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Abstract

Electroencephalography-based brain-computer interfaces are systems that infer
brain signals recorded using electroencephalography (EEG) to provide a means of
communication for patients suffering from locked-in syndrome where common
neuromuscular pathways are not available. One challenge in EEG-based BCIs is
non-stationarity of the EEG signal. A major contributor to this is feedback-related
brain activity. Since EEG consists of time series data recorded at multiple sites
on the scalp, one can estimate covariance matrices for both time and space which
lie on the Riemannian manifold of symmetric positive definite matrices. In this
work, we investigate spatio-temporal aspects of the feedback-related brain activity
by considering both space and time covariances in Euclidean space and on the
Riemannian manifold. We propose two novel methods to incorporate both spatial
and temporal features and show improved results compared to existing methods.

1 Introduction

Brain-computer interface (BCI) systems provide a means of communication for patients suffering
from locked-in syndrome through bypassing the normal neuromuscular pathways [8, 18]. These
systems record signals directly from the brain using methods such as electroencephalography (EEG)
and infer the intention of the user from them. Motor imagery (MI) BCIs are common BCI paradigms
in which the user imagines moving a part of her/his body. Movement imagination results in an
event-related desynchronization (ERD) (decrease in power) in various frequency bands [16, 13].
Motor imagery of different body parts leads to different spatial desynchronization and this information
is used by the BCI to distinguish among the imagined movement classes. In practice, for example, a
user imagining moving her/his right or left hand can be mapped to a switch to turn on/off the light or
to control the movement of a wheelchair, etc.

Non-stationarity of EEG signals is a barrier for real-world application of EEG-based BCI systems.
Feedback-related brain activity is one contributor to this non-stationarity [6, 17, 14]. In this work,
we investigate the spatio-temporal aspects of the feedback-related brain activity in a motor imagery
BCI paradigm. Covariance matrices play an important role in extracting features for classification
in MI-BCI [5, 10]. By investigating both space and time covariances in the Euclidean space and on
the Riemannian manifold, our goal is to distinguish whether the BCI has made an error perceived
by the user in a motor imagery BCI paradigm. This information can be used to improve the BCI
performance (e.g. [14]).
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2 Methods

Data were recorded from 10 participants participating in a motor imagery task to control a cursor on
a monitor in front of them. Data were recorded using a 64-channel BrainAmp system (Brain Products
GmbH). Each trial began with the cursor at the center of the screen and the target at either left or right
side. The distance from the center to each side was fixed to three cursor jumps. The cursor moved
at one step per second. The trial ended when the cursor hit the target or the other end of the screen.
Participants were lead to believe they were in control of the cursor, but in reality, the cursor moved
based on a pre-determined sequence that was the same for all participants. This was to have enough
steps towards or away from the target irrespective of the participant’s motor imagery performance.
Data were downsampled and sections that were contaminated with excessive noise were removed.
Next, independent component analysis (ICA) [11] was applied to remove muscle and eye artifacts.
Pre-processing was done in MATLAB [12] and EEGLAB [7]. Feature extraction and classification
were implemented in Python. We used the pyRiemann toolbox [2] to calculate Riemannian distances
and means. For details on pre-processing, please refer to [14].

We looked at different frequency bands, namely 1-3, 2-5, 4-7, 6-10, 7-12, 10-15, 12-19, 18-25, 19-30,
25-35, 30-40 Hz to cover the low and high theta, mu, and beta frequency bands and to cover for
potential individual differences [15]. Data were downsampled to 100 Hz and epoched at 100 to 1000
ms after each cursor movement which we call a “step". We trained a classifier to distinguish whether
the user is satisfied with the last cursor movement or not, i.e., if the cursor had moved towards (good)
or away (bad) from the target on that step. This is called a good/bad classifier. The methods that are
proposed in this work have space and time covariances of these steps at their core.

2.1 Space and time covariances

Let Xi ∈ Rc×t be an EEG epoch (step) where c is the number of channels, t represents the number
of time samples and i ∈ {1, ..., N} where N is the number of steps available. The sample space and
time covariances for each step are defined as follows:

Csi = XiX
T
i Cti = XT

i Xi (1)

Since the number of channels in our case c = 64 is smaller than the number of time samples (i.e., 90
time samples at a rate of 100 Hz), covariance matrices are not full rank and thus not positive definite.
This is specifically required for the Riemannian methods. Therefore, we regularized both space and
time covariances as follows:

C ← (1− α)C + α
trace(C)

N
I (2)

where I is the identity matrix with the same size as C, α is the regularization parameter and trace(C)
is the sum of values on the diagonal of matrix C. In what follows, the regularization parameter was
chosen arbitrarily but small, i.e., α = 0.001. We did not test for other values. It is a part of our future
work to use data-driven methods such as Ledoit-Wolf [9] to estimate the regularization parameter.

In this work, six methods are compared that differ in how they estimate the covariance from EEG
data (either time or space) and how they extract corresponding features and infer the class label from
this information. These methods are explained next.

2.2 Filterbank-Common Spatial Patterns (FB-CSP)

Filterbank common spatial patterns (FB-CSP) was proposed by by Ang et al. [1] and serves as our
benchmark. In this method, first the average of the sample covariances for each of the good and bad
classes in the Euclidean space were estimated as Σg = 1

N

∑
i C

g
si and Σb = 1

N

∑
i C

b
si respectively

where N is the number of steps in the (balanced in number) good and bad classes. Cg
si and Cb

si

represent the space covariance of the ith good and bad steps respectively. CSP filters were estimated
for each frequency band by simultaneous diagonalization of the two covariance matrices:

WT ΣgW = Λg WT ΣbW = Λb (3)

where Λg and Λb are diagonal matrices and W is selected such that Λg + Λb = I [5]. This can be
achieved by solving the generalized eigenvalue problem: Σgw = λΣbw. CSP filters wj , j = 1, ..., C
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are the columns of W . We considered the top 3 filters for each of the good and bad classes in each
frequency band, i.e. the eigenvectors associated with the largest and smallest eigenvalues λ. Features
were selected as the log of the variance of the EEG signal passed through these filters. A linear
discriminant analysis (LDA) classifier was trained on the selected features [10].

2.3 Filterbank-Common Temporal Patterns (FB-CTP)

Common temporal patterns (CTP) were proposed by Yu et al. [19]. CTPs were found by solving
the equations that were described earlier for CSP, except the sample mean of the good and bad time
covariances were considered instead of space covariances. In their work, Yu et al. combined the
features from common spatial and temporal filters. However, here we only considered the common
temporal filters as a stand-alone method to compare with FB-CSP and another time covariance
method on the Riemannian manifold that will be described next.

We consider a filter-bank version of CTP method similar to FB-CSP. The top 3 filters for each of the
good and bad classes in each frequency band were selected. Features were the log of the variance
of the EEG signal passed through these filters. A linear discriminant analysis (LDA) classifier was
trained on the selected features [10].

2.4 FB-CSP-CTP

This method combines the spatial and temporal features from CSP and CTP methods. First CSP
filters were trained and the top 3 filters for good and bad classes were selected. Then the EEG frames
were passed through the 6 selected CSP filters. Next, CTP filters were trained and again the top 3
filters for each class were selected. The CSP filtered EEG frames passed through the selected CTP
filters were used as features (6× 6). This procedure was applied to each frequency band separately to
have 11× 6× 6 features and a logistic regression was trained on them for classification.

2.5 Filterbank-distance to spatial Riemannian means (FB-DRM-S)

Since covariance matrices are symmetric positive definite (SPD) matrices, they lie on a Riemannian
manifold [3]. Let P (n) = {P ∈ S(n), P > 0} be the set of all n×n SPD matrices. The Riemannian
distance between two SPD matrices, P1 and P2 is defined as follows:

δR(P1, P2) = ||Log(P−11 P2)||F = [

N∑
i=1

log2λi]
1/2 (4)

where λi are the eigenvalues of (P−11 P2) which are real positive (non-zero) values as P1 and P2 are
both SPD. Also, ||.||F is the Frobenius norm of a matrix and Log(P ) is the matrix logarithm of P .
Since SPD matrices are diagonalizable, let P = WDW−1. Then Log(P ) = Wlog(D)W−1 where
log(D)i = log(Di) and log(D)i and Di are the ith element on the diagonal of matrices log(D) and
D respectively.

The mean of the SPD matrices P1, P2, ..., Pm on the Riemannian manifold is defined as follows [3]:

M(P1, P2, ..., Pm) = argminP∈P (n)

m∑
i=1

δ2R(P, Pi). (5)

Based on these mathematical tools on the Riemannian manifold, a filter bank generalization of the
minimum distance to Riemannian mean (MDM) classifier [4] is proposed. First, the Riemannian
mean of the good and bad space covariances on the training set were estimated. Then, the features
were selected as the distances to the Riemannian means of good and bad classes in each frequency
band (a total of 22 features: 11 frequency bands × 2 good and bad classes) and logistic regression
was trained on the selected features.

2.6 Filterbank-distance to temporal Riemannian means (FB-DRM-T)

Here, we first estimated the Riemannian mean of the good and bad time covariances on the training
set. Then, the features were selected as the distances to the Riemannian means of good and bad
classes in each frequency band (a total of 22 features: 11 frequency bands × 2 good and bad classes)
and logistic regression was trained on the selected features.
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Table 1: G/B classification results.

ID CSP CTP CSPCTP DRM-S DRM-T DRM-ST

P1 0.73/0.017 0.65/0.014 0.81/0.011 0.72/0.012 0.68/0.016 0.74/0.019
P2 0.73/0.023 0.62/0.018 0.80/0.016 0.68/0.021 0.63/0.019 0.70/0.018
P3 0.57/0.020 0.54/0.017 0.59/0.020 0.59/0.021 0.58/0.015 0.58/0.019
P4 0.79/0.017 0.65/0.027 0.82/0.013 0.63/0.016 0.59/0.016 0.69/0.018
P5 0.62/0.014 0.55/0.013 0.75/0.016 0.69/0.019 0.62/0.019 0.71/0.020
P6 0.69/0.018 0.65/0.018 0.72/0.022 0.71/0.013 0.70/0.017 0.75/0.012
P7 0.73/0.014 0.60/0.016 0.70/0.017 0.69/0.023 0.67/0.024 0.73/0.019
P8 0.67/0.022 0.59/0.026 0.70/0.020 0.74/0.018 0.70/0.023 0.72/0.024
P9 0.75/0.020 0.67/0.021 0.66/0.014 0.82/0.018 0.76/0.021 0.81/0.018
P10 0.69/0.021 0.64/0.017 0.75/0.015 0.74/0.022 0.72/0.02 0.73/0.027

Average 0.70/0.021 0.62/0.014 0.73/0.023 0.70/0.020 0.66/0.019 0.72/0.018

2.7 Filterbank-distance to spatial and temporal Riemannian means (FB-DRM-TS)

This method combines the two previous ones: we first estimated the Riemannian mean of the good
and bad time and space covariances on the training set. Then, the features were selected as the
distances to the Riemannian means of good and bad time and space covariances in each frequency
band (a total of 44 features: 11 frequency bands × 2 good and bad classes × 2 time and space
covariances). A logistic regression classifier was trained on the selected features.

3 Results and Discussion

Since good and bad classes were not balanced, we sub-sampled the larger class to have balanced
classes. We randomly sub-sampled the larger class and made 10 instances of train-validation and
test sets - each having the same number of good and bad steps. Results are presented in table 1.
The first column represents the participant ID (P1 to P10). In the rest of the columns, the first
row specifies the classification method. Each entry shows the average classification accuracy on
the test set across instances (first number) and standard error of the mean (second number). The
last row shows the average performance of each method across participants. Our results show that
FB-CSP-CTP performs best for majority of the participants. CSP is a very effective well developed
way to remove the high amount of spatial (between electrodes) correlation in EEG data and it appears
to be a good pre-processing step for future temporal analysis. On the other hand, FB-DRM-T on
average performs better than FB-CTP. This is an interesting observation and implies that further
investigation may be fruitful to best determine how to integrate Riemannian methods in an end-to-end
classifier. Importantly in both the Riemannian methods and the CSP/CTP methods combining spatial
and temporal information improves performance.

4 Conclusion

In this work, we investigated spatio-temporal aspects of the feedback-related brain activity. Since
EEG is a time series recorded at multiple sites (electrodes on the scalp), we proposed methods to
combine aspects of space and time covariances. We showed that time covariance can provide useful
features for better classification of feedback-related brain activity. We proposed a filter-bank version
of the common temporal patterns (CTP) method. Moreover, we proposed to combine spatial and
temporal features by applying CTP after CSP for improved classification rates. We also proposed a
filter bank generalization of the MDM method that was originally proposed in [4], i.e. our FB-DRM-S
and another one to incorporate Riemannian distance to time covariances of the good and bad classes as
extra features for the classifier (FB-DRM-TS). Future work includes investigating more sophisticated
classifiers as introduced in [4], to replace the logistic regression on distance to the mean of each class
in FB-DRM-TS to further improve our results.
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