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Abstract

Parsing textual information embedded in images is important for various down-
stream tasks. However, many previously developed parsers are limited to handling
the information presented in one dimensional sequence format. Here, we present
POST OCR TAGGING BASED PARSER (POT), a simple and robust parser that
can parse visually embedded texts by BIO-tagging the output of optical character
recognition (OCR) task. Our shallow parsing approach enables building robust
neural parser with less than a thousand labeled data. POT is validated on receipt
and namecard parsing tasks.

1 Introduction

Human knowledge is often carried by natural language. To extract essential information from the
textual data for various downstream tasks, it is often necessary to structuralize the data. This process
is called “parsing”.

Although various state-of-the-art parsers have been developed, they are all specialized in processing
texts presented in one dimensional sequence format. However, in the era of smartphone, useful
textual information is often visually embedded in images calling for a new type of parser.

Here, we present POST OCR TAGGING BASED PARSER (POT), a simple yet robust post-OCR parser
that can structuralize textual information presented in images by BIO-tagging text segments extracted
from OCR task. We validate our results over two parsing tasks: (1) receipt, and (2) namecard.

2 Model

We parse visually embedded texts in the following four separate steps (Fig. 1). First, text segments and
their coordinates in images are extracted using OCR system. Next, using the coordinate information,
the text segments are serialized to mimic conventional text format. Then the serialized segments are
BIO-tagged. Finally, to generate final parses, the segments are grouped and combined. The detail of
each step is explained below.

2.1 Optical Character Recognition

To extract visually embedded texts from an image, we used our in-house OCR system consisting
of CRAFT text detector (Baek et al., 2019b) and Comb.best text recognizer (Baek et al., 2019a).
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Figure 1: The scheme of post-OCR parsing task.

The OCR models are finetuned on each parsing dataset. Resulting text segments and their spatial
information on image were delivered to the serializer.

2.2 Serialization

To maximally recover contextual information, extracted text segments are serialized according to their
coordinate information as below. The algorithm first uses lexical sort to rearrange the text segments
according to their coordinates from top to down and left to right direction using y axis as a primary
order. Next, to group the text segments placed on the same line in the image, two segments whose the
height difference is smaller than certain threshold are labeled as the same line and the segments are
rearranged accordingly. When the text segments are placed on a curved line, which can happens when
textual information on curled object is embedded in the image, the following line grouping algorithm
is used. First, the polygon box containing text segment is moved horizontally along the angle of the
text segment. If the box is overlapped with another box and their intersection area becomes higher
than the pre-defined threshold, two boxes are merged into the same group and the angle is replaced
by that of the new box. The process is repeated for the remaining boxes.

2.3 BIO Tagging

The serialized text segments are BIO-tagged using a neural network in following order. First, the text
segments are tokenized and mapped to input vectors by adding token-, segment-, (sequential) position-
, coordinate-, and line group-embeddings. The first three embeddings are prepared in identical way
as BERT (Devlin et al., 2018; Vaswani et al., 2017). The segment id is set to 1 for tokens from
text segments and to 0 for BERT special tokens like [CLS]. The coordinate embedding represents
the spatial information of visually embedded text segments. Before embedding, coordinates are
normalized by using image width and height and mapped to integers between 0 to 30. The line group
embedding is prepared by embedding line number found in the serialization process. To tag each
token, the first Ntag scalars of each BERT-encoded token vector are interpreted as logits where Ntag

stands for the number of possible tags.

2.4 Parse generation

The output of the tagging model consists of mixed BIO tags of tokens (Fig. 1) which can be decoded
sequentially in linear time into raw parses by noticing that for each target field, B and I of other
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fields can be considered as O-tag. In receipt parsing task, there is an additional group tag (not to be
confused with line group) to reflect the hierarchical structure of parses (for example fields such as
name, count, and price are grouped together based on the item they represent). The group BIO-tags
are also decoded sequentially.

2.5 Refinements

Final parses are generated by refining raw parses. The refinement process typically involves database
match and string conversion using a regular expression. In receipt parsing task, (1) various special
symbols in cnt and price values, and (2) the thousands separator in price are refined to have unified
representation. In namecard parsing task, a person’s first name and family name are distinguished by
using the name database and the output formats for phone and fax numbers are unified.

3 Dataset

The task of parsing post-OCR outputs using neural network has not been studied actively and we
could not find appropriate datasets. Thus, we made new strong supervision datasets by ourselves.
In receipt parsing task, the following information is labeled: store information, menu, and payment
information. Among them, the menu consists of several grouped subfields: the name of the menu,
unit price, total price, and sub-menu. The sub-menu also has a hierarchical substructure. Since these
structures are not easily perceptible, we had to run pilot annotation by ourselves with 200 samples to
define the ontology. Based on it, two annotation guides were created for (1) OCR data annotation,
and (2) the parse tag annotation.

The annotation task was performed by crowd through in-house web application based on a centralized
database. To minimize annotation errors, the crowds were assigned two roles: annotation and
inspection. The annotators could start parse tag annotation only if their OCR-annotation task passed
the inspection. The web application was implemented with Vue.js and Ruby on Rails. The namecard
dataset was prepared similarly.

In each parsing task, train set, dev set (validation set), and test set consist of 800, 100, and 100
annotated examples. 1

4 Experiments

The tagging model is trained via cross-entropy function with label smoothing. ADAM optimizer is
used with learning rate 2e-5 with default hyperparameters. The batch size is set to 16. In receipt
parsing task, tokens are augmented by randomly deleting or inserting a single token with 3.3%
probability for each. Also, we attach one or two random tokens at the end of the text segment with
1.7% probability for each. Newly added tokens are randomly selected from the collection of all
tokens from the train set.

5 Results & evaluation

POT is validated on two parsing tasks: receipt and namecard. To prepare evaluation metric, the oracle
parses were generated from ground truth text segments. Then F1 and sample accuracy (acc) were
measured by comparing predicted parses to the oracle. The sample accuracy indicates the percent of
samples of which all parses are predicted correctly.

The baseline model using fine-tuned multi-lingual BERTBASE (Devlin et al., 2018) shows F1 = 84.9
(Table. 1, 1st row). Based on it, we pushed the parsing accuracy up to 90% with following
improvements: (1) integration of coordinate and line-group information (crd, 2nd row), (2) data
augmentation by randomly replacing tokens (aug, 3rd row), (3) advanced line-grouping for text
segments placed on curved lines (lgrp, 4th row), (4) parse refinement (rfn, 5th row), and (5)
loosening metric by considering predicted menu name is correct if the word-edit-distance to the
oracle menu name is ≤ 2 or ≤ 0.4 × length(manu names). The F1 scores of individual fields

1The part of the datasets (or similar datasets that are free of confidential issue) will be released at
https://github.com/clovaai/cord once the internal open-sourcing process is finished.
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Table 1: The parsing accuracy table. crd, aug, lgrp, and rfn stand for "coordinate and line group information
(sec. 2.3)", "data augmentation (sec. 4)", "improved line grouping (sec. 2.2)", and "output format regularization
(sec. 2.5)". In rfn2, predicted menu name is considered as correct when word-edit-distance to the oracle is ≤ 2
or ≤ 0.4× word length.

dev test

Model Task F1 acc F1 acc

Baseline (BERT) receipt 84.9 ± 0.4 19.7 ± 0.5 78.9 ± 0.7 20.0 ± 0.8
(+) crd receipt 85.5 ± 0.4 22.0 ± 0.0 79.2 ± 0.7 20.3 ± 1.3
(+) crd, aug receipt 85.8 ± 0.1 25.0 ± 1.6 79.4 ± 0.3 21.3 ± 0.5
(+) crd, aug, lgrp receipt 86.9 ± 0.2 27.0 ± 1.6 79.9 ± 0.2 24.0 ± 0.0
(+) crd, aug, lgrp, rfn receipt 89.4 ± 0.2 30.3 ± 1.3 84.7 ± 0.2 30.0 ± 0.8
(+) crd, aug, lgrp, rfn2 (=POT) receipt 91.6 ± 0.3 40.7 ± 2.1 87.2 ± 0.2 39.3 ± 1.3

POT namecard 83.2 ± 0.8 24.0 ± 2.5 83.1 ± 0.6 23.3 ± 0.5

Table 2: The accuracies of individual fields in receipt parsing task. The dev set F1 scores of 13 fields among 32
fields are shown.

Field F1 Field F1 Field F1 Field F1

store-info.nm 83.9 store-info.tel 80.4 store-info.address 67.7 - -
menu.nm 97.7 menu.cnt 97.6 menu.unitprice 96.1 menu.price 97.3
pym-info.date 89.4 pym-info.time 94.6 - - - -
total.total-price 98.0 total.cashprice 96.9 total.creditcardprice 80.0 total.changeprice 98.4

are shown in Table 2. Despite of the small number of supervision example (800), POT shows
F1 = 87.2 in the test set. To test the general applicability of POT, we also performed namecard
parsing task using an identical model. POT shows F1 = 83.1 in the test set without task-specific
optimization. The relatively low F1 compared to receipt task may be originated from a larger spatial
degree of freedom in text alignment on a namecard.

6 Conclusion

We have developed a new kind of parser that can structuralize visually embedded textual information.
Our shallow parsing approach based on BIO-tagging enables building robust parser with less than a
thousand examples. Currently, the whole process consists of four separate modules (OCR, serial-
ization, BIO-tagging, and parse generation) and final accuracy depends on the performance of each
module. The "deep" parsing model that unifies separate processes in end-to-end fashion is currently
under active development. This unified approach will allow information propagation in abstract space
between modules and remove a burden of hand-crafting.
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