plot for the scores in the HOPPER and WALKER2D environments in Figure 1a and 1b,
where we can see that the overall score increases with M .

(a) Hopper (b) Walker2d

Figure 1: Variation in score of Hopper and Walker2d with different values of M .

In Figure 2, we studied the variance in action values for M = 10 during training together with the
achieved reward. The standard deviation of actions generated by MAPG decreases with time. As
the network converges to a good policy (increase in expected reward) the variation in action values
is reduced. However there are some spikes in standard deviation even when network is converged
to a better policy. It shows that there are situations in which the policy sees multiple good actions
(with high Q-value) which can exploited using MAPG.

4.3 VARIANCE ANALYSIS

We use the simple Pendulum environment to analyze the variance during one episode. The task is
the typical inverted pendulum task, where a cart has to be moved such that it balances a pendulum
in an inverted position. Figure 3 plots standard deviation and the angle of the pendulum. Some
interesting relationships can be observed. The variance exhibits two strong spikes that coincide with
an angle of 0 degrees. This indicates that the agent has learned that there are two ways it can swing
up the pole: either by swinging it clockwise or counter clockwise. A deterministic agent would need
to pick one over the other instead of deciding randomly. Further, once the target inverted pose (at
180 degrees) is reached the variance does not go down to 0. This means that for the agent a slight
jitter seems to be the best way to keep the pendulum from gaining momentum in one or the other
direction.

With this analysis we could show that a MAPG agent can learn meaningful policies. The variance
over predicted actions can give additional insight into the learned policy and results in a more diverse
agent that can for example swing up the pole in two different directions instead of picking one.

4.4 EFFECT ON EXPLORATION

Here, we study the effect of MAPG on exploration during training. We compare the performance of
DDPG and MAPG during training with and without any external noise on Pendulum and HalfChee-
tah environments. Figure 4 shows the average reward during training with DDPG and MAPG
M = 10. The policy trained using MAPG converges to better average reward than DDPG in both
cases. Moreover, the performance of MAPG without any external exploration is comparable to
DDPG with added exploration noise. This means MAPG can explore the state space enough to find
a good policy.

6

Under review as a conference paper at ICLR 2018

(a) Standard deviation in action values.

(b) Reward.

Figure 2: Standard deviation and reward with M = 10 for the Pendulum task during training.

Figure 3: Standard deviation and angle during one episode of the Pendulum environment. An angle
of ±180 is the target inverted pose. 0 is hanging downwards.

In the Half Cheetah environment we can see that using exploration creates a much bigger perfor-
mance difference between DDPG and MAPG than without. The difference sets in after about 500
epochs. This is an indication that in the beginning of training the actions predicted by MAPG are
similar to the one from DDPG. The noise later helps to pull the M actions apart such that they find
individual loss minima, leading to a more diverse policy with better reward.

4.5 TORCS

TORCS (The Open Racing Car Simulator) is an open source 3D car racing simulator. It provides an
interface for agents to drive the cars. During training, the reward was set proportional to component
of car velocity along direction of road v ∗ cos(α), where α is the angle between the velocity vector
and the center line of the track. This reward encourages forward motion. The car’s sensor data
(velocity, distance from road edges etc.) is used as input state and steer, brake, accelerate as actions
at each time step.

7

Under review as a conference paper at ICLR 2018

(a) Pendulum. (b) Half Cheetah.

Figure 4: Performance curves for two environments with and without external exploration noise on
DDPG and MAPG: original DDPG with OU process noise (green), DDPG without any exploration
noise (blue), MAPG (M=10) with OU process noise (red) and MAPG (M=10) without OU process
noise (orange).

In our experiments, MAPG with M = 10 was able to complete multiple laps of the track, whereas
the DDPG based agent could not complete even one lap of track. The average distance traveled over
100 episodes by DDPG is 807 and 5882 (both in meters) for MAPG agent.

Similar to our other experiments we find that MAPG agents explore more possibilities due to their
stochastic nature and can then learn more stable and better policies.

5 CONCLUSION

In this paper, we have proposed MAPG, a technique that leverages multiple action prediction to
learn better policies in continuous control problems. The proposed method enables a better explo-
ration of the state space and shows improved performance over DDPG. As indicated by exploration
experiments, it can also be a used as a standalone exploration technique, although more work needs
to be done in this direction. Last but not least, we conclude with interesting insights gained from
the action variance. There are several interesting directions which we would like to investigate in
the future. The number of actions M is a hyper-parameter in our model that needs to be selected
and seems to be task specific. In general, the idea of predicting multiple action proposals can be
extended to other on- or off-policy algorithms, such as NAF Gu et al. (2016) or TRPO. Evaluating
MA-NAF and MA-TRPO will enable studying the generality of the proposed approach.

ACKNOWLEDGMENTS

Will be added after anonymous review.

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In Proc. International Conference on Machine Learning (ICML),
2016.

Nicolas Heess, Gregory Wayne, David Silver, Timothy P. Lillicrap, Tom Erez, and Yuval Tassa.
Learning continuous control policies by stochastic value gradients. In Advances in Neural Infor-
mation Processing Systems, pp. 2944–2952, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

8

Under review as a conference paper at ICLR 2018

Christopher Hesse, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai
Wu. Openai baselines. https://github.com/openai/baselines, 2017.

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Reinforcement learning in continu-
ous action spaces through sequential monte carlo methods. In Advances in Neural Information
Processing Systems, 2007.

Kimin Lee, Changho Hwang, KyoungSoo Park, and Jinwoo Shin. Confident multiple choice learn-
ing. arXiv preprint arXiv:1706.03475, 2017.

Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael Cogswell, Viresh Ranjan, David Cran-
dall, and Dhruv Batra. Stochastic multiple choice learning for training diverse deep ensembles.
In Advances in Neural Information Processing Systems, pp. 2119–2127, 2016.

Sergey Levine and Vladlen Koltun. Guided policy search. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pp. 1–9, 2013.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Proc.
International Conference on Learning Representations (ICLR), 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1928–1937. PMLR, 20–22 Jun 2016.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
CoRR, abs/1706.01905, 2017.

Christian Rupprecht, Iro Laina, Robert DiPietro, Maximilian Baust, Federico Tombari, Nassir
Navab, and Gregory D. Hager. Learning in an uncertain world: Representing ambiguity through
multiple hypotheses. International Conference on Computer Vision (ICCV 2017), Venice, Italy,
October 2017, 2017.

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region
policy optimization. In Proceedings of the 32Nd International Conference on International Con-
ference on Machine Learning - Volume 37, ICML’15, pp. 1889–1897. JMLR.org, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, abs/1707.06347, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 387–395, 2014.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, jan 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

9

https://github.com/openai/baselines

Under review as a conference paper at ICLR 2018

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. In Physical
review, volume 36.5, pp. 823, 1930.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis, Rémi Coulom, and
Andrew Sumner. TORCS, The Open Racing Car Simulator. http://www.torcs.org, 2014.

10

Under review as a conference paper at ICLR 2018

APPENDIX

In the following we display the box plots similar to Figure 1a and 1b for the remaining tasks.

(a) Swimmer (b) Humanoid

(c) HalfCheetah

Figure 5: Variation in score of (from top left) Swimmer, Humanoid and HalfCheetah with different
values of M .

11

	Introduction
	Related Work
	The Multiple Action Policy Gradient Algorithm
	Background
	Algorithm

	Experiments
	Setup
	Mujoco Experiments
	Variance Analysis
	Effect on Exploration
	TORCS

	Conclusion

