
Under review as a conference paper at ICLR 2020

MOLECULE PROPERTY PREDICTION AND CLASSIFICA-
TION WITH GRAPH HYPERNETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks are currently leading the performance charts in learning-
based molecule property prediction and classification. Computational chemistry
has, therefore, become the a prominent testbed for generic graph neural networks,
as well as for specialized message passing methods. In this work, we demonstrate
that the replacement of the underlying networks with hypernetworks leads to a
boost in performance, obtaining state of the art results in various benchmarks.

A major difficulty in the application of hypernetworks is their lack of stability.
We tackle this by combining the current message and the first message. A recent
work has tackled the training instability of hypernetworks in the context of er-
ror correcting codes, by replacing the activation function of the message passing
network with a low-order Taylor approximation of it. We demonstrate that our
generic solution can replace this domain-specific solution.

1 INTRODUCTION

The field of learning-based prediction of molecule properties holds the promise of delivering ac-
curate predictions at a fraction of the complexity that is required by the Density Functional Theory
(DFT) models, while not being tied to the assumptions and approximations of this theory. This order
of magnitude reduction in runtime supports not only the rapid screening of molecule banks, with im-
portant applications in medicine, manufacturing, and environmental science, but also the automatic
design of new materials.

Molecules are often represented as graphs. Similarly to other application fields, such as computer vi-
sion, computational chemistry has benefited both from the development of powerful generic (graph)
neural networks, as well as the development of specialized methods that are developed for the spe-
cific prediction tasks. For example, the state of the art NMP-Edge method of Jørgensen et al. (2018)
is a sophisticated domain-specific method, with many significant algorithmic choices, which gen-
eralizes the method of Schütt et al. (2017a) and incorporates ideas from the work of Gilmer et al.
(2017) and Kearnes et al. (2016).

In this work, we propose a generic way to improve graph neural networks and demonstrate that it is
able to improve molecule property prediction and classification in both specialized networks and in
more generic methods that are applied to computational chemistry datasets. The value of our scheme
stems from its ability to improve upon a diverse set of already optimized state of the art methods.

Our method employs hypernetworks, also known as dynamic networks. In such neural networks,
the weights of at least some of the layers vary dynamically based on the input. A hypernetwork can
be seen as a composite network in which one network predicts the weights of another network. In
our case, both networks receive the messages that are passed in the graph neural network as inputs.

Since the weights of the message generating network in the hypernetworks change dynamically
during inference, training it is a challenge. We tackle this with a specific way of incorporating
the incoming messages into the hypernetwork. Instead of passing the current message, we pass
a linear combination of the current message and the first message. This simple modification is
enough to ensure an improvement in performance. Without it, the hypernetwork would not typically
outperform the original network.

1

Under review as a conference paper at ICLR 2020

Our experiments show that the same scheme is able to improve the predictions provided by three
state of the art methods: the NMP-Edge network, the Invariant Graph Network of Maron et al.
(2019a), and the Graph Isomorphism Network of Xu et al. (2019). In addition, we evaluate our
method in the domain of error correcting codes, in which a very recent contribution by Nachmani
& Wolf (2019) employed hypernetworks to improve the accuracy of a message passing scheme. We
are able to show that our modification of the input messages is able to replace the method used there
to stabilize the network. Taking both methods together, the results further improve.

2 RELATED WORK

Graph Networks The topic of graph neural networks has drawn considerable attention, both
in the context of specific applications, such as text analysis (Socher et al., 2013) and computer
vision (Johnson et al., 2018) and as a generic tool. Earlier work employed recursive neural net-
works (Goller & Kuchler, 1996; Gori et al., 2005; Scarselli et al., 2008; Li et al., 2016), where the
information flows once in a network that is generated based on the graph. Most current methods,
including graph spectra methods (Bruna et al., 2013; Defferrard et al., 2016; Kipf & Welling, 2016)
can be cast as message passing algorithms (Gilmer et al., 2017; Duvenaud et al., 2015; Li et al.,
2016; Battaglia et al., 2016; Kearnes et al., 2016; Schütt et al., 2017b; Xu et al., 2019).

The generic message passing methods employ three networks: one that pools the hidden states from
the neighborhood graph vertices, another that updates the hidden states based on the aggregated
representation of the neighbouring vertices, and one that reads the information from the entire graph
in order to generate the final classification. In such a network, the messages are the hidden states of
the nodes. In molecule prediction, conditioning the messages also on the receiving graph node and
storing a hidden state for the linking edge improves performance (Kearnes et al., 2016; Gilmer et al.,
2017; Jørgensen et al., 2018).

An alternative to message passing techniques, is presented by permutation equivariant operators on
the tensors that represent k-order interactions between graph nodes (Kondor et al., 2018; Maron
et al., 2018; Murphy et al., 2019; Maron et al., 2019a). We are able to demonstrate that applying our
method to both message passing methods and equivariant operator methods improved performance.

Molecule property prediction While in the past, feature engineering was the main route to ap-
plying machine learning in chemistry (Rogers & Hahn, 2010; Rupp et al., 2012; Montavon et al.,
2012; Hansen et al., 2015; Huang & Von Lilienfeld, 2016), neural networks have become increas-
ingly popular. The NMP-Edge model of Jørgensen et al. (2018) described in Sec. 3.1 is an example
of a specialized model. It follows the basic architecture of Gilmer et al. (2017), in which the mes-
sages are conditioned on the nodes across both sides of the edge and on the hidden representation of
the edge. In the NMP-Edge model, however, similar to SchNet (Schütt et al., 2017a), the message
is an elementwise product of a network that encodes the sending node and a network that encodes
the edge (not encoding the receiving edge directly). Also similar to SchNet, an RBF initialization
and a soft-plus activation are used. Unlike SchNet, the edge embedding is being updated in time,
following the Weave network proposed by Kearnes et al. (2016).

An example of a generic graph network solution that also excels on the popular QM9 benchmark
(Ramakrishnan et al., 2014; Ruddigkeit et al., 2012) is the Invariant Graph Network (IGN) of Maron
et al. (2019a), presented in Sec. 3.2.

Hypernetworks Dynamic layers, also known as gating layers, are layers in which the weights
are determined by a separate neural network. Such networks were introduced by Klein et al. (2015);
Riegler et al. (2015) for visual tasks that require an adaptation of the input image. More recently,
the term hypernetworks was coined to refer to a composite neural network in which a network f
is trained to predict the weights θg of another network g. The shift from specific layers to entire
networks was presented by Jia et al. (2016), who employed hypernetworks for video frames and
stereo views prediction. The usage of hypernetworks for recurrent neural networks was presented
by Ha et al. (2016). Krueger et al. (2017) have presented a Bayesian formulation of hypernetworks,
and such networks have become prominent in meta-learning following Bertinetto et al. (2016), who
studied transfer learning between multiple few-shot learning tasks.

Since the weights of network g are generated instantaneously by network f , Brock et al. (2018)
have used hypernetworks for searching over the space of possible network architectures. In this

2

Under review as a conference paper at ICLR 2020

case, a lengthy backpropagation optimization is replaced by the feed forward prediction of network
f . More related to our work is that of Zhang et al. (2019), who use hypernetworks on graphs, also in
the domain of network architecture search. In this work, the weight generating network f is a graph
network that operates on the graph that captures the generated architecture.

Another recent application of hypernetworks to graphs is the work of Nachmani & Wolf (2019),
where an MLP generates the weights of a message passing network that decodes error correcting
codes. This generalizes earlier attempts in the domain of network decoders including (Nachmani
et al., 2016; Kim et al., 2018; Gruber et al., 2017; Teng et al., 2018; Cammerer et al., 2017; Vasić
et al., 2018) and is shown to improve performance. The input to both the weight generating network
f and the message generation network g is the incoming message, where for the first network, the
absolute value is used. It is shown that training hypernetworks suffers from severe initialization
challenges and would often lead to the explosion of the weights. Nachmani & Wolf (2019), there-
fore, present a new activation function that is more stable than the arctanh activation typically used
in message passing decoders. In our work, we employ conventional activations, and do not employ
the absolute value for molecule prediction. We demonstrate that a combination of the initial mes-
sage (from the first iteration) with the last message is an effective way to stabalize the training of the
graph hypernetwork and do not employ dedicated activation functions.

3 GRAPH HYPERNETWORKS

We extend three leading architectures for graph neural networks that were either designed for the
molecule inference task or shown to excel on it. In each case, we add a hypernetwork scheme in
which the input is a linear combination of the first message passed in the network and the current
message. As our experiments show, in all three cases, sizable gains in performance are obtained, in
comparison to the underlying method. In addition, in order to compare ourselves with a recent hy-
pernetwork message passing scheme, we modify the decoding method of Nachmani & Wolf (2019).

3.1 EXTENDING THE NMP-EDGE NETWORK BY JØRGENSEN ET AL. (2018)

In order to describe how hypernetworks are applied to the NMP-Edge network, we rely on the
original notation of Jørgensen et al. (2018). Let htv be the hidden state of a node associated with a
specific atoms at iteration t, and etvw be the hidden state representation of an edge, which denotes
either a chemical link between atom or spatial proximity. The hidden states of the atoms h0v are
initialized using a look-up table and the hidden state of the edges e0vw are initialized using an RBF
function with multiple scales, following Jørgensen et al. (2018); Schütt et al. (2017a).

The message passing scheme of the original NMP-Edge network takes the form:

mt+1
v =

∑
w∈N(v)

Mt(h
t
w, e

t
vw), (1)

ht+1
v = St

(
htv,m

t+1
v

)
, (2)

wheremt
v are the messages aggregated at node v at time t, andMt, St are the message and transition

networks for iteration t. These networks are dynamic (vary between iterations) but are independent
of the inputs. The earlier work by Schütt et al. (2017b) uses a similar set of networks which do not
change between the iterations.

In our modified network, we replace the state transition function with the hypernetwork f and g as
follows:

θtg = f
(
c · h0v + (1− c) · htv

)
(3)

ht+1
v = htv + gθtg

(
mt+1
v

)
(4)

where c is a learned damping factor, which is clipped to be in the range [0,1] and is initialized with
a uniform distribution, and the weights of network g are given by θtg . For t = 0 , Eq. 3 becomes
θ0g = f

(
h0v
)
. Note that f is a fixed function. However, gθtg vary in time, since the set of weights θtg

change as the input to f changes.

The readout function is the same as in Jørgensen et al. (2018), which is two layer neural network
that pools from all of the network atoms. The network Mt, the readout network, and network St of

3

Under review as a conference paper at ICLR 2020

the original architecture employ a shifted-soft-plus network, following Schütt et al. (2017a), while
f, g employ tanh. Bias terms are not used. The number of layers is two in both g and St. f has
four layers (we believe that the architecture of St is locally optimal and adding layers to it did not
improve the accuracy in our experiments).

3.2 EXTENDING THE INVARIANT GRAPH NETWORK OF MARON ET AL. (2019A)

We follow the original notations of IGN, in order to enable a quick reference to the original IGN
work. The original model with d blocks has the form F = m ◦ h ◦Bd ◦ ... ◦B2 ◦B1 where, h is an
invariant layer (Maron et al., 2019b), m is a MLP, and the blocks Bi are defined as:

Yi = Bi(Xi) = [m3(Xi),m1(Xi)�m2(Xi)] (5)

where Xi ∈ Rn×n×a denote the input tensor to the block, � denotes element-wise multiplica-
tion, the square brackets denote concatenation along the last tensor dimension, and the three MLPs
m1,m2 : Ra → Rb andm3 : Ra → Rb′ are applied to each of the n×n elements of the input tensor
individually along the third tensor dimension. The dimension of the block’s output Yi is, therefore,
n× n× (b′ + b).

The modified IGN network has the form:

F = m ◦ h ◦Bd ◦Hd−1 ◦ ... ◦B2 ◦H1 ◦B1, (6)

where H1, ...,Hd−1 are hyper blocks. Let Yi = Bi(Xi) be the input tensor to the hyper block Hi.
The hyper block Hi performs the following computation:

θig = f (c · Y0 + (1− c) · Yi) (7)

Hi(Yi) = gθig (c · Y0 + (1− c) · Yi) (8)

where the damping factor c is a learned parameter, initialized from the uniform [0,1] distribution and
clipped to remain in this range. The input tensors for f and g are an aggregation of Y0 and Yi with
the damping factor c. Each layer in g is applied to each feature of the input tensor independently
along the third dimension. As before, f and g are neural networks with the tanh activation with f
having four layers and g two.

We use the same suffix networks per benchmark as Maron et al. (2019a). For QM9 h of Eq. 6 is
an invariant max pooling, which is followed by a MLP m with three layers. For the classification
datasets, h is an invariant max pooling layer from every block Bi output Hi(Yi) (Yi in the original
work) followed by a single layer. These outputs are then summed to produce the network output.

3.3 EXTENDING THE GRAPH ISOMORPHISM NETWORK OF (XU ET AL., 2019)

We now turn to the notation used in (Xu et al., 2019) to introduce the modified GIN model. G(V,E)
is the graph with node feature vector Xv for vertices v ∈ V and edges E. In the graph classification
problem, one is given a set of graphs with matching labels {(G1, y1), (G2, y2), ..., (GN , yN)}. The
GNN model calculates representation vectors hv for each node v in an iterative manner. After
convergence, a readout function calculates the global graph embedding hG, from which the label is
predicted ȳG = M(hG) for a MLP M . In GIN, the readout takes the form of a summation followed
by concatenation:

hG =

[∑
v∈G

h(1)v ,
∑
v∈G

h(2)v , . . . ,
∑
v∈G

h(K)
v

]
(9)

where K is the final iteration used for prediction. The update function of the hidden node represen-
tation for iteration k is given by a MLP that is specific to this iteration:

h(k)v = MLP(k)

((
1 + ε(k)

)
· h(k−1)v +

∑
u∈N (v)

h(k−1)u

)
(10)

where ε(k) is either a learned parameter or a fixed scalar, depending on the experiment.

The modified GIN model we propose modifies the update step, without changing the final readout:

θkg = f

(
c · h0v + (1− c) ·

(
h(k−1)v +

∑
u∈N (v)

h(k−1)u

))
(11)

4

Under review as a conference paper at ICLR 2020

h(k)v = gθkg

(
c · h0v + (1− c) ·

(
h(k−1)v +

∑
u∈N (v)

h(k−1)u

))
(12)

where h0v is calculated from Eq. 10 with k = 0 as h(0)v = MLP(0)
((

1 + ε(0)
)
· xv +

∑
u∈N (v) xu

)
,

where xv is the vector of input features of node v. c is a damping factor that is learned during
training. f and g are neural networks with three and two hidden layers respectively with the tanh
activation. Note that the network g changes between iterations and across nodes, depending on the
input to f . However, the entire hypernetwork is fixed between the iterations.

3.4 EXTENDING THE DECODING HYPERNETWORK OF NACHMANI & WOLF (2019)

Since Nachmani & Wolf (2019) have proposed to extend an existing network using a hypernetwork,
we modify their work in order to compare our way of converting a graph network to a hypernetwork
with theirs. Specifically, it is reported that hypernetworks cannot train for the task of decoding error
correcting codes, unless a dedicated activation function is used, since any other activation function
attempted in their experiments leads to a divergence of the weights.

Nachmani & Wolf (2019) modify the belief propagation algorithm of Nachmani et al. (2016), which
is given by:

xje = xj(c,v) =

tanh
(

1
2

(
lv +

∑
e′∈N(v)\{e} we′x

j−1
e′

))
, j is odd

2arctanh
(∏

e′∈N(c)\{e} x
j−1
e′

)
, j is even

(13)

where lv is the log likelihood ratios of the input bits, xje is the computed edge message for the edge
e = (c, v) in a Tanner graph, which is a bidirectional graph that has variable nodes v on one side
and check nodes c on the other. Let H be the parity check matrix. Each variable node is indexed by
an edge e = (c, v) on the Tanner graph and N(v) = {(c, v)|H(c, v) = 1}, i.e, the set of all edges in
which v participates. xj−1e is the message from the previous iteration.

The hypernetwork model of Nachmani & Wolf (2019) has the following update equations for odd j:

θjg = f(|xj−1|, θf) (14)

xje = xj(c,v) = g(lv, x
j−1
N(v, c), θ

j
g), (15)

where N(v, c) is a vector that contains the elements of xj that correspond to the indices N(v) \
{(c, v)}. For even j the update equation takes the form:

xje = xj(c,v) = 2

q∑
m=0

1

2m+ 1

 ∏
e′∈N(c)\{(c,v)}

xj−1e′

2m+1

(16)

where q is the degree of the Taylor approximation of arctanh.

We modified the model of Nachmani & Wolf (2019) with the following update equations. For odd
j:

θjg = f(|c · x0 + (1− c) · xj−1|, θf) (17)

xje = xj(c,v) = g(lv, c · x0 + (1− c) · xj−1N(v, c), θ
j
g), (18)

where x0 is the output of one iteration from Eq. 13, and c is the damping factor which is learned
during training.

For an even j we either use Eq. 16 (Taylor approximated arctanh), or consider the conventional
arctanh activation, as in Eq. 13. The readout function is not modified.

4 EXPERIMENTS

We evaluate our model on regression and classification for predicting molecule proprieties and for
decoding linear block codes. For regression we use the Quantum Machines 9 (QM9) dataset (Ra-
makrishnan et al., 2014; Ruddigkeit et al., 2012) and Open Quantum Materials Database (OQMD)

5

Under review as a conference paper at ICLR 2020

Saal et al. (2013); Kirklin et al. (2015). The QM9 dataset has 133, 885 molecules. Each molecule
has 12 properties for predicting. When comparing our results to NMP-Edge and IGN methods, we
use the same train-validation-test split as Jørgensen et al. (2018) or Maron et al. (2019a), respec-
tively. While based on the same dataset, these two benchmarks cannot be directly compared for
many of the properties. The OQMD dataset contain 435, 582 inorganic structures. We use the same
train-validation-test split as Jørgensen et al. (2018).

For classification we employ the four bioinformatics dataset of Yanardag & Vishwanathan (2015),
which contains protein structures or chemical compounds: MUTAG, PROTEINS, PTC and NCI1.
We use the original train folds, which are also used by Maron et al. (2019a) and Xu et al. (2019).

For decoding error correcting codes, we use the parity check metrics of Helmling et al. (2019).
We use three classes of linear block codes: Low Density Parity Check (LDPC) codes (Gallager,
1962), Polar codes (Arikan, 2008) and Bose-Chaudhuri-Hocquenghem (BCH) codes (Bose & Ray-
Chaudhuri, 1960).

We compare with various baseline method on top of the methods that we modify. For the QM9 and
OQMD datasets we compare with V-RF (Ward et al., 2017), SchNet (Schütt et al., 2017a), enn-s2s
(Gilmer et al., 2017), Cormorant (Anderson et al., 2019), Incidence (Albooyeh et al., 2019), 123-gnn
(Morris et al., 2019) and the two methods by Wu et al. (2018): DTNN and MPNN. The baseline
method for the classification datasets are WL subtree (Shervashidze et al., 2011), DCNN (Atwood &
Towsley, 2016), PATCHY-SAN(Niepert et al., 2016), DGCNN (Zhang et al., 2018), AWL (Ivanov
& Burnaev, 2018), GCN (Kipf & Welling, 2016), and GraphSAGE (Hamilton et al., 2017).

Implementation details The various hyperparameters were selected based on the validation set
(where vary between experiments) or set arbitrarily based on the underlying architecture (where
fixed). NMP-edge network For QM9, we trained the models with the ADAM optimizer, with a
learning rate set to 1e − 4. The number of iterations was 4. The number of neurons in network f
was 64 and the number of neurons in network g was 128. The learning rate decreases by a factor of
0.96 every 100, 000 gradient steps. The minibatch size was 32. The node embedding size was 256
to all the parameters. For OQMD, we use an ADAM optimizer, with a learning rate set to 1e − 4.
The learning rate decreases by a factor of 0.96 every 400, 000 gradient steps. We use a minibatch
of 32 examples. The number of iterations was 3. The number of neurons per layer in network
f was 64 and that number in network g was 128. Invariant graph network For QM9, we use
the same configuration as Maron et al. (2019a), except for the following hyper parameters. When
training one model to predict all molecule parameters f has four layers with 128 neurons, whereas
g has two layers with 128 neurons. When we trained a separate model for each molecule parameter,
which calls for a smaller capacity, f has four layers with 64 neurons and g has two layers with 64
neurons. For the classification datasets we trained the models with the following hyperparameters,
learning rate was 5e− 5 for MUTAG, PTC and NCI1, and was 1e− 3 for PROTEINS. The number
of channels in blocks Bi was 400 for all datasets except for PROTEINS which has 128 channels.
The number of layers in the MLP m was 2 for all datasets. For all datasets the number of neurons
in network f was 64 and the number of neurons in network g was 64, except for PROTEINS which
has 32 neurons for f and g. Graph isomorphism network For the classification datasets, we use
the same training procedure as Xu et al. (2019), who train the model for 10 folds and choose the
number of epochs based on the cross validation accuracy over the folds. We train the models with
the following hyper-parameters. Learning rate was 5e − 3, the models run for 5 iterations and the
number of epochs was 180 for all datasets. The minibatch sizes were 512, 256, 32 and 16 for NCI1,
PTC, MUTAG and PROTEINS, respectively. In all datasets, f has three layers and 64 neurons, g
has two layers with 64 neurons each. Decoding hyper-network We use the same hyper-parameters
as in Nachmani & Wolf (2019).

4.1 RESULTS

Graph regression The results for the QM9 dataset are reported in Tab. 1 for the NMP-Edge com-
patible splits and units and in Tab. 3 for the benchmark version used by IGN. Our model based on
the NMP-Edge architecture achieves state of the art performance on 9 out of 12 parameters, and in
only one parameter it is outperformed by the original NMP-Edge model (and another tie).

The result for formation energy predictions OQMD, based on the NMP-Edges architecture, is pro-
vided in Tab. 2. We obtain state of the art performance in this benchmark as well.

6

Under review as a conference paper at ICLR 2020

(a) (b) (c)

Figure 1: BER for various values of SNR for various codes. (a) BCH (63,51), (b) POLAR(64,48),
(c) LDPC ARRAY (121,80).

The QM9 model that is based on IGN obtains state of the art performance on 7 out of 12 parameters
when training the model for each parameter. Furthermore, we improve the results of 9 out of 12
parameters when comparing to IGN model that is trained for each parameter separately. When
training one model to predict all the parameters, we improve 12 out of 12 parameters, compared to
the IGN model.

Graph classification The results for the classification datasets are provided in Tab. 4. As can be
observed, our modified versions of IGN and GIN improve the baseline IGN and GIN models in al-
most all cases (in one case we tie). Note that the GIN model has many variants and our modification
is based on the GIN-εmodel. There is no Graph Neural Network model that outperforms our results,
and for the PTC and PROTEINS datasets, our method outperforms all literature baselines.

Error Correcting Codes results In Fig. 1 we provide the BER-SNR results for multiple linear
block codes. Our method improves on Nachmani & Wolf (2019) across codes. We get an improve-
ment range between 0.09dB and 0.12dB for large SNR. Moreover, in all three cases, we are able to
improve the baseline results, even without the Taylor approximation of Nachmani & Wolf (2019).
Since Nachmani & Wolf (2019) fail to train without the approximation (using arctanh their runs
always diverge), this shows that our method stabilizes the training process for error correcting codes.
We can also observe that our results with and without this approximation are almost identical.

4.2 ABLATION ANALYSIS

In Tab. 5 we provide an ablation analysis on the QM9 benchmark. For the NMP-Edge model, we can
observe degradation of 11 out of 12 parameters when training without h0v in Eq. 3 and the associated
damping factor. Moreover, when training without the hypernetwork, but with h0v (Eq. 2 becomes
ht+1
v = c · h0v + (1− c) · St

(
htv,m

t+1
v

)
) we get a degradation of 7 out of 12 parameters.

For the IGN model, we can observe degradation in 9 out of the 12 parameters when training without
the damping factor and Y0 in Eq. 7, 8. Moreover, when training without the hypernetwork but with
the added first message (Xi become c ·X0 + (1− c) ·Xi in Eq. 5), we get a degradation of 8 out of
the 12 parameters.

5 CONCLUSIONS

Graph neural networks are becoming the dominant tool in molecule prediction and classification
tasks. Here we show that by employing hypernetworks with a stabilization mechanism, significant
performance gains are obtained. In order to demonstrate the advantage of our stabilizing mechanism
over a recently proposed hypernetwork scheme, we also show improved performance in the field of
decoding linear block codes.

7

Under review as a conference paper at ICLR 2020

Table 1: Mean absolute error for QM9 molecule parameters prediction, using the NMP-Edge splits,
units and our modified architecture. The lowest error is in bold. The results of the Incidence and
Cormorant networks are from Albooyeh et al. (2019) and Anderson et al. (2019), respectively. The
rest of the results from Jørgensen et al. (2018).

Target Unit SchNet enn-s2s NMP-Edge Cormorant Incidence Ours

εHOMO meV 41 43 36.7 36 89 26.56
εLUMO meV 34 37 30.8 36 49 23.47
∆ε meV 63 69 58.0 60 68 41.91
ZPVE meV 1.7 1.5 1.49 1.982 8 1.49
µ Debye 0.033 0.030 0.029 0.130 0.04 0.031
α Bohr3 0.235 0.092 0.077 0.092 0.03 0.066
〈R2〉 Bohr2 0.073 0.180 0.072 0.673 0.017 0.057
U0 meV 14 19 10.5 28 8 7.27
U meV 19 19 10.6 - 7 6.99
H meV 14 17 11.3 - 8 7.17
G meV 14 19 12.2 - 8 7.99
Cv cal/molK 0.033 0.040 0.032 0.031 0.028 0.026

Table 2: OQMD - NMP-Edge. Mean absolute error for formation energy predictions. The results of
the various baselines are from Jørgensen et al. (2018)

Method: V-RF SchNet NMP-Edge Ours

meV/atom 74.5 27.5 14.9 13.5

Table 3: Mean absolute error for QM9 molecule parameters prediction for the IGN splits, units,
and our modified architecture of it. The results of the various datasets are taken from (Maron et al.,
2019a). For IGN and our modifications, we show results of a single network predicting all values
and of dedicated networks.

Target DTNN MPNN 123-gnn IGN - all IGN - single Ours - all Ours - single

µ 0.244 0.358 0.476 0.231 0.0934 0.157 0.0883
α 0.95 0.89 0.27 0.382 0.318 0.325 0.303
εhomo 0.00388 0.00541 0.00337 0.00276 0.00174 0.00203 0.00178
εlumo 0.00512 0.00623 0.00351 0.00287 0.0021 0.00228 0.0020
∆ε 0.0112 0.0066 0.0048 0.00406 0.0029 0.00306 0.0027
〈R2〉 17 28.5 22.9 16.07 3.78 13.9 7.56
ZPV E 0.00172 0.00216 0.00019 0.00064 0.000399 0.00049 0.000396
U0 2.43 2.05 0.0427 0.234 0.022 0.093 0.018
U 2.43 2 0.111 0.234 0.0504 0.092 0.0174
H 2.43 2.02 0.0419 0.229 0.0294 0.093 0.0193
G 2.43 2.02 0.0469 0.238 0.024 0.093 0.017
Cv 0.27 0.42 0.0944 0.184 0.144 0.180 0.146

8

Under review as a conference paper at ICLR 2020

Table 4: Test set classification accuracies (%) for MUTAG, PROTEINS, PTC, NCI1 datasets. The
highest results on bold. The results of IGN are by (Maron et al., 2019a), the rest of the results are
from Xu et al. (2019).

Datasets MUTAG PROTEINS PTC NCI1

D
at

as
et

s # graphs 188 1113 344 4110
classes 2 2 2 2
Avg # nodes 17.9 39.1 25.5 29.8

B
as

el
in

es

WL subtree 90.4 ± 5.7 75.0 ± 3.1 59.9 ± 4.3 86.0 ± 1.8 ∗

DCNN 67.0 61.3 56.6 62.6
PATCHYSAN 92.6 ± 4.2 ∗ 75.9 ± 2.8 60.0 ± 4.8 78.6 ± 1.9
DGCNN 85.8 75.5 58.6 74.4
AWL 87.9 ± 9.8 – – –

G
N

N
va

ri
an

ts

OURS BASED ON GIN 90.55 ± 5.4 76.90 ± 2.24 69.68 ± 5.5 82.7 ± 2.0
GIN-0 89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 82.7 ± 1.7
GIN-ε 89.0 ± 6.0 75.9 ± 3.8 63.7 ± 8.2 82.7 ± 1.6
GIN-SUM–1-LAYER 90.0 ± 8.8 76.2 ± 2.6 63.1 ± 5.7 82.0 ± 1.5
GCN-MEAN–1-LAYER 85.6 ± 5.8 76.0 ± 3.2 64.2 ± 4.3 80.2 ± 2.0
GRAPHSAGE-MAX–1-LAYER 85.1 ± 7.6 75.9 ± 3.2 63.9 ± 7.7 77.7 ± 1.5

OURS BASED ON IGN 91.66 ± 6.54 77.8 ± 5.93 68.23 ± 10.07 81.99 ± 2.08
IGN 90.55 ± 8.7 77.2 ± 4.73 66.17 ± 6.54 83.19 ± 1.11

Table 5: Ablation analysis on the two QM9 dataset views. Mean absolute error is reported in both.
NMP-Edge split,units, and architecture IGN split, units, and architecture

Target Full No h0v No hypernetwork Full No X0 No hypernetwork

µ 0.031 0.033 0.024 0.157 0.163 0.171
α 0.066 0.455 0.065 0.325 0.332 0.318
εHOMO 26.5 26.7 25.9 0.00203 0.00223 0.00218
εLUMO 23.4 23.99 22.5 0.00228 0.00229 0.00244
∆ε 41.916 34.44 42.934 0.00306 0.00311 0.00341
〈R2〉 0.057 0.183 0.197 13.9 13.6 13.8
ZPVE 1.49 2.16 1.51 0.00049 0.00045 0.00045
U0 7.27 7.71 9.09 0.093 0.099 0.102
U 6.99 7.73 9.64 0.092 0.0986 0.103
H 7.17 7.40 9.36 0.093 0.096 0.104
G 7.99 9.05 9.58 0.093 0.0997 0.102
Cv 0.026 0.043 0.025 0.180 0.163 0.180

9

Under review as a conference paper at ICLR 2020

REFERENCES

Marjan Albooyeh, Daniele Bertolini, and Siamak Ravanbakhsh. Incidence networks for geometric
deep learning. arXiv preprint arXiv:1905.11460, 2019.

Brandon Anderson, Truong-Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. arXiv preprint arXiv:1906.04015, 2019.

Erdal Arikan. Channel polarization: A method for constructing capacity-achieving codes. In 2008
IEEE International Symposium on Information Theory, pp. 1173–1177. IEEE, 2008.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems, pp. 1993–2001, 2016.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Luca Bertinetto, João F Henriques, Jack Valmadre, Philip Torr, and Andrea Vedaldi. Learning feed-
forward one-shot learners. In Advances in Neural Information Processing Systems, pp. 523–531,
2016.

Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error correcting binary group
codes. Information and control, 3(1):68–79, 1960.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rydeCEhs-.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Sebastian Cammerer, Tobias Gruber, Jakob Hoydis, and Stephan ten Brink. Scaling deep learning-
based decoding of polar codes via partitioning. In GLOBECOM 2017-2017 IEEE Global Com-
munications Conference, pp. 1–6. IEEE, 2017.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Robert Gallager. Low-density parity-check codes. IRE Transactions on information theory, 8(1):
21–28, 1962.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263–1272. JMLR. org, 2017.

Christoph Goller and Andreas Kuchler. Learning task-dependent distributed representations by
backpropagation through structure. In Proceedings of International Conference on Neural Net-
works (ICNN’96), volume 1, pp. 347–352. IEEE, 1996.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and Stephan ten Brink. On deep learning-based
channel decoding. In 2017 51st Annual Conference on Information Sciences and Systems (CISS),
pp. 1–6. IEEE, 2017.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

10

https://openreview.net/forum?id=rydeCEhs-

Under review as a conference paper at ICLR 2020

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Katja Hansen, Franziska Biegler, Raghunathan Ramakrishnan, Wiktor Pronobis, O Anatole
Von Lilienfeld, Klaus-Robert Muller, and Alexandre Tkatchenko. Machine learning predictions
of molecular properties: Accurate many-body potentials and nonlocality in chemical space. The
journal of physical chemistry letters, 6(12):2326–2331, 2015.

Michael Helmling, Stefan Scholl, Florian Gensheimer, Tobias Dietz, Kira Kraft, Stefan Ruzika, and
Norbert Wehn. Database of Channel Codes and ML Simulation Results. www.uni-kl.de/
channel-codes, 2019.

Bing Huang and O Anatole Von Lilienfeld. Communication: Understanding molecular representa-
tions in machine learning: The role of uniqueness and target similarity, 2016.

Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2186–2195, Stockholmsmssan,
Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/
v80/ivanov18a.html.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks. In
Advances in Neural Information Processing Systems, pp. 667–675, 2016.

Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1219–1228, 2018.

Peter Bjørn Jørgensen, Karsten Wedel Jacobsen, and Mikkel N Schmidt. Neural message pass-
ing with edge updates for predicting properties of molecules and materials. arXiv preprint
arXiv:1806.03146, 2018.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):
595–608, 2016.

Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. Deepcode: Feed-
back codes via deep learning. In Advances in Neural Information Processing Systems (NIPS), pp.
9436–9446, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Scott Kirklin, James E Saal, Bryce Meredig, Alex Thompson, Jeff W Doak, Muratahan Aykol,
Stephan Rühl, and Chris Wolverton. The open quantum materials database (oqmd): assessing the
accuracy of dft formation energies. npj Computational Materials, 1:15010, 2015.

Benjamin Klein, Lior Wolf, and Yehuda Afek. A dynamic convolutional layer for short range
weather prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4840–4848, 2015.

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covariant
compositional networks for learning graphs. arXiv preprint arXiv:1801.02144, 2018.

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks. arXiv preprint arXiv:1710.04759, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In ICLR, 2016.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. arXiv preprint arXiv:1905.11136, 2019a.

11

www.uni-kl.de/channel-codes
www.uni-kl.de/channel-codes
http://proceedings.mlr.press/v80/ivanov18a.html
http://proceedings.mlr.press/v80/ivanov18a.html

Under review as a conference paper at ICLR 2020

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International Conference on Machine Learning, pp. 4363–4371, 2019b.

Grégoire Montavon, Katja Hansen, Siamac Fazli, Matthias Rupp, Franziska Biegler, Andreas Ziehe,
Alexandre Tkatchenko, Anatole V Lilienfeld, and Klaus-Robert Müller. Learning invariant rep-
resentations of molecules for atomization energy prediction. In Advances in Neural Information
Processing Systems, pp. 440–448, 2012.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609,
2019.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. arXiv preprint arXiv:1903.02541, 2019.

Eliya Nachmani and Lior Wolf. Hyper-graph-network decoders for block codes. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Eliya Nachmani, Yair Be’ery, and David Burshtein. Learning to decode linear codes using deep
learning. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 341–346. IEEE, 2016.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014–2023, 2016.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1:140022, 2014.

G. Riegler, S. Schulter, M. Rther, and H. Bischof. Conditioned regression models for non-blind sin-
gle image super-resolution. In 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 522–530, Dec 2015. doi: 10.1109/ICCV.2015.67.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical informa-
tion and modeling, 50(5):742–754, 2010.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole Von Lilienfeld. Fast
and accurate modeling of molecular atomization energies with machine learning. Physical review
letters, 108(5):058301, 2012.

James E Saal, Scott Kirklin, Muratahan Aykol, Bryce Meredig, and Christopher Wolverton. Ma-
terials design and discovery with high-throughput density functional theory: the open quantum
materials database (oqmd). Jom, 65(11):1501–1509, 2013.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. SchNet: A continuous-filter convolutional neural net-
work for modeling quantum interactions. In Advances in Neural Information Processing Systems,
pp. 991–1001, 2017a.

Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. Nature communications, 8:13890,
2017b.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):2539–
2561, 2011.

12

Under review as a conference paper at ICLR 2020

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Chieh-Fang Teng, Ching-Chun Liao, Chun-Hsiang Chen, and An-Yeu Andy Wu. Polar feature based
deep architectures for automatic modulation classification considering channel fading. In 2018
IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 554–558. IEEE,
2018.

Bane Vasić, Xin Xiao, and Shu Lin. Learning to decode ldpc codes with finite-alphabet message
passing. In 2018 Information Theory and Applications Workshop (ITA), pp. 1–9. IEEE, 2018.

Logan Ward, Ruoqian Liu, Amar Krishna, Vinay I Hegde, Ankit Agrawal, Alok Choudhary, and
Chris Wolverton. Including crystal structure attributes in machine learning models of formation
energies via voronoi tessellations. Physical Review B, 96(2):024104, 2017.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architec-
ture search. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rkgW0oA9FX.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rkgW0oA9FX
https://openreview.net/forum?id=rkgW0oA9FX

	Introduction
	Related Work
	Graph Hypernetworks
	Extending the NMP-Edge network by edges
	Extending the Invariant Graph Network of maron2019provably
	Extending the Graph Isomorphism Network of xu2018how
	Extending the Decoding Hypernetwork of nachmani2019

	Experiments
	Results
	Ablation Analysis

	Conclusions

