
Under review as a conference paper at ICLR 2020

RE-EXAMINING LINEAR EMBEDDINGS FOR
HIGH-DIMENSIONAL BAYESIAN OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) is a popular approach to optimize expensive-to-
evaluate black-box functions. A significant challenge in BO is to scale to high-
dimensional parameter spaces while retaining sample efficiency. A solution con-
sidered in previous literature is to embed the high-dimensional parameter space
into a lower-dimensional manifold, often a random linear embedding. In this pa-
per, we identify several crucial issues and misconceptions about the use of linear
embeddings for BO. We thoroughly study and analyze the consequences of using
linear embeddings and show that some of the design choices in current approaches
adversely impact their performance. Based on this new theoretical understanding
we propose ALEBO, a new algorithm for high-dimensional BO via linear embed-
dings that outperforms state-of-the-art methods on a range of problems, including
learning a gait policy for robot locomotion.

1 INTRODUCTION

Bayesian optimization (BO) is a robust, sample-efficient technique for optimizing expensive-to-
evaluate black-box functions (Mockus, 1989; Jones, 2001). BO has been successfully applied to
diverse applications, ranging from automated machine learning (Snoek et al., 2012; Hutter et al.,
2011) to robotics (Lizotte et al., 2007; Calandra et al., 2015; Rai et al., 2018). One of the most active
topics of research in BO is how to extend current methods to higher-dimensional spaces. A common
framework to tackle this problem is to consider a high-dimensional BO (HDBO) task as a standard
BO problem in a low-dimensional embedding, where the embedding can be either linear (typically a
random projection) or nonlinear (e.g. via a multi-layer neural network); see Sec. 2 for a full review.
An advantage of this framework is to explicitly decouple the problem of finding low-dimensional
representations suitable for optimization from the actual optimization technique.

In this paper we study the use of linear embeddings for HDBO, and in particular we re-examine
prior efforts to use random linear projections. Random projections are attractive for BO because,
by the Johnson-Lindenstrauss lemma, they can be approximately distance-preserving (Johnson &
Lindenstrauss, 1984) without requiring any data to learn the embedding. Random embeddings come
with several strong theoretical guarantees, but have shown mixed empirical performance for HDBO.

The contributions of this paper are: 1) We provide new results that identify why linear embeddings
have performed poorly in HDBO. We show that existing approaches produce representations that
cannot be well-modeled by a Gaussian process (GP), or representations that likely do not contain
an optimum (Sec. 4). 2) We construct a representation with better properties for BO (Sec. 5): we
improve modelability by deriving a Mahalanobis kernel tailored for linear embeddings and adding
polytope bounds to the embedding, and we show how to maintain a high probability that the em-
bedding contains an optimum. 3) We show that using this representation for BO outperforms a wide
range of previous approaches for HDBO, including on test functions up to D = 1000, and on real-
world problems, such as gait optimization of a multi-legged robot (Sec. 6). These include the first
results for HDBO with black-box constraints.

2 RELATED WORK

There are generally two approaches to extending BO into high dimensions. The first is to produce
a low-dimensional embedding, do standard BO in this low-dimensional space, and then project up

1

Under review as a conference paper at ICLR 2020

to the original space for function evaluations. The foundational work on embeddings for BO is
REMBO (Wang et al., 2016), which creates a linear embedding by generating a random projection
matrix. Sec. 3 provides a thorough description of REMBO and several subsequent approaches based
on random linear embeddings (Qian et al., 2016; Binois et al., 2019; Nayebi et al., 2019). If deriva-
tives of f are available, the active subspace method can be used to recover a linear embedding (Con-
stantine et al., 2014; Eriksson et al., 2018), or approximate gradients can be used (Djolonga et al.,
2013). BO can also be done in nonlinear embeddings through VAEs (Gómez-Bombarelli et al.,
2018; Lu et al., 2018; Moriconi et al., 2019). An attractive aspect of random embeddings is that they
can be extremely sample-efficient, since the only model to be estimated is a low-dimensional GP.

The second approach to extend BO to high dimensions is to make use of surrogate models that better
handle high dimensions, typically by imposing additional structure on the problem. Work along
these lines include GPs with an additive kernel (Kandasamy et al., 2015; Wang et al., 2017; Gardner
et al., 2017; Wang et al., 2018; Rolland et al., 2018; Mutný & Krause, 2018), cylindrical kernels (Oh
et al., 2018), or deep neural network kernels (Antonova et al., 2017). Random forest is used as the
surrogate model in SMAC (Hutter et al., 2011). These methods produce trade-offs between sample
efficiency of the model and the ability to effectively optimize the acquisition function.

Here, we focus on the embedding approach and in particular the use of linear embeddings for HDBO.
Without box bounds, REMBO comes with a strong guarantee: with probability 1, the embedding
contains an optimum (Wang et al., 2016, Thm. 2). However, if function evaluations are limited to the
box bounds, as is typical in BO problems, REMBO requires a collection of heuristics for which there
are no longer guarantees on performance. While REMBO can perform well in some HDBO tasks,
subsequent papers have found it can perform poorly even on tasks with a true low-dimensional linear
subspace (e.g. Nayebi et al., 2019). In this paper, we analyze the properties of linear embeddings as
they relate to BO, and show how to improve the representation of the function we seek to optimize.

3 PROBLEM FRAMEWORK AND REMBO

In this section we define the problem framework and notation, and then describe BO via random
linear projections (REMBO)—a promising method for HDBO—along with known challenges and
follow-up work that has been proposed to address these issues.

Bayesian optimization We consider optimization problems of the form minx∈B f(x) where f is
a black-box function and B are box bounds. We assume gradients of f are unavailable. The box
bounds on x specify the range of values that are reasonable or physically possible to evaluate. For
instance, Gramacy et al. (2016) use BO for an environmental remediation problem in which each xi
represents the pumping rate of a particular pump, which has physical limitations. The problem may
also include nonlinear constraints cj(x) ≤ 0 where each cj is itself a black-box function. BO is a
form of sequential model-based optimization, where we construct a surrogate model for f and use
that model to identify which parameters x should be evaluated next, according to an explore-exploit
strategy. The surrogate model is typically a GP, f ∼ GP(m(·), k(·, ·)), with mean function m(·)
and a kernel k(·, ·). Under the GP prior, the posterior for the value of f(x) at any point in the space
is a normal distribution with closed-form mean and variance. Using that posterior, we construct an
acquisition function α(x) that specifies the value of a function evaluation at x, such as Expected
Improvement (EI) (Jones et al., 1998). We find x∗ ∈ argmaxx∈B α(x), and evaluate f(x∗).

The GP is useful for BO because it provides a well-calibrated posterior in closed form. With typical
kernels and acquisition functions, α(x) is differentiable and can be effectively optimized. However,
with typical kernels like the ARD RBF kernel, there are significant limitations. GPs are known to
predict poorly in high dimensions, which for a GP is D larger than 15–20 (Wang et al., 2016; Li
et al., 2016; Nayebi et al., 2019). This prevents BO from being a useful tool in high dimensions.

In HDBO, the objective f : RD → R operates in a high-dimensional (D) space, which we call the
ambient space. When using linear embeddings for HDBO, we assume there exists a low-dimensional
linear subspace that captures all of the variation of f . Specifically, let fd : Rd → R, d� D, and let
T ∈ Rd×D be a projection matrix from D down to d dimensions. The linear embedding assumption
is that f(x) = fd(Tx) ∀x ∈ RD. T is unknown, and we only have access to f , not fd. We assume
without loss of generality that the box bounds are B = [−1, 1]D; the ambient space can always be
scaled to these bounds.

2

Under review as a conference paper at ICLR 2020

REMBO: Bayesian optimization via random embedding REMBO (Wang et al., 2016) gener-
ates a random projection matrix A ∈ RD×de with each element drawn independently from N (0, 1)
to specify a de-dimensional embedding. BO is done in the embedding to identify a point y ∈ Rde

to be evaluated, which is given objective value f(Ay). The embedding dimension de should satisfy
de ≥ d for the REMBO guarantee of containing an optimum to hold.

The main challenges for using REMBO come when dealing with box bounds in the ambient space.
We may select a point y in the embedding to be evaluated and find that its projection to the ambient
space, Ay, falls outsideB. The first challenge this poses is a theoretical challenge: Rde is guaranteed
to contain an optimum, but that optimum is not guaranteed to project up to B. When function
evaluations are restricted to the box bounds, the embedding may not contain an optimum—it is not
difficult to construct examples of this. REMBO has no theoretical guarantees in this setting. The
second challenge posed by box bounds is the practical challenge of how function evaluations should
be done for points that project up outside B. Here REMBO introduces three heuristics. First, the
embedding is given box bounds [−

√
de,
√
de]

de . BO will only select points within those bounds to
be projected up and evaluated. Second, if a point y in the embedding projects up outside B, then it is
clipped to B. Let pB : RD → RD be the L2 projection that maps x to its nearest point in B. A point
y in the embedding is given objective value f(pB(Ay)), which can always be evaluated. Note that
clipping to B renders the projection of y to the ambient space a nonlinear transformation whenever
Ay /∈ B. Third, the optimization is done with k=4 separate projections, to improve the chances of
generating an embedding that contains an optimum inside [−

√
de,
√
de]

de . Since these embeddings
are independent, no data can be shared across them, which reduces sample efficiency.

Extensions of REMBO Binois et al. (2015) consider the issue of non-injectivity, where the L2

projection causes many points in the embedding to map to the same vertex of B. They define a
warped kernel that reduces non-injectivity, which is called REMBO-φkΨ. Binois et al. (2019) con-
sider the issue of setting bounds on the embedding. They define a projection matrix B ∈ Rd×D that
maps from the ambient space down to the embedding, and replace the L2 projection with a projec-
tion γ that maps y to the closest point in B that satisfies Bx = y. The γ projection resolves the core
challenge of REMBO related to setting bounds in the embedding: we can restrict the optimization
in the embedding to points for which ∃x ∈ B s.t. Bx = y, and so heuristic box bounds in the
embedding are no longer required. The γ projection projects to the same points on the facets of B as
the L2 projection. Paired with the warped kernel of Binois et al. (2015), this is called REMBO-γkΨ.

Binois (2015) studies different choices for the projection matrix and shows that BO performance
can be improved for small d by sampling each row of A from the unit hypersphere Sde−1. If
z ∼ N (0, Ide

), then z
||z|| is a random sample from Sde−1, so this amounts to normalizing the rows

of the usual REMBO projection matrix.

HeSBO (Nayebi et al., 2019) is a recent extension of REMBO that avoids clipping to B and heuristic
box bounds in the embedding by changing the projection matrix A. In de = 1, it is easy to see that
the projection matrix A = 1, which sets every xi = y, is optimal. With this projection we can set
bounds of [−1, 1] on the embedding and there is no need for L2 projections because every point in
the embedding will map to a point in B. HeSBO extends this to de > 1 by setting each row of A to
have a single non-zero element, which is randomly set to ±1. The column with the non-zero value
is chosen uniformly at random. Thus, each parameter in the ambient space is mapped directly to a
parameter in the embedding: xi = ±yj , where j is sampled uniformly from {1, . . . , de} and ± is
chosen uniformly at random. The embedding is given box bounds of [−1, 1]de .

4 CHALLENGES WITH LINEAR EMBEDDINGS

Heuristics for handling box bounds when utilizing linear embeddings introduce several issues that
impact HDBO performance. We highlight one recent observation from Binois et al. (2019), that most
points in the embedding project up outside the box bounds, and discuss three novel observations
about how existing methods can make it difficult to learn high-dimensional surrogates.

Projection to the facets of B produces a nonlinear distortion in the function. The function
value at any point in the embedding is measured as f(pB(Ay)). For points y that project up outside
of B, this will be a nonlinear mapping from the embedding to the ambient space, despite the use of a

3

Under review as a conference paper at ICLR 2020

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0
Branin function, d = 2

−1.4 −1.0 −0.5 0.0 0.5 1.0 1.4

−1.4

−1.0

−0.5

0.0

0.5

1.0

1.4

REMBO embedding, D = 100, de = 2

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0
Hartmann6 function, d = 6

−2 −1 0 1 2

−2

−1

0

1

2

REMBO embedding, D = 100, de = 6

Figure 1: A visualization of REMBO embeddings for two test functions. (Top left) The Branin
function, d=2, extended to D=100. (Top right) A REMBO embedding of the D=100 Branin func-
tion. (Bottom left) A center slice of the d=6 Hartmann6 function, similarly extended to D=100.
(Bottom right) The same slice of a REMBO embedding of that function. The embedding produces
distortions in the function that render it difficult to model.

linear embedding. This has a powerful, detrimental effect on the ability to model f in the embedding.
Fig. 1 provides visualizations of an actual REMBO embedding for two classic test functions: the
Branin (d=2) and Hartmann6 (d=6) functions, both extended to D=100 by adding unused variables.
The REMBO embedding for the Branin function contains all three optima, however there is visible
distortion to the function caused by the the clipping toB. The embedding for the Hartmann6 function
is even more heavily distorted.

Even if the function is well-modeled by a GP in the true low-dimensional space, the distortion pro-
duced by the REMBO projection transforms it into one on the embedding that is not appropriate for
a GP. This can happen for any embedding strategy that cannot guarantee all points in the embedding
project into B. The distortion induced by mapping to the facet depends on the relative angles of
the facet and the true embedding. Projection to a facet essentially induces a non-stationarity in the
kernel: each of the 2D facets sits at different angles to the true subspace, and so the change in the
rate of function variance will differ for each. To correct for the non-stationarity, we would have to
estimate the true subspace T , which with d×D entries is not feasible for D large.

The idea behind using low-dimensional embeddings for HDBO is that it enables the use of standard
BO techniques on the embedding. However, from these results we see that for the REMBO projec-
tion with box bounds we cannot expect to successfully model the function on the embedding with a
regular GP. The problem is especially acute for de > 2 where, as we will see next, nearly all points
in the embedding map to one of the 2D facets.

Most points in the embedding map to the facets of B. Fig. 2 shows the probability that an
interior point in the embedding projects up to the interior of B. This is measured empirically by
sampling y uniformly at random from [−

√
de,
√
de]

de , sampling A with N (0, 1) entries, and then
checking if Ay ∈ B (with 1000 samples). Even for small D, with de > 2 practically all of the
volume in the embedding projects up outside the box bounds, and is thus clipped to a facet of B.

This is an issue because it means the optimization will be done primarily on the facets of B and not
in the interior, which will likely not even be reached in a typical BO initialization. We saw in Fig. 1
that the function behaves very differently on points projected to the facets, and that these parts of

4

Under review as a conference paper at ICLR 2020

the space can be hard to model with a GP. The problem cannot be resolved by simply shrinking the
box bounds in the embedding. Binois et al. (2019) provide an excellent study of the issue of setting
bounds in the embedding and show that with the REMBO strategy there is no good way to do this.
The projection of B onto the embedding produces a star-shaped object called a zonotope, which has
up to 2

∑d−1
i=0

(
D−1

i

)
vertices (Ferrez et al., 2005). Shrinking box bounds in the embedding cuts off

the vertices of the zonotope and increases the chance of not containing an optimum.

1 2 3 4 5

Embedding dimension de

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

b
a
b
il
it

y
p
ro

je
ct

io
n

sa
ti

sfi
es

b
ox

b
o
u
n
d
s D = 20

D = 100

D = 1000

Figure 2: The probability that a randomly se-
lected point in the REMBO embedding satis-
fies the ambient box bounds after being pro-
jected up. For de > 2, nearly all points in the
embedding map outside the box bounds.

Linear projections do not preserve product ker-
nels. Although less visible than that produced by
the projection to the facets, there is also distortion
to interior points just from the linear projection A.
The ARD kernels typically used in GP modeling are
product kernels that decompose the covariance into
the covariance across each dimension. Inside the
embedding, moving along a single dimension will
move across all dimensions of the ambient space,
at rates depending on the projection matrix. Con-
sider moving along a single dimension in the em-
bedding, from y1 to y2 where only a single element
has changed. The corresponding points in the am-
bient space are x1 = Ay1 and x2 = Ay2: even
though y1 and y2 differ in only one element, x1 and
x2 will differ in all their elements. Thus a product
kernel in the true subspace will not produce a prod-
uct kernel in the embedding; this is shown mathe-
matically in Proposition 1.

Linear embeddings can have a low probability of containing an optimum. HeSBO avoids the
challenges of REMBO related to box bounds: all interior points in the embedding map to interior
points of B, and there is no need for the L2 projection and thus the ability to model in the embedding
is improved. However, for de > 1 there is no guarantee that the embedding will contain an optimum,
and in fact the probability of containing an optimum can be quite low. Consider the example of an
axis-aligned true subspace: f operates only on some set of d elements of x, which we denote
I = {i1, . . . , id}. For d = 2 and de ≥ 2, there are three possible embeddings: xi1 and xi2 map
to different features in the embedding, xi1 = xi2 , or xi1 = −xi2 . These three embeddings are
visualized in Appendix A.1. In the first case the embedding successfully captures the entire true
subspace and we can expect the optimization to be successful. However, in the other two cases
the embedding is only able to reach the diagonals of the true subspace, which, unless f happens to
have an optimum on the diagonal, will not reach the optimal value. Under a uniform prior on the
location of optima, we can compute analytically the probability that the HeSBO embedding contains
an optimum (see Appendix A.1). The probability is independent of D, but is low for even moderate
values of d. For instance, with d = 6, de = 20 gives only a 44% chance of recovering an optimum.

Relative to REMBO, HeSBO improves the ability to effectively model and optimize in the embed-
ding, but reduces the likelihood of the embedding containing an optimum. Empirically, this trade-off
leads to HeSBO having better BO performance than REMBO. Like HeSBO, here we wish to elimi-
nate the L2 projection and thus improve our ability to model and optimize in the embedding. We will
show that this can be done while maintaining a much higher chance of the embedding containing an
optimum, which will further improve BO performance.

5 LEARNING AND OPTIMIZING IN LINEAR EMBEDDINGS

We now show how to overcome the embedding issues described in Sec. 4. Similarly to Binois et al.
(2019), we define the embedding via a matrix B ∈ Rde×D that projects from the ambient space
down to the embedding, and fB(y) = f(B†y) as the function evaluated on the embedding, where
B† denotes the matrix pseudo-inverse. The new techniques we develop here are applicable to any
linear embedding, not just random embeddings.

5

Under review as a conference paper at ICLR 2020

5.1 A KERNEL FOR LEARNING IN A LINEAR EMBEDDING

As discussed in Sec. 4, a product kernel over dimensions of the true subspace (ARD) does not trans-
late to a product kernel over dimensions in the embedding. However, stationarity in the true subspace
does imply stationarity in the embedding, and this result gives the appropriate kernel structure.

Proposition 1. Suppose the function on the true subspace is drawn from a GP with an ARD RBF
kernel: fd ∼ GP(m(·), kRBF(·, ·)). For any pair of points in the embedding y and y′,

Cov[fB(y), fB(y′)] = σ2 exp
(
−(y − y′)>Γ(y − y′)

)
,

where σ2 is the kernel variance of fd, and Γ ∈ Rde×de is symmetric and positive definite.

Proof. To determine the covariance in function values of points in the embedding, we first project
up to the ambient space and then project down to the true subspace

fB(y) = f(B†y) = fd(TB†y) .

Then,

Cov[fB(y), fB(y′)] = Cov[fd(TB†y), fd(TB†y)]

= σ2 exp
(
−(TB†y − TB†y′)>D(TB†y − TB†y′)

)
,

where D = diag
([

1
2`21
, . . . , 1

2`2d

])
. Let Γ = (TB†)>D(TB†). Because D is positive definite, it

follows that Γ is symmetric and positive definite.

This kernel replaces the ARD Euclidean distance with a Mahalanobis distance, and so we refer to
it as the Mahalanobis kernel. Similar kernels have been used for GP regression in other settings
(Vivarelli & Williams, 1999; Snelson & Ghahramani, 2006). This result shows that the impact of
the linear projection on the kernel can be correctly handled by fitting a de(de+1)

2 -parameter distance
metric rather than the typical de-parameter ARD metric. The use of this kernel is vital for obtaining
good model fits in the embedding. Appendix A.2 shows GP predictive performance on a linear
embedding of the Hartmann6 function, in which an ARD RBF kernel entirely fails to predict, while
the Mahalanobis kernel does not. We handle uncertainty in Γ by posterior sampling from a Laplace
approximation of its posterior; this is described in the appendix.

5.2 AVOIDING NONLINEAR PROJECTIONS

The most significant distortions seen in Fig. 1 result from clipping projected points to B. We can
avoid this by constraining the optimization in the embedding to points that do not project up outside
the bounds, that is, B†y ∈ B. Let α(y) be the acquisition function evaluated in the embedding that
we wish to optimize. We select the next point to evaluate by solving

max
y∈Rde

α(y) subject to − 1 ≤ B†y ≤ 1 . (1)

Note that there are no box bounds on the embedding. The constraints −1 ≤ B†y ≤ 1 form
a polytope, which is convex and can be efficiently optimized over with off-the-shelf optimization
tools. Appendix A.3 provides visualizations of the embedding subject to these constraints. Within
this space, the projection is entirely linear and can be effectively modeled with the GP described in
Sec. 5.1.

5.3 THE PROBABILITY THE EMBEDDING CONTAINS AN OPTIMUM

Restricting the embedding with the constraints in (1) eliminates distortions from clipping to B, but
it also reduces the volume of the ambient space that can be reached from the embedding and thus
reduces the probability that the embedding contains an optimum. To understand the performance of
BO in the linear embedding, it is critical to understand this probability, which we denote Popt. Recall
that even with clipping, the REMBO theoretical result does not hold when function evaluations are
restricted to box bounds, and so even REMBO will generally have Popt < 1.

6

Under review as a conference paper at ICLR 2020

0 5 10 15 20

Embedding dimension de

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
em

b
ed

d
in

g
co

n
ta

in
s

o
p
ti

m
iz

er

d = 2

REMBO

HeSBO

Hypersphere

0 5 10 15 20

Embedding dimension de

d = 6

0 5 10 15 20

Embedding dimension de

d = 10

Figure 3: Probability the embedding contains an optimum (Popt) when restricted to the constraints
of (1), under a uniform prior for the location of the optima and D = 100, for three embedding
strategies. Setting de > d rapidly increases Popt, and high probabilities can achieved with reasonable
values of de. Hypersphere sampling produces the best embedding, particularly for d small.

Popt depends on where the optima are in the ambient space—for instance, an optimum at 0 will
always be contained in the embedding. Suppose the true subspace has an optimum at z∗. Then,
O(T , z∗) = {x : Tx = z∗} defines the set of optima in the ambient space. We wish to determine
if any of these optima can be reached from the embedding. The points x that can be reached from the
embedding are those for which there exists a y in the embedding that projects up to x, that is, B†y =
x. Since the embedding itself is produced from the projection Bx, E(B) = {x : B†Bx = x}
defines the set of points in ambient space that can be reached from the embedding. The embedding
contains an optimum if and only if the intersection O(T , z∗) ∩ E(B) ∩ B is non-empty. Given a
prior for the locations of optima (that is, over T and z∗), we can compute Popt as

Popt = EB,T ,z∗
[
1O(T ,z∗)∩E(B)∩B6=∅

]
. (2)

Importantly,O(T , z∗), E(B), and B are all polyhedra, so their intersection can be tested by solving
a linear program (see Appendix A.4). The expectation can be estimated with Monte Carlo sampling
from the prior over T and z∗ and from the chosen generating distribution of B.

For our analysis here, we give T a uniform prior over axis-aligned subspaces as described in Sec. 4,
and we give z∗ a uniform prior in that subspace. Under these uniform priors, we can evaluate (2) to
compute Popt as a function of B, D, d, and de. Fig. 3 shows these probabilities for D = 100 as a
function of d and de, for three strategies for generating the projection matrix: the REMBO strategy
of N (0, 1), the HeSBO projection matrix, and the unit hypersphere sampling described in Sec. 4.
Increasing de above d rapidly improves the probability of containing an optimum. For d = 6, with
de = 6 the probability is nearly 0, while increasing de to 12 is sufficient to raise it to 0.5 and with
de = 20 it is nearly 1. Across all values of d and de, hypersphere sampling produces the embedding
with the best chance of containing an optimum. Appendix A.4 shows Popt for more values of D and
d. By using hypersphere sampling and selecting de > d, we can maintain a high Popt while still
avoiding clipping to B.

5.4 A NEW METHOD FOR BO WITH LINEAR EMBEDDINGS: ALEBO

We combine the results and insight gained into a new method for HDBO, which we call adaptive
linear embedding BO (ALEBO), since the kernel metric and embedding bounds are adapted with
the choice of B. The approach is given in algorithm form in Algorithm 1. Code is available at
github.com/anonymized-for-review. In Line 1 the embedding is specified by generating
a random projection matrix. We use hypersphere sampling, which gave the best Popt in Fig. 3 among
strategies tried here, but this could be replaced with a different projection strategy should one be
more appropriate for a particular setting.

6 BENCHMARK EXPERIMENTS

We evaluate the performance of ALEBO on synthetic HDBO tasks, and compare its performance
to a broad selection of HDBO methods. We include in these benchmarks: REMBO and HeSBO;

7

github.com/anonymized-for-review

Under review as a conference paper at ICLR 2020

Algorithm 1: ALEBO method for high-dimensional BO in a linear embedding.
Data: D, de, ninit, nBO.
Result: Approximate optimizer x∗.

1 Generate a random projection matrix B by sampling D points from the hypersphere Sde−1.
2 Generate ninit random points yi in the embedding using rejection sampling to satisfy polytope (1).
3 Let D = {(yi, f(B†yi)}ninit

i=1 be the initial data.
4 for j = 1, . . . , nBO do
5 Fit a GP by maximizing marginal log-likelihood of D, with the Mahalanobis kernel.
6 Draw posterior samples of Γ using a Laplace approximation. Marginalize over the posterior

with moment matching.
7 Use the GP to find yj that maximizes the acquisition function according to (1).
8 Update D with (yj , f(B†yj))

9 return B†y∗, for the best point y∗.

REMBO variants φkΨ (Binois et al., 2015) and γkΨ (Binois et al., 2019); additive kernel methods
Add-GP-UCB (Kandasamy et al., 2015) and Ensemble BO (EBO) (Wang et al., 2018); SMAC,
which uses a random forest model; CMA-ES, an evolutionary strategy (Hansen et al., 2003); and
quasirandom search (Sobol). For ALEBO we took de = 2d for these experiments. In their evaluation
of HeSBO, Nayebi et al. (2019) used de = 2d when d = 2 but de = d on the Hartmann6 problem.
Our results in Fig. 3 indicate that with d = 6 HeSBO will have a much higher chance of reaching an
optimum with de = 2d, so we evaluate this alongside their original choice of de = d.

Fig. 4 shows optimization performance for three HDBO tasks: the Branin problem extended to
D=100 as described above; the Hartmann6 problem extended to D=1000; and the Gramacy prob-
lem extended to D=100. The Gramacy problem (Gramacy et al., 2016) includes two black-box con-
straints. The linear embedding methods (ALEBO, REMBO, and HeSBO) can naturally be extended
to constrained optimization as described in Appendix A.5. TheD=100 problems were repeated with
50 runs, and the D=1000 problem was repeated with 25 runs. Appendix A.6 provides additional de-
tails of the benchmark methods, additional experimental results (including plots of log regret and
error bars), and an extended analysis of the results.

For all problems, ALEBO had the best average optimization performance. Relative to other linear
embedding approaches, ALEBO also had low variance in the final best-value, which is important in
real applications where one can typically only run one optimization run. For the D=1000 problem,
REMBO-γkΨ, EBO, and Add-GP-UCB did not finish a single run after 24 hours and so were termi-
nated and not included in the results. These methods, along with SMAC and CMA-ES, also do not
support blackbox constraints and so were not included in the results for the Gramacy problem.

We used the Branin problem to explore the sensitivity of optimization performance to D and de,
by varying de from 2 to 8 and D from 50 to 1000. We found that de = d performed significantly
worse than larger values, but for de > d and across all values of D there was little change in the BO
performance. Figures with these results are in Appendix A.6.

7 POLICY SEARCH FOR ROBOT LOCOMOTION

Figure 5: The simulated
hexapod robot Daisy.

Next, we evaluate our approach on a hexapod robot simulation for learn-
ing walking controllers. Sample efficiency is crucial in robotics as col-
lecting data on real robots is time consuming and can cause wear-and-
tear on the robot. We optimize the walking gait of the simulated hexapod
robot “Daisy” (Hebi Robotics, 2019). The Daisy robot is simulated in
PyBullet (Coumans & McCutchan, 2008), and has 6 legs with 3 motors
in each leg, as shown in Fig. 5. The goal is to learn the policy parame-
ters that enable the robot to walk to a target location while avoiding high
joint velocities and height deviations. More details about this task can
be found in Appendix A.7.

8

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50

0

2

4

6

B
es

t
va

lu
e

fo
u
n
d

0

5

10

15

F
in

a
l

va
lu

e

0 50 100 150 200

−3

−2

−1

B
es

t
va

lu
e

fo
u
n
d

−3

−2

−1

F
in

a
l

va
lu

e

0 10 20 30 40 50

Function evaluations

0.6

0.7

0.8

0.9

1.0

B
es

t
va

lu
e

fo
u
n
d

Branin, d=2, D = 100

Hartmann6, d=6, D = 1000

Gramacy, d=2, D = 100

ALEBO

REMBO

Sobol

HeSBO, de=d

HeSBO, de=2d

REMBO-ΦkΨ

REMBO-γkΨ

EBO

Add-GP-UCB

SMAC

CMA-ES

A
L

E
B

O

R
E

M
B

O

H
e
S
B

O
,
d
e
=
d

H
e
S
B

O
,
d
e
=

2
d

R
E

M
B

O
-Φ
k

Ψ

R
E

M
B

O
-γ
k

Ψ

E
B

O

A
d
d
-G

P
-U

C
B

S
M

A
C

C
M

A
-E

S

S
o
b

o
l

0.6

0.8

1.0

1.2

1.4

F
in

a
l

va
lu

e

Figure 4: Optimization performance on three HDBO minimization problems. For each row, the
left plot shows the best value by each iteration, averaged over repeated runs. The right plot shows
the distribution of the best value at the final iteration. For all three tasks, ALEBO achieved the
best average performance, and had the lowest variance in final performance of the linear embedding
methods.

We use a Central Pattern Generator (CPG) (Crespi & Ijspeert, 2008) with D = 72 to control the
robot. The CPG controller induces a cyclical motion in each joint of the robot. Different param-
eters of the CPG change the phase, amplitude, frequency, and offset of each joint. While the 72-
dimensional controller assumes that each joint is independent of the others, one could construct a
lower-dimensional embedding by coupling multiple joints. For example, the tripod gait in hexapods
assumes three sets of legs synced, and out of phase with the remaining three legs. The dimension-
ality of the CPG controller can be reduced to 11 dimensions by restricting the movement to a tripod
gait, and learning the common amplitude, offset and frequency of the joints. The existence of such

9

Under review as a conference paper at ICLR 2020

0 100 200 300 400 500

Function evaluations

−60

−40

−20

0

20
B

es
t

va
lu

e
fo

u
n
d

ALEBO REMBO HeSBO Sobol

ALEBO REMBO HeSBO Sobol

−40

−20

0

20

V
a
lu

e
a
t

fi
n
a
l

it
er

a
ti

o
n

Figure 6: Optimization performance on the D = 72 hexapod locomotion task (higher is better).
(Left) Mean and two standard errors (over 50 repeated runs) of the best value found by each iteration.
(Right) Distribution of the best value found across repeated runs. ALEBO had the best average
performance, and the lowest variance.

low-dimensional parameterizations motivates the use of ALEBO for learning the parameters of the
CPG controller, although it is not known if there is a linear low-dimensional representation. In a
real robot, each motor can have different physical properties, such as friction, damping, etc. This
could make a pre-defined constrained space sub-optimal, and we could benefit from learning with a
flexible embedding, as in ALEBO.

Fig. 6 shows optimization performance for the linear embedding methods on this task, which is a
maximization problem. ALEBO improves on the state-of-the-art, with both higher mean perfor-
mance and a lower variance (thus, a lower chance of poor performance). Expert tuning can achieve
reward values above 40, so while ALEBO is an advance in terms of linear embedding BO, there is
still much room for additional work in high-dimensional BO.

8 DISCUSSION

Our work highlights the importance of two basic requirements for an embedding to be useful for
optimization that are often not examined critically by the literature: 1) the function must be well-
modeled on the embedding; and 2) the embedding should contain an optimum. To the first point, we
showed how polytope constraints on the embedding eliminate boundary distortions, and we derived
a Mahalanobis kernel appropriate for GP modeling in a linear embedding. These two contributions
allow effective modeling in the embedding space. To the second point, we developed an approach
for computing the probability that the embedding contains an optimum, which we then used to
construct embeddings with a higher chance of containing an optimum, via hypersphere sampling
and selecting de larger than d.

These same two considerations are important for any embedding, not just linear. For instance, when
constructing a VAE for BO it will be equally important to ensure the function remains well-modeled
on the embedding and that box bounds are not handled in a way that adds distortion. We must
also ensure that the VAE embedding captures enough of the ambient space to have a high chance
of containing an optimum. With linear embeddings we were able to derive analytical quantities for
answering these questions—more work in this area is needed for nonlinear embeddings. Here we
applied linear constraints to restrict the acquisition function optimization to points that project up
inside the ambient box bounds. For a VAE these constraints will be general nonlinear functions, but
their gradients can be backpropped and so constrained optimization could be done in a similar way.

Given D and d, we can solve (2) to determine the probability of containing an optimum for any de,
and thus select de based on a desired target probability. We showed on test problems that BO per-
formance was not too sensitive to the exact choice of de. In reality, such as in the robot locomotion
task, we do not know d, or even if the problem has low-dimensional linear structure. In this case
selecting an appropriate embedding dimension remains an important open question.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Rika Antonova, Akshara Rai, and Christopher G Atkeson. Deep kernels for optimizing locomotion
controllers. In 1st Conference on Robot Learning, CoRL, pp. 47–56, 2017.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: Programmable Bayesian optimization in
PyTorch. arXiv preprint arXiv:1910.06403, 2019.

Mickaël Binois. Uncertainty quantification on Pareto fronts and high-dimensional strategies in
Bayesian optimization, with applications in multi-objective automotive design. PhD thesis, Ecole
Nationale Supérieure des Mines de Saint-Etienne, 2015.

Mickaël Binois, David Ginsbourger, and Olivier Roustant. A warped kernel improving robustness in
Bayesian optimization via random embeddings. In Proceedings of the International Conference
on Learning and Intelligent Optimization, LION, pp. 281–286, 2015.

Mickaël Binois, David Ginsbourger, and Olivier Roustant. On the choice of the low-dimensional
domain for global optimization via random embeddings. Journal of Global Optimization, 2019.

Roberto Calandra, André Seyfarth, Jan Peters, and Marc P. Deisenroth. Bayesian optimization for
learning gaits under uncertainty. Annals of Mathematics and Artificial Intelligence, 76(1):5–23,
2015.

Paul G. Constantine, Eric Dow, and Qiqi Wang. Active subspace methods in theory and practice:
applications to Kriging surfaces. SIAM Journal on Scientific Computing, 36:A1500–A1524, 2014.

Erwin Coumans and John McCutchan. Pybullet simulator. https://github.com/
bulletphysics/bullet3, 2008. Accessed: 2019-09.

Alessandro Crespi and Auke Jan Ijspeert. Online optimization of swimming and crawling in an
amphibious snake robot. IEEE Transactions on Robotics, 24(1):75–87, 2008.

Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional Gaussian process bandits.
In Advances in Neural Information Processing Systems 26, NIPS, pp. 1025–1033, 2013.

David Eriksson, Kun Dong, Eric Hans Lee, David Bindel, and Andrew Gordon Wilson. Scaling
Gaussian process regression with derivatives. In Advances in Neural Information Processing
Systems 31, NIPS, pp. 6867–6877, 2018.

Jean-Albert Ferrez, Kornei Fukuda, and Th. M. Liebling. Solving the fixed rank convex quadratic
maximization in binary variables by a parallel zonotope construction algorithm. European Journal
of Operational Research, 166(1):35–50, 2005.

Jacob Gardner, Chuan Guo, Kilian Q. Weinberger, Roman Garnett, and Roger Grosse. Discovering
and exploiting additive structure for Bayesian optimization. In Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS, pp. 1311–1319, 2017.

Jacob R. Gardner, Matt J. Kusner, Zhixiang Xu, Kilian Q. Weinberger, and John P. Cunningham.
Bayesian optimization with inequality constraints. In Proceedings of the 31st International Con-
ference on Machine Learning, ICML, 2014.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS Central Science, 4(2):268–276, 2018.

Robert B. Gramacy, Genetha A. Gray, Sébastien Le Digabel, Herbert K. H. Lee, Pritam Ranjan,
Garth Wells, and Stefan M. Wild. Modeling an augmented Lagrangian for blackbox constrained
optimization. Technometrics, 58(1):1–11, 2016.

Nikolaus Hansen, Sibylle D. Mller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary
Computation, 11(1):1–18, 2003.

11

https://github.com/bulletphysics/bullet3
https://github.com/bulletphysics/bullet3

Under review as a conference paper at ICLR 2020

Hebi Robotics. Daisy hexapod, 2019. URL https://www.hebirobotics.com/
robotic-kits.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, LION, pp. 507–523, 2011.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26(189–206):1, 1984.

Donald R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal
of Global Optimization, 21(4):345–383, 2001.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13:455–492, 1998.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional Bayesian optimi-
sation and bandits via additive models. In Proceedings of the 32nd International Conference on
Machine Learning, ICML, pp. 295–304, 2015.

Johannes Kirschner, Mojmı́r Mutný, Nicole Hiller, Rasmus Ischebeck, and Andreas Krause. Adap-
tive and safe bayesian optimization in high dimensions via one-dimensional subspaces. In Pro-
ceedings of the 36th International Conference on Machine Learning, ICML, 2019.

Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained Bayesian opti-
mization with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.

Chun-Liang Li, Kirthevasan Kandasamy, Barnabás Póczos, and Jeff Schneider. High dimensional
Bayesian optimization via restricted projection pursuit models. In Proceedings of the 19th Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS, pp. 884–892, 2016.

Daniel J. Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. Automatic gait optimization
with Gaussian process regression. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence, IJCAI, pp. 944–949, 2007.

Xiaoyu Lu, Javier González, Zhenwen Dai, and Neil Lawrence. Structured variationally auto-
encoded optimization. In Proceedings of the 35th International Conference on Machine Learning,
ICML, pp. 3267–3275, 2018.

Jonas Mockus. Bayesian approach to global optimization: theory and applications. Mathematics
and its Applications: Soviet Series. Kluwer Academic, 1989.

Riccardo Moriconi, K. S. Sesh Kumar, and Marc P. Deisenroth. High-dimensional Bayesian opti-
mization with manifold Gaussian processes. arXiv preprint arXiv:1902.10675, 2019.

Mojmı́r Mutný and Andreas Krause. Efficient high dimensional Bayesian optimization with addi-
tivity and quadrature Fourier features. In Advances in Neural Information Processing Systems 31,
NIPS, pp. 9005–9016, 2018.

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian optimiza-
tion in embedded subspaces. In Proceedings of the 36th International Conference on Machine
Learning, ICML, pp. 4752–4761, 2019.

ChangYong Oh, Efstratios Gavves, and Max Welling. BOCK : Bayesian optimization with cylindri-
cal kernels. In Proceedings of the 35th International Conference on Machine Learning, ICML,
pp. 3868–3877, 2018.

Hong Qian, Yi-Qi. Hu, and Yang Yu. Derivative-free optimization of high-dimensional non-convex
functions by sequential random embeddings. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence, IJCAI, 2016.

Akshara Rai, Rika Antonova, Seungmoon Song, William Martin, Hartmut Geyer, and Christo-
pher G. Atkeson. Bayesian optimization using domain knowledge on the ATRIAS biped. In
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA, pp. 1771–
1778, 2018.

12

https://www.hebirobotics.com/robotic-kits
https://www.hebirobotics.com/robotic-kits

Under review as a conference paper at ICLR 2020

Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional Bayesian
optimization via additive models with overlapping groups. In Proceedings of the 21st Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS, pp. 298–307, 2018.

Edward Snelson and Zoubin Ghahramani. Variable noise and dimensionality reduction for sparse
Gaussian processes. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelli-
gence, UAI, pp. 461–468, 2006.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems 25, NIPS, pp. 2951–
2959, 2012.

Francesco Vivarelli and Christopher K. I. Williams. Discovering hidden features with Gaussian
processes regression. In Advances in Neural Information Processing Systems 11, pp. 613–619,
1999.

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional Bayesian
optimization via structural kernel learning. In Proceedings of the 34th International Conference
on Machine Learning, ICML, pp. 3656–3664, 2017.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale Bayesian
optimization in high-dimensional spaces. In Proceedings of the 21st International Conference on
Artificial Intelligence and Statistics, AISTATS, 2018.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas. Bayesian op-
timization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361–387, 2016.

13

Under review as a conference paper at ICLR 2020

A APPENDIX

This appendix contains a number of additional results and analyses to supplement the main text.

A.1 HESBO EMBEDDINGS

We consider HeSBO embeddings in the case of a random axis-aligned true subspace, and a uniform
prior on the location of the optimum within that subspace. As explained in Sec. 4, with d = 2
and this prior, regardless of de or D there are three possible embeddings: (1) each of the active
parameters are captured by a parameter in the embedding; (2) the embedding is constrained to the
diagonal xi1 = xi2 ; or (3) the embedding is constrained to the diagonal xi1 = −xi2 . Fig. 7 shows
these three embeddings for the Branin problem from the top row of Fig. 1.

Within the first embedding, the optimal value of 0.398 can be reached. Within the second, the best
value is 0.925 and within the third it is 17.18. Under a uniform prior on the location of the optimum
within a random axis-aligned true subspace, it is easy to compute the probability that the HeSBO
embedding contains an optimum:

Popt(de) =
de!

(de − d)!dde
. (3)

For d = 2, this is exactly the probability of the first embedding shown in Fig. 7. This probability
increases with de, and is exactly the probability shown in Fig. 3.

A.2 THE MAHALANOBIS KERNEL

When fitting the Mahalanobis kernel derived in Proposition 1, we use an approximate Bayesian
treatment of Γ to improve model performance while still maintaining tractability. We propagate
uncertainty in Γ into the GP posterior by first constructing a posterior for Γ using a Laplace approx-
imation with a diagonal Hessian, and then drawing m samples from that posterior. The marginal
posterior for f(y) can then be approximated as:

p(f(y)) ≈ 1

m

m∑
i=1

p(f(y)|Γi).

Because of the GP prior, each conditional posterior p(f(y)|Γi) is a normal distribution with known
mean µi and variance σ2

i . Thus the posterior p(f(y)) is a mixture of Gaussians, which we can
approximate using moment matching:

p(f(y)) ≈ N

(
1

m

m∑
i=1

µi,
1

m

m∑
i=1

σ2
i + Vari[µi]

)
.

−1.0 −0.5 0.0 0.5 1.0

x1

−1.0

−0.5

0.0

0.5

1.0

x
2

−1.0 −0.5 0.0 0.5 1.0

x1

−1.0 −0.5 0.0 0.5 1.0

x1

Figure 7: Three possible HeSBO embeddings of the d = 2 Branin function. (Left) The first em-
bedding fully captures the function, and thus captures all three optima. (Middle) The second is
restricted to the subspace x1 = −x2. This subspace does not contain an optimum, but comes fairly
close. (Right) The third embedding is restricted to the subspace x1 = x2 and does not come close
to any optima.

14

Under review as a conference paper at ICLR 2020

−2 −1 0

True value

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

M
o
d
el

p
re

d
ic

ti
o
n

ARD RBF

−2 −1 0

True value

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Mahalanobis
point estimate

−3 −2 −1 0 1

True value

−3

−2

−1

0

1

Mahalanobis
posterior sampled

Figure 8: Test-set model predictions for three GP kernels on the same train/test data generated by
evaluating the Hartmann6 D=100 function on a fixed linear embedding. A typical ARD kernel fails
to learn and predicts the mean. The Mahalanobis kernel predicts well, and posterior sampling is
important for getting reasonable predictive variance.

50 75 100 125 150 175 200

Training set size

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

A
v
er

a
g
e

te
st

-s
et

lo
g

li
k
el

ih
o
o
d

Mahalanobis, sampled

ARD RBF

Figure 9: Average test-set log likelihood as a function of training set size, for training sets randomly
sampled from a fixed linear embedding. Log marginal probabilities were averaged over a fixed test
set of 1000 random points. For each training set size, 20 random training sets were drawn of that size
and the figure shows the average result over those draws (with error bars for two standard errors).
The ARD RBF kernel continues to predict the mean as the training set size is increased, while the
Mahalanobis kernel is able to learn as the training set is expanded.

We do this to maintain a Gaussian posterior, under which acquisition functions like EI have analytic
form and can easily be optimized, even subject to constraints as in (1).

We show the importance of the Mahalanobis kernel using models fit to data from the Hartmann6
D=100 function, from Fig. 1. We generated a projection matrix B using hypersphere sampling
to define a 6-d linear embedding. We then generated a training set (100 points) and a test set (50
points) within that embedding (that is, within the polytope given by (1)) using rejection sampling.
We fit three GP models with different kernels to the training set, and then evaluated each on the test
set: a typical ARD RBF kernel in 6 dimensions, the Mahalanobis kernel using a point estimate for
Γ, and the Mahalanobis kernel with posterior marginalization for Γ as described above.

Fig. 8 compares model predictions for each of these models with the actual test-set outcomes. With
an ARD RBF kernel, the GP predicts the function mean everywhere, which is typical behavior of a
GP that has failed to learn the function. With the same training data, the Mahalanobis kernel is able
to make accurate predictions on the test set. Using a point estimate for Γ significantly underestimates
the predictive variance, which is rectified by using posterior sampling as described above. In BO
exploration is driven by model uncertainty, so well-calibrated uncertainty intervals are especially
important.

15

Under review as a conference paper at ICLR 2020

−40 −20 0 20 40

x1

−20

0

20

x
2

−50 −25 0 25 50

x1

−40

−20

0

20

40

x
2

Figure 10: (Left) An embedding from a N (0, 1) projection matrix on the same Branin D = 100
problem from Fig. 1 subject to constraints of (1). (Right) The embedding from the same projection
matrix after normalizing the columns to produce unit circle samples. Sampling from the unit circle
increases the probability that an optimum will fall within the embedding, and polytope bounds avoid
nonlinear distortions.

Fig. 9 evaluates the predictive log marginal probabilities for the ARD RBF kernel and the Maha-
lanobis kernel with posterior sampling across a wide range of training sets with different sizes (with-
out posterior sampling, Fig. 8 shows that the Mahalanobis point estimate significantly under covers
and so has very poor predictive log marginal probabilities). We used the same linear embedding
and Hartmann6 D=100 function used in Fig. 8 to sample 1000 test points which were held fixed.
For each of 8 training set sizes ranging from 40 to 200, we randomly sampled 20 training sets from
the embedding. For each training set, we fit the two GPs, made predictions on the 1000 test points,
and then computed the average marginal log probability of the true values. Fig. 9 shows that as we
vary the training set size from 40 to 200, the ARD RBF kernel continues to predict the mean, as in
Fig. 8; even 200 points in the 6-d embedding are not sufficient to learn. For small training set sizes,
the Mahalanobis kernel (with sampling) has high variance in log likelihood, as it has the potential
to overfit and thus under cover. But for training set sizes of 50 and greater it had better predictive
log likelihood than the ARD RBF, and continued to learn as the training set size was increased. For
small datasets, the Mahalanobis kernel can overfit and thus have poor predictive likelihood, but for
the purposes of BO, overfitting can be better than not fitting at all (predicting the mean), even when
predicting the mean has better predictive log likelihood. This can be seen in the optimization results
(Figs. 4 and 12) where ALEBO shows strong performance even with less than 50 iterations.

A.3 POLYTOPE BOUNDS ON THE EMBEDDING

Rather than using projections to the box bounds B, we specify polytope constraints in (1). Fig. 10
illustrates the embedding with these constraints for the same Branin D = 100 problem from the top
row of Fig. 1. The embedding in the left figure was created with the REMBO strategy of sampling
each entry from N (0, 1). For the embedding in the right figure, that same projection matrix had
each column normalized. This converts the projection matrix to be a sample from the unit circle, as
described in Sec. 4.

The N (0, 1) embedding does not contain any optima within the polytope bounds. Converting that
projection matrix to a hypersphere sample rounds out the vertices of the polytope and expands the
space to capture two of the optima. Consistent with Fig. 3, we see that hypersphere sampling
significantly improves the chances of the embedding containing an optimum. Fig. 10 also shows
that with the polytope bounds, we avoid the nonlinear distortions seen in Fig. 1.

A.4 EVALUATING THE PROBABILITY THE EMBEDDING CONTAINS AN OPTIMUM

As in other parts of the paper, we consider a uniform prior on the location of the optimum within
a random axis-aligned subspace. A random true projection matrix T is sampled by selecting d
columns at random and setting each to one of the d-dimensional unit vectors. z∗ is then sampled
uniformly at random from [−1, 1]d. B is sampled according to the desired strategy, which in our
experiments was REMBO, HeSBO, or hypersphere. Given these three quantities, we can evaluate
whether or not B contains an optimum subject to the constraints of (1) by solving the following

16

Under review as a conference paper at ICLR 2020

2 6 10 14 18

Embedding de

2

6

10

14

18

T
ru

e
su

b
sp

a
ce

d
im

en
si

o
n
d

D = 50

2 6 10 14 18

Embedding de

D = 100

2 6 10 14 18

Embedding de

D = 200

0.00

0.25

0.50

0.75

1.00

Figure 11: Popt for hypersphere sampling, as estimated in Fig. 3 but here for a wider range of values
of d and D. Contour color indicates Popt. Doubling D decreases Popt for d and de fixed, however
even at D = 200, high values of Popt with reasonable values of de can be had for many values of d.

linear program:

maximize 0>x

subject to Tx = z∗,

(B†B − I)x = 0,

x ≥ −1,

x ≤ 1.

If this problem is feasible, then the embedding produced by B contains an optimum. If it is infea-
sible, then it does not. Solving this over many draws of T , z∗, and B produces an estimate of Popt
under that prior for the location of optima. Here we used a uniform prior, but this linear program
can be taken to compute Popt under any prior.

Fig. 11 shows Popt for a wide range of values of d and D, for hypersphere sampling. Across this
wide range we see that for many values of d we can achieve high values of Popt with reasonable
values of de, even for relatively high values of D.

A.5 HANDLING BLACK-BOX CONSTRAINTS IN HIGH-DIMENSIONAL BAYESIAN
OPTIMIZATION

In many applications of BO, in addition to the black-box objective f there are black-box constraints
cj and we seek to solve the optimization problem

minimize f(x)
subject to cj(x) ≤ 0, j = 1, . . . , J,

x ∈ B.

In most settings the constraint functions cj are evaluated simultaneously with the objective f . Con-
straints are typically handled in BO by fitting a separate GP to each outcome (that is, to f and to
each cj). The acquisition function is then modified to consider not only the objective value but also
whether the constraints are likely to be satisfied (e.g., Gardner et al., 2014).

The extension of BO in an embedding to constrained BO is straightforward, so long as the same
embedding is used for every outcome. A separate GP (in our case, using the Mahalanobis kernel) is
fit to data from each outcome. Because the embedding is shared, predictions can be made for all of
the outcomes at any point in the embedding. This allows us to evaluate and optimize an acquisition
function for constrained BO in the embedding. Once a point is selected, it is projected up to the
ambient space and evaluated on f and each cj as usual. Random projections are especially well-
suited for constrained BO because there is no harm in requiring the same projection for all outcomes,
since it is a random projection anyway.

17

Under review as a conference paper at ICLR 2020

A.6 ADDITIONAL EXPERIMENTAL RESULTS

Here we provide results from an additional problem (Hartmann6 D=100), three additional methods
(LineBO variants), and provide a study of the sensitivity of ALEBO performance to de and D. We
also provide implementation details for the experiments.

A.6.1 METHOD IMPLEMENTATIONS AND EXPERIMENT SETUP

The linear embedding methods (REMBO, HeSBO, and ALEBO) were all implemented using
BoTorch, a framework for BO in PyTorch (Balandat et al., 2019), and so used the same acquisi-
tion functions and the same tooling for optimizing the acquisition function. EI was the acquisition
function for the Hartmann6 and Branin benchmarks, and NEI (Letham et al., 2019) was used to
handle the constraints in the Gramacy problem. ALEBO and HeSBO were given a quasirandom ini-
tialization of 10 points from a scrambled Sobol sequence. REMBO was given a Sobol initialization
of 2 points for each of its 4 projections used within a run.

The remaining methods used reference implementations from their authors with default settings for
the package: REMBO-φkΨ and REMBO-γkΨ

1; EBO2; Add-GP-UCB 3; SMAC4; CMA-ES5; and
CoordinateLineBO, RandomLineBO, and DescentLineBO6. EBO requires an estimate of the best
function value, and for each problem was given the true best function value. SMAC and CMA-ES
require an initial point, and were given the point at the center of the ambient space box bounds.

The function evaluations for all problems were noiseless, so the stochasticity throughout the run
and in the final value all comes from stochasticity in the methods themselves. For linear embedding
methods the main sources of stochasticity are in generating the random projection matrix and in the
quasirandom initialization.

A.6.2 ANALYSIS OF EXPERIMENTAL RESULTS

Fig. 12 provides a different view of the benchmark results of Fig. 4, showing log regret for each
method, averaged over runs with error bars indicating two standard errors of the mean. This is
evaluated by measuring the difference between the best point found so far, subtracting from that the
optimal value for the problem, and then taking the log of that difference. The results are consistent
with those seen in Fig. 4, and the standard errors show that ALEBO’s improvement in average
performance over the other methods is statistically significant. We now discuss some specific aspects
of these experimental results.

Branin D=100 The additive kernel methods and SMAC all performed similarly on this problem,
and, starting from around iteration 20, ALEBO performed the best. The distribution of final itera-
tion values shows that in one iteration the ALEBO embedding did not contain an optimum and so
achieved a final value near 10. However, across all 50 runs nearly all achieved a value very close to
the optimum, leading to the best average performance.

The poor performance of HeSBO on this problem (particularly in Fig. 4 without the log, where
it is outperformed by all methods other than Sobol) can be attributed entirely to the embedding
not containing an optimum. Recall that for this problem there are exactly three possible HeSBO
embeddings, which are shown in Fig. 7. As explained in Appendix A.1, the first embedding contains
the optimum of 0.398, while the best value in the other embeddings are 0.925 and 17.18. Thus, if
the BO were able to find the true optimum within each embedding with the budget of 50 function
evaluations given in this experiment, the expected best value found by HeSBO would be:

0.398Popt + 0.925

(
1− Popt

2

)
+ 17.18

(
1− Popt

2

)
.

1github.com/mbinois/RRembo
2github.com/zi-w/Ensemble-Bayesian-Optimization
3github.com/dragonfly/dragonfly, with option acq="add ucb"
4github.com/automl/SMAC3, SMAC4AC mode
5github.com/CMA-ES/pycma
6github.com/jkirschner42/LineBO

18

github.com/mbinois/RRembo
github.com/zi-w/Ensemble-Bayesian-Optimization
github.com/dragonfly/dragonfly
github.com/automl/SMAC3
github.com/CMA-ES/pycma
github.com/jkirschner42/LineBO

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50

−6

−4

−2

0

2

L
o
g

re
g
re

t

Branin, d=2, D=100

0 10 20 30 40 50

−6

−4

−2

L
o
g

re
g
re

t

Gramacy, d=2, D = 100

0 25 50 75 100 125 150 175 200

−2

−1

0

1

L
o
g

re
g
re

t

Hartmann6, d=6, D=1000

0 25 50 75 100 125 150 175 200

Function evaluations

−4

−2

0

L
o
g

re
g
re

t

Hartmann6, d=6, D=100

ALEBO

REMBO

HeSBO, de=d

HeSBO, de=2d

REMBO-ΦkΨ

REMBO-γkΨ

EBO

Add-GP-UCB

SMAC

CMA-ES

Sobol

CoordinateLineBO

RandomLineBO

DescentLineBO

Figure 12: Log regret for the benchmark experiments of Fig. 4, plus Hartmann6 D=100. Each trace
is the mean over repeated runs, with errors bars showing two standard errors of the mean. On the
first three problems ALEBO performs significantly better than the other methods, and on Hartmann6
D=100 it is tied with REMBO-γkΨ as the best methods.

This is the best average performance one can hope to achieve using the HeSBO embedding on
this problem. Using (3) we can compute Popt for de = 4 as 0.75, and it follows that the HeSBO
expected best value is 2.56. This is nearly exactly the average best-value shown in Fig. 4. The
poor performance of HeSBO is thus not related to BO, but comes entirely from the 12.5% chance of
generating an embedding whose optimal value is 17.18. The presence of these embeddings can be
clearly seen in the distribution of final best values in Fig. 4.

Hartmann6 D=1000 As noted in the main text, the additive kernel methods and REMBO-γkΨ

could not scale up to the 1000 dimensional problem. A nice property of linear embedding ap-
proaches is that the running time is not significantly impacted by the ambient dimensionality. Table

19

Under review as a conference paper at ICLR 2020

Table 1: Average running time per iteration in seconds on the Hartmann6 problem, D=100 and
D=1000.

D=100 D=1000
ALEBO 29.5 32.6
REMBO 1.3 1.4
HeSBO, de=d 1.0 1.6
HeSBO, de=2d 1.0 1.4
REMBO-φkΨ 2.1 1.1
REMBO-γkΨ 7.2 —
EBO 27.3 —
Add-GP-UCB 695.2 —
SMAC 9.5 404.5
CMA-ES 0.0 0.0
Sobol 0.0 0.0

1 gives the average running time per iteration for the various benchmark methods. Inferring the
additional parameters in the Mahalanobis kernel and the added linear constraints make ALEBO
slower than other linear embedding methods, but it has similar running time as EBO and is an order
of magnitude faster than Add-GP-UCB, and at D=1000 is even an order of magnitude faster than
SMAC. The average of 30s per iteration is short relative to the function evaluation time of typical
resource-intensive BO applications.

Hartmann6 D=100 REMBO performed worse than Sobol on this problem, despite there being
a true linear subspace that satisfies the REMBO assumptions. The source of the poor performance
is the poor representation of the function on the embedding illustrated in Fig. 1. The remaining
methods all performed better than quasirandom. CMA-ES was competitive with all of the methods
except SMAC, REMBO-γkΨ, and ALEBO, which is somewhat surprising since it is not designed
to have the same degree of sample efficiency as BO methods. HeSBO and Add-GP-UCB both did
very well early on, but then got stuck and did not progress significantly after about iteration 50.

This problem was used to test three additional methods beyond those in Fig. 4: CoordinateLineBO,
RandomLineBO, and DescentLineBO (Kirschner et al., 2019). These are recent methods developed
for high-dimensional safe BO, in which one must optimize subject to safety constraints that certain
bounds on the functions must not be violated. The performance of these methods can be seen
in the bottom panel of Fig. 12: all three LineBO variants perform much worse than Sobol, and
show almost no reduction of log regret. This finding is consistent with the results of Kirschner et al.
(2019), who used the Hartmann6D=20 problem as a benchmark problem. AtD=20, they found that
CoordinateLineBO required about 400 iterations to outperform random search, and even after 1200
iterations RandomLineBO and DescentLineBO did not perform better than random search. These
methods are designed specifically for safe BO, which is a significantly harder problem than usual BO
that has much worse scaling with dimensionality. The primary challenge for high-dimensional safe
BO lies in optimizing the acquisition function, which is difficult even for relatively small numbers
of parameters where there is no difficulty in optimizing the traditional BO acquisition function. The
LineBO methods develop new techniques for acquisition function optimization, but do not consider
difficulties with GP modeling in high dimensions, which is the main focus of HDBO work. LineBO
methods perform very well on safe BO problems relative to other methods, but ultimately non-safe
HDBO is not the problem that they were developed for, and so it is not surprising to see that they
were not successful on this task.

A.6.3 SENSITIVITY OF ALEBO TO EMBEDDING AND AMBIENT DIMENSIONS

We study sensitivity of ALEBO optimization performance to the embedding dimension de and the
ambient dimension D using the Branin function. To test dependence on de, for D = 100 we ran 50
optimization runs for each of de ∈ {2, 3, 4, 5, 6, 7, 8}. To test dependence on D, for de = 4 we ran
50 optimization runs for each of D ∈ {50, 100, 200, 500, 1000}. Note that the de = 4 and D = 100
case in each of these is exactly the optimization problem of Fig. 4.

20

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50

Function evaluations

0

2

4

6
B

es
t

va
lu

e
fo

u
n
d

Branin, D = 100

de = 2

de = 3

de = 4

de = 6

de = 8

0 10 20 30 40 50

Function evaluations

Branin, de = 4

D = 50

D = 100

D = 200

D = 500

D = 1000

Figure 13: ALEBO performance on the Branin problem, (Left) as a function of embedding dimen-
sion de and (Right) as a function of ambient dimension D. Performance shown is the average of 50
repeated runs. Optimization performance is poor with de = 2, but shows little sensitivity to de for
values greater than 2. Optimization performance shows little sensitivity with D, all the way up to
D = 1000.

2 3 4 5 6 7 8

Embedding dimension de

0.5

1.0

1.5

2.0

2.5

B
es

t
va

lu
e

fo
u
n
d

Branin, D = 100

50 200 500 1000

Ambient dimension D

Branin, de = 4

Figure 14: Final best value for the Branin problem optimizations Fig. 13, as mean with error bars
showing two standard errors. With the exception of de = 2, optimization performance was good
across a wide range of values of de and D.

The results of the optimizations are shown in Figs. 13 and 14. For de = d, optimization performance
was poor. From Fig. 3 we know this is because there is a low probability of the embedding contain-
ing an optimizer. Increasing de increases that probability, but also increases the dimensionality of
the embedding and thus reduces the sample efficiency of the BO in the embedding. This trade-off
can be seen clearly in the figure: with de = 2 there is rapid improvement that then flattens out
because of the lack of good solutions in the embedding, whereas for de = 8 the initial iterations are
worse but then it ultimately is able to find much better solutions. Even at de = 8 the average best
final value was better than that of any of the comparison methods in Fig. 4.

The ambient dimension D will not directly impact the GP modeling in ALEBO, which depends
only on de, however it will impact the probability the embedding contains an optimum as shown in
Fig. 11. Consistent with the strong ALEBO performance for the Hartmann6 D=1000 problem, we
see here that even increasing D to 1000 produces only a small degradation in optimization perfor-
mance. Even at D = 1000, ALEBO had better performance than the other benchmark methods had
on D = 100.

A.7 LOCOMOTION BENCHMARK PROBLEM

The task for the final set of experiments was to learn a gait policy for a simulated robot. As a
controller, we use the Central Pattern Generator (CPG) from Crespi & Ijspeert (2008). The goal in

21

Under review as a conference paper at ICLR 2020

this task is for the robot to walk to a target location in a given amount of time, while reducing joint
velocities, and average deviation from a desired height

f(p) = C − ||xfinal − xgoal|| −
T∑

t=0

(w1||q̇t|| − w2|hrobot,t − htarget|) , (4)

where C = 10, w1 = 0.005, and w2 = 0.01 are constants. xfinal is the location of the robot on a
plane at the end of the episode, xgoal is the target location, q̇t are the joint velocities at time t during
the trajectory, hrobot,t is the height of the robot at time t, and htarget is a target height. T = 3000 is
the total length of the trajectory, leading to 30s of experiment. Cost is evaluated at the end of the
trajectory.

22

	Introduction
	Related Work
	Problem Framework and REMBO
	Challenges with Linear Embeddings
	Learning and Optimizing in Linear Embeddings
	A Kernel for Learning in a Linear Embedding
	Avoiding Nonlinear Projections
	The Probability the Embedding Contains an Optimum
	A New Method for BO with Linear Embeddings: ALEBO

	Benchmark Experiments
	Policy Search for Robot Locomotion
	Discussion
	Appendix
	HeSBO Embeddings
	The Mahalanobis Kernel
	Polytope Bounds on the Embedding
	Evaluating the Probability the Embedding Contains an Optimum
	Handling Black-Box Constraints in High-Dimensional Bayesian Optimization
	Additional Experimental Results
	Method Implementations and Experiment Setup
	Analysis of experimental results
	Sensitivity of ALEBO to Embedding and Ambient Dimensions

	Locomotion Benchmark Problem

