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ABSTRACT

Obtaining policies that can generalise to new environments in reinforcement learn-
ing is challenging. In this work, we demonstrate that language understanding via
a reading policy learner is a promising vehicle for generalisation to new envi-
ronments. We propose a grounded policy learning problem, Read to Fight Mon-
sters (RTFM), in which the agent must jointly reason over a language goal, rele-
vant dynamics described in a document, and environment observations. We pro-
cedurally generate environment dynamics and corresponding language descrip-
tions of the dynamics, such that agents must read to understand new environ-
ment dynamics instead of memorising any particular information. In addition,
we propose txt2π, a model that captures three-way interactions between the
goal, document, and observations. On RTFM, txt2π generalises to new en-
vironments with dynamics not seen during training via reading. Furthermore,
our model outperforms baselines such as FiLM and language-conditioned CNNs
on RTFM. Through curriculum learning, txt2π produces policies that excel on
complex RTFM tasks requiring several reasoning and coreference steps.

1 INTRODUCTION

Reinforcement learning (RL) has been successful in a variety of areas such as continuous con-
trol (Lillicrap et al., 2015), dialogue systems (Li et al., 2016), and game-playing (Mnih et al., 2013).
However, RL adoption in real-world problems is limited due to poor sample efficiency and failure
to generalise to environments even slightly different from those seen during training. We explore
language-conditioned policy learning, where agents use machine reading to discover strategies re-
quired to solve a task, thereby leveraging language as a means to generalise to new environments.

Prior work on language grounding and language-based RL (see Luketina et al. (2019) for a recent
survey) are limited to scenarios in which language specifies the goal for some fixed environment
dynamics (Branavan et al., 2011; Hermann et al., 2017; Bahdanau et al., 2019; Fried et al., 2018;
Co-Reyes et al., 2019), or the dynamics of the environment vary and are presented in language for
some fixed goal (Branavan et al., 2012). In practice, changes to goals and to environment dynamics
tend to occur simultaneously—given some goal, we need to find and interpret relevant information
to understand how to achieve the goal. That is, the agent should account for variations in both by
selectively reading, thereby generalising to environments with dynamics not seen during training.

Our contributions are two-fold. First, we propose a grounded policy learning problem that we
call Read to Fight Monsters (RTFM). In RTFM, the agent must jointly reason over a language
goal, a document that specifies environment dynamics, and environment observations. In particular,
it must identify relevant information in the document to shape its policy and accomplish the goal.
To necessitate reading comprehension, we expose the agent to ever changing environment dynam-
ics and corresponding language descriptions such that it cannot avoid reading by memorising any
particular environment dynamics. We procedurally generate environment dynamics and natural lan-
guage templated descriptions of dynamics and goals to produced a combinatorially large number of
environment dynamics to train and evaluate RTFM.

∗Work done during an internship at Facebook AI Research.

1



Published as a conference paper at ICLR 2020

Second, we propose txt2π to model the joint reasoning problem in RTFM. We show
that txt2π generalises to goals and environment dynamics not seen during training, and outper-
forms previous language-conditioned models such as language-conditioned CNNs and FiLM (Perez
et al., 2018; Bahdanau et al., 2019) both in terms of sample efficiency and final win-rate on RTFM.
Through curriculum learning where we adapt txt2π trained on simpler tasks to more complex
tasks, we obtain agents that generalise to tasks with natural language documents that require five
hops of reasoning between the goal, document, and environment observations. Our qualitative anal-
yses show that txt2π attends to parts of the document relevant to the goal and environment ob-
servations, and that the resulting agents exhibit complex behaviour such as retrieving correct items,
engaging correct enemies after acquiring correct items, and avoiding incorrect enemies. Finally,
we highlight the complexity of RTFM in scaling to longer documents, richer dynamics, and natural
language variations. We show that significant improvement in language-grounded policy learning is
needed to solve these problems in the future.

2 RELATED WORK

Language-conditioned policy learning. A growing body of research is learning policies that fol-
low imperative instructions. The granularity of instructions vary from high-level instructions for
application control (Branavan, 2012) and games (Hermann et al., 2017; Bahdanau et al., 2019) to
step-by-step navigation (Fried et al., 2018). In contrast to learning policies for imperative instruc-
tions, Branavan et al. (2011; 2012); Narasimhan et al. (2018) infer a policy for a fixed goal using
features extracted from high level strategy descriptions and general information about domain dy-
namics. Unlike prior work, we study the combination of imperative instructions and descriptions of
dynamics. Furthermore, we require that the agent learn to filter out irrelevant information to focus
on dynamics relevant to accomplishing the goal.

Language grounding. Language grounding refers to interpreting language in a non-linguistic con-
text. Examples of such context include images (Barnard & Forsyth, 2001), games (Chen & Mooney,
2008; Wang et al., 2016), robot control (Kollar et al., 2010; Tellex et al., 2011), and navigation (An-
derson et al., 2018). We study language grounding in interactive games similar to Branavan (2012);
Hermann et al. (2017) or Co-Reyes et al. (2019), where executable semantics are not provided and
the agent must learn through experience. Unlike prior work, we require grounding between an un-
derspecified goal, a document of environment dynamics, and world observations. In addition, we
focus on generalisation to not only new goal descriptions but new environments dynamics.

3 READ TO FIGHT MONSTERS

We consider a scenario where the agent must jointly reason over a language goal, relevant envi-
ronment dynamics specified in a text document, and environment observations. In reading the
document, the agent should identify relevant information key to solving the goal in the environment.
A successful agent needs to perform this language grounding to generalise to new environments
with dynamics not seen during training.

To study generalisation via reading, the environment dynamics must differ every episode such that
the agent cannot avoid reading by memorising a limited set of dynamics. Consequently, we proce-
durally generate a large number of unique environment dynamics (e.g. effective(blessed
items, poison monsters)), along with language descriptions of environment dynamics
(e.g. blessed items are effective against poison monsters) and goals (e.g. Defeat the order of the
forest). We couple a large, customisable ontology inspired by rogue-like games such as NetHack or
Diablo, with natural language templates to create a combinatorially rich set of environment dynam-
ics to learn from and evaluate on.

In RTFM, the agent is given a document of environment dynamics, observations of the environment,
and an underspecified goal instruction. Figure 1 illustrates an instance of the game. Concretely, we
design a set of dynamics that consists of monsters (e.g. wolf, goblin), teams (e.g. Order of the For-
est), element types (e.g. fire, poison), item modifiers (e.g. fanatical, arcane), and items (e.g. sword,
hammer). When the player is in the same cell with a monster or weapon, the player picks up the item
or engages in combat with the monster. The player can possess one item at a time, and drops existing
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Figure 1: RTFM requires jointly reasoning over the goal, a document describing environment dy-
namics, and environment observations. This figure shows key snapshots from a trained policy on
one randomly sampled environment. Frame 1 shows the initial world. In 4, the agent approaches
“fanatical sword”, which beats the target “fire goblin”. In 5, the agent acquires the sword. In 10, the
agent evades the distractor “poison bat” while chasing the target. In 11, the agent engages the target
and defeats it, thereby winning the episode. Sprites are used for visualisation — the agent observes
cell content in text (shown in white). More examples are in appendix A.

weapons if they pick up a new weapon. A monster moves towards the player with 60% probability,
and otherwise moves randomly. The dynamics, the agent’s inventory, and the underspecified goal
are rendered as text. The game world is rendered as a matrix of text in which each cell describes
the entity occupying the cell. We use human-written templates for stating which monsters belong to
which team, which modifiers are effective against which element, and which team the agent should
defeat (see appendix H for details on collection and G for a list of entities in the game). In order to
achieve the goal, the agent must cross-reference relevant information in the document and as well as
in the observations.

During every episode, we subsample a set of groups, monsters, modifiers, and elements to use. We
randomly generate group assignments of which monsters belong to which team and which modifier
is effective against which element. A document that consists of randomly ordered statements cor-
responding to this group assignment is presented to the agent. We sample one element, one team,
and a monster from that team (e.g. “fire goblin” from “Order of the forest”) to be the target monster.
Additionally, we sample one modifier that beats the element and an item to be the item that defeats
the target monster (e.g. “fanatical sword”). Similarly, we sample an element, a team, and a monster
from a different team to be the distractor monster (e.g. poison bat), as well as an item that defeats
the distractor monster (e.g. arcane hammer).

In order to win the game (e.g. Figure 1), the agent must

1. identify the target team from the goal (e.g. Order of the Forest)

2. identify the monsters that belong to that team (e.g. goblin, jaguar, and ghost)

3. identify which monster is in the world (e.g. goblin), and its element (e.g. fire)

4. identify the modifiers that are effective against this element (e.g. fanatical, shimmering)

5. find which modifier is present (e.g. fanatical), and the item with the modifier (e.g. sword)
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6. pick up the correct item (e.g. fanatical sword)
7. engage the correct monster in combat (e.g. fire goblin).

If the agent deviates from this trajectory (e.g. does not have correct item before engaging in combat,
engages with distractor monster), it cannot defeat the target monster and therefore will lose the
game. The agent receives a reward of +1 if it wins the game and -1 otherwise.

RTFM presents challenges not found in prior work in that it requires a large number of grounding
steps in order to solve a task. In order to perform this grounding, the agent must jointly reason over
a language goal and document of dynamics, as well as environment observations. In addition to
the environment, the positions of the target and distractor within the document are randomised—the
agent cannot memorise ordering patterns in order to solve the grounding problems, and must instead
identify information relevant to the goal and environment at hand.

We split environments into train and eval sets. No assignments of monster-team-modifier-element
are shared between train and eval to test whether the agent is able to generalise to new environments
with dynamics not seen during training via reading. There are more than 2 million train or eval
environments without considering the natural language templates, and 200 million otherwise. With
random ordering of templates, the number of unique documents exceeds 15 billion.

4 MODEL

We propose the txt2π model, which builds representations that capture three-way interactions
between the goal, document describing environment dynamics, and environment observations. We
begin with definition of the Bidirectional Feature-wise Linear Modulation (FiLM2) layer, which
forms the core of our model.

4.1 BIDIRECTIONAL FEATURE-WISE LINEAR MODULATION (FILM2) LAYER
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+ ReLU

+

MaxPool

output

summary

Figure 2: The FiLM2 layer.

Feature-wise linear modulation
(FiLM), which modulates visual
inputs using representations of
textual instructions, is an effective
method for image captioning (Perez
et al., 2018) and instruction fol-
lowing (Bahdanau et al., 2019).
In RTFM, the agent must not only
filter concepts in the visual domain
using language but filter concepts in
the text domain using visual observa-
tions. To support this, FiLM2 builds
codependent representations of text and visual inputs by further incorporating conditional
representations of the text given visual observations. Figure 2 shows the FiLM2 layer.

We use upper-case bold letters to denote tensors, lower-case bold letters for vectors, and non-bold
letters for scalars. Exact dimensions of these variables are shown in Table 4 in appendix B. Let
xtext denote a fixed-length dtext-dimensional representation of the text andXvis the representation
of visual inputs with height H , width W , and dvis channels. Let Conv denote a convolution layer.
Let + and * symbols denote element-wise addition and multiplication operations that broadcast over
spatial dimensions. We first modulate visual features using text features:

γtext = Wγxtext + bγ (1)
βtext = Wβxtext + bβ (2)
Vvis = ReLU((1 + γtext) ∗ Convvis(Xvis) + βtext) (3)

Unlike FiLM, we additionally modulate text features using visual features:

Γvis = Convγ(Xvis) (4)
Bvis = Convβ(Xvis) (5)
Vtext = ReLU((1 + Γvis) ∗ (Wtextxtext + btext) +Bvis) (6)
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Figure 3: txt2π models interactions between the goal, document, and observations.

The output of the FiLM2 layer consists of the sum of the modulated features
V , as well as a max-pooled summary s over this sum across spatial dimensions.

V = Vvis + Vtext (7) s = MaxPool(V ) (8)

4.2 THE TXT2π MODEL

We model interactions between observations from the environment, goal, and document us-
ing FiLM2 layers. We first encode text inputs using bidirectional LSTMs, then compute summaries
using self-attention and conditional summaries using attention. We concatenate text summaries into
text features, which, along with visual features, are processed through consecutive FiLM2 layers. In
this case of a textual environment, we consider the grid of word embeddings as the visual features
for FiLM2. The final FiLM2 output is further processed by MLPs to compute a policy distribution
over actions and a baseline for advantage estimation. Figure 3 shows the txt2π model.

Let Eobs denote word embeddings corresponding to the observations from the environment, where
Eobs[:, :, i, j] represents the embeddings corresponding to the lobs-word string that describes the
objects in location (i, j) in the grid-world. Let Edoc, Einv, and Egoal respectively denote the em-
beddings corresponding to the ldoc-word document, the linv-word inventory, and the lgoal-word goal.
We first compute a fixed-length summary cgoal of the the goal using a bidirectional LSTM (Hochre-
iter & Schmidhuber, 1997) followed by self-attention (Lee et al., 2017; Zhong et al., 2018).

Hgoal = BiLSTMgoal(Egoal) (9) a′goal,i = wgoalh
ᵀ
goal,i + bgoal (10)

agoal = softmax(a′goal) (11) cgoal =

lgoal∑
i=1

agoal,ihgoal,i (12)

We abbreviate self-attention over the goal as cgoal = selfattn(Hgoal). We similarly compute
a summary of the inventory as cinv = selfattn(BiLSTMinv(Einv)). Next, we represent the
document encoding conditioned on the goal using dot-product attention (Luong et al., 2015).

Hdoc = BiLSTMgoal-doc(Edoc) (13) a′doc,i = cgoalh
ᵀ
doc,i (14)

adoc = softmax(a′doc) (15) cdoc =

ldoc∑
i=1

adoc,ihdoc,i (16)

We abbreviate attention over the document encoding conditioned on the goal summary as
cdoc = attend(Hdoc, cgoal). Next, we build the joint representation of the inputs using succes-
sive FiLM2 layers. At each layer, the visual input to the FiLM2 layer is the concatenation of the
output of the previous layer with positional features. For each cell, the positional feature Xpos

consists of the x and y distance from the cell to the agent’s position respectively, normalized by
the width and height of the grid-world. The text input is the concatenation of the goal summary,
the inventory summary, the attention over the document given the goal, and the attention over the
document given the previous visual summary. Let [a; b] denote the feature-wise concatenation of a
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Figure 4: Ablation training curves on simplest
variant of RTFM. Individual runs are in light
colours. Average win rates are in bold, dark lines.

Model Win rate

Train Eval
6×6

Eval
10×10

conv 24± 0 25± 1 13± 1
FiLM 49± 1 49± 2 32± 3
no task attn 49± 2 49± 2 35± 6
no vis attn 49± 2 49± 1 40±12
no text mod 49± 1 49± 2 35± 2
txt2π 84±21 83±21 66±22

Table 1: Final win rate on simplest variant
of RTFM. The models are trained on one set
of dynamics (e.g. training set) and evaluated on
another set of dynamics (e.g. evaluation set).
“Train” and “Eval” show final win rates on
training and eval environments.

and b. For the ith layer, we have

R(i) = [V (i−1);Xpos] (17)

T (i) = [cgoal; cinv; cdoc; attend(BiLSTMvis-doc(Edoc), s
(i−1))] (18)

V (i), s(i) = FiLM2(i)(R(i),T(i)) (19)

BiLSTMvis-doc(Edoc) is another encoding of the document similar toHgoal, produced using a sep-
arate LSTM, such that the document is encoded differently for attention with the visual features and
with the goal. For i = 0, we concatenate the bag-of-words embeddings of the grid with positional
features as the initial visual features V (0) = [

∑
j Eobs,j ;Xpos]. We max pool a linear transform of

the initial visual features to compute the initial visual summary s(0) = MaxPool(WiniV
(0)+bini).

Let s(last) denote visual summary of the last FiLM2 layer. We compute the policy ypolicy and
baseline ybaseline as

o = ReLU(Wos
(last) + bo) (20)

ypolicy = MLPpolicy(o) (21)
ybaseline = MLPbaseline(o) (22)

where MLPpolicy and MLPbaseline are 2-layer multi-layer perceptrons with ReLU activation. We
train using TorchBeast (Küttler et al., 2019), an implementation of IMPALA (Espeholt et al., 2018).
Please refer to appendix D for details.

5 EXPERIMENTS

We consider variants of RTFM by varying the size of the grid-world (6 × 6 vs 10 × 10), allowing
many-to-one group assignments to make disambiguation more difficult (group), allowing dynamic,
moving monsters that hunt down the player (dyna), and using natural language templated docu-
ments (nl). In the absence of many-to-one assignments, the agent does not need to perform steps
3 and 5 in section 3 as there is no need to disambiguate among many assignees, making it easier to
identify relevant information.

We compare txt2π to the FiLM model by Bahdanau et al. (2019) and a language-conditioned
residual CNN model. We train on one set of dynamics (e.g. group assignments of monsters and
modifiers) and evaluated on a held-out set of dynamics. We also study three variants of txt2π.
In no task attn, the document attention conditioned on the goal utterance (equation 16) is re-
moved and the goal instead represented through self-attention and concatenated with the rest of the
text features. In no vis attn, we do not attend over the document given the visual output of
the previous layer (equation 18), and the document is instead represented through self-attention.
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Transfer
from

Transfer to

6× 6
6× 6
dyna

6× 6
groups

6× 6
nl

6× 6
dyna
groups

6× 6
group
nl

6× 6
dyna
nl

6× 6
dyna
group
nl

random 84 ± 20 26± 7 25± 3 45± 6 23± 2 25± 3 23± 2 23± 2
+6× 6 85 ± 9 82± 19 78± 24 64± 12 52± 13 53± 18 40± 8
+dyna 77 ± 10 65± 16 43± 4
+group 65 ± 17

Table 2: Curriculum training results. We keep 5 randomly initialised models through the entire
curriculum. A cell in row i and column j shows transfer from the best-performing setting in the
previous stage (bold in row i − 1) to the new setting in column j. Each cell shows final mean and
standard deviation of win rate on the training environments. Each experiment trains for 50 million
frames, except for the initial stage (first row, 100 million instead). For the last stage (row 4), we also
transfer to a 10× 10 + dyna+ group+ nl variant and obtain 61 ± 18 win rate.

In no text mod, text modulation using visual features (equation 6) is removed. Please see ap-
pendix C for model details on our model and baselines, and appendix D for training details.

5.1 COMPARISON TO BASELINES AND ABLATIONS

We compare txt2π to baselines and ablated variants on a simplified variant of RTFM in which
there are one-to-one group assignments (no group), stationary monsters (no dyna), and no nat-
ural language templated descriptions (no nl). Figure 4 shows that compared to baselines and ab-
lated variants, txt2π is more sample efficient and converges to higher performance. Moreover,
no ablated variant is able to solve the tasks—it is the combination of ablated features that en-
ables txt2π to win consistently. Qualitatively, the ablated variants converge to locally optimum
policies in which the agent often picks up a random item and then attacks the correct monster, re-
sulting in a ∼ 50% win rate. Table 1 shows that all models, with the exception of the CNN baseline,
generalise to new evaluation environments with dynamics and world configurations not seen during
training, with txt2π outperforming FiLM and the CNN model.

We find similar results for txt2π, its ablated variants, and baselines on a separate, language-based
rock-paper-scissors task in which the agent needs to deduce cyclic dependencies (which type beats
which other type) through reading in order to acquire the correct item and defeat a monster. We
observe that the performance of reading models transfer from training environments to new envi-
ronments with unseen types and unseen dependencies. Compared to ablated variants and baselines,
txt2π is more sample efficient and achieves higher performance on both training and new envi-
ronment dynamics. When transferring to new environments, txt2π remains more sample efficient
than the other models. Details on these experiments are found in appendix E.

5.2 CURRICULUM LEARNING FOR COMPLEX ENVIRONMENTS

Train
env

Eval
env

Win rate

Train Eval

6× 6 6× 6 65± 17 55± 22
10× 10 55± 27

10× 10 10× 10 61± 18 43± 13

Table 3: Win rate when evaluating on
new dynamics and world configurations
for txt2π on the full RTFM problem.

Due to the long sequence of co-references the agent
must perform in order to solve the full RTFM (10×
10 with moving monsters, many-to-one group as-
signments, and natural language templated docu-
ments) we design a curriculum to facilitate policy
learning by starting with simpler variants of RTFM.
We start with the simplest variant (no group,
no dyna, no nl) and then add in an additional di-
mension of complexity. We repeatedly add more
complexity until we obtain 10×10 worlds with mov-
ing monsters, many-to-one group assignments and
natural language templated descriptions. The per-
formance across the curriculum is shown in Table 2
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(a) The entities present are shimmering morning star, mysterious spear, fire jaguar, and lightning ghost.
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(b) The entities present are soldier’s axe, shimmering axe, fire shaman, and poison wolf.

Figure 5: txt2π attention on the full RTFM. These include the document attention conditioned on
the goal (top) as well as those conditioned on summaries produced by intermediate FiLM2 layers.
Weights are normalised across words (e.g. horizontally). Darker means higher attention weight.

(see Figure 13 in appendix F for training curves of each stage). We see that curriculum learning is
crucial to making progress on RTFM, and that initial policy training (first row of Table 2) with addi-
tional complexities in any of the dimensions result in significantly worse performance. We take each
of the 5 runs after training through the whole curriculum and evaluate them on dynamics not seen
during training. Table 3 shows variants of the last stage of the curriculum in which the model was
trained on 6× 6 versions of the full RTFM and in which the model was trained on 10× 10 versions
of the full RTFM. We see that models trained on smaller worlds generalise to bigger worlds. Despite
curriculum learning, however, performance of the final model trail that of human players, who can
consistently solve RTFM. This highlights the difficulties of the RTFM problem and suggests that
there is significant room for improvement in developing better language grounded policy learners.

Attention maps. Figure 5 shows attention conditioned on the goal and on observation summaries
produced by intermediate FiLM2 layers. Goal-conditioned attention consistently locates the clause
that contains the team the agent is supposed to attack. Intermediate layer attentions focus on regions
near modifiers and monsters, particularly those that are present in the observations. These results
suggests that attention mechanisms in txt2π help identify relevant information in the document.

Analysis of trajectories and failure modes. We examine trajectories from well-performing poli-
cies (80% win rate) as well as poorly-performing policies (50% win rate) on the full RTFM. We
find that well-performing policies exhibit a number of consistent behaviours such as identifying the
correct item to pick up to fight the target monster, avoiding distractors, and engaging target monsters
after acquiring the correct item. In contrast, the poorly-performing policies occasionally pick up the
wrong item, causing the agent to lose when engaging with a monster. In addition, it occasionally gets
stuck in evading monsters indefinitely, causing the agent to lose when the time runs out. Replays of
both policies can be found in GIFs in the supplementary materials1.

6 CONCLUSION

We proposed RTFM, a grounded policy learning problem in which the agent must jointly reason over
a language goal, relevant dynamics specified in a document, and environment observations. In order
to study RTFM, we procedurally generated a combinatorially large number of environment dynam-
ics such that the model cannot memorise a set of environment dynamics and must instead generalise
via reading. We proposed txt2π, a model that captures three-way interactions between the goal,

1Trajectories by txt2π on RTFM can be found at https://gofile.io/?c=9k7ZLk
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document, and observations, and that generalises to new environments with dynamics not seen dur-
ing training. txt2π outperforms baselines such as FiLM and language-conditioned CNNs. Through
curriculum learning, txt2π performs well on complex RTFM tasks that require several reasoning
and coreference steps with natural language templated goals and descriptions of the dynamics. Our
work suggests that language understanding via reading is a promising way to learn policies that
generalise to new environments. Despite curriculum learning, our best models trail performance of
human players, suggesting that there is ample room for improvement in grounded policy learning on
complex RTFM problems. In addition to jointly learning policies based on external documentation
and language goals, we are interested in exploring how to use supporting evidence in external doc-
umentation to reason about plans (Andreas et al., 2018) and induce hierarchical policies (Hu et al.,
2019; Jiang et al., 2019).
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Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
scalable distributed deep-rl with importance weighted actor-learner architectures. In ICML, 2018.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe
Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-follower
models for vision-and-language navigation. In NeurIPS, 2018.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright,
Chris Apps, Demis Hassabis, and Phil Blunsom. Grounded language learning in a simulated 3d
world. CoRR, abs/1706.06551, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compututation, 9(8),
1997.

9



Published as a conference paper at ICLR 2020

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuandong Tian, and Mike Lewis. Hierarchical decision
making by generating and following natural language instructions. CoRR, abs/1906.00744, 2019.

Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea Finn. Language as an abstraction for hier-
archical deep reinforcement learning. CoRR, abs/1906.07343, 2019.

Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward understanding natural language
directions. In HRI, 2010.
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A PLAYTHROUGH EXAMPLES

These figures shows key snapshots from a trained policy on randomly sampled environments.

1

You

Doc:
You should use arcane and mysterious 
items to beat lightning monsters. Panther, 
warg, and wolf are from the Order of the 
Forest. Blessed and Grandmaster’s items 
beat poison monsters. Cold is not good 
against fanatical and shimmering 
weapons. The Star Alliance team is made 
up of beetle, jackal, and shaman. Imp, 
jaguar, and lynx make up the Rebel 
Enclave. Gleaming and Soldier’s weapons 
beat fire monsters.
Goal:
Defeat the Star Alliance

Fire imp

Arcane 
spear

Soldier’s 
sword 3

Arcane 
spear

Soldier’s 
sword

8

Arcane 
spear

7
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Inv: none

Inv: Soldier’s sword Inv: Soldier’s sword

Figure 6: The initial world is shown in 1. In 4, the agent avoids the target “lightning shaman”
because it does not yet have “arcane spear”, which beats the target. In 7 and 8, the agent is cornered
by monsters. In 9, the agent is forced to engage in combat and loses.
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You

Soldier’s 
knife

Doc:
Cold monsters are defeated by gleaming 
and Soldier’s weapons. The Order of the 
Forest team consists of ant, lynx, and 
wolf. Mysterious and shimmering 
weapons are good against lightning 
monsters. Poison monster are defeated 
by blessed and fanatical items. Get 
arcane and Grandmaster’s weapons to 
slay fire monsters. Beetle, panther, and 
zombie are Star Alliance. Jackal, jaguar, 
and ghost are on the Rebel Enclave.
Goal:
Fight the monster in the Rebel Enclave.

Poison 
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Cold 
ghost

Fanatical 
katana

5You
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knife
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ghostFanatical 
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Figure 7: The initial world is shown in 1. In 5 the agent evades the target “cold ghost” because it
does not yet have “soldier’s knife”, which beats the target. In 11 and 13, the agent obtains “soldier’s
knife” while evading monsters. In 14, the agent defeats the target and wins.
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B VARIABLE DIMENSIONS

Let xtext ∈ Rdtext denote a fixed-length dtext-dimensional representation of the text and Xvis ∈
Rdvis×H×W denote the representation of visual inputs with

Variable Symbol Dimension

dtext-dim text representation xtext dtext

dvis-dim visual representation with height H , width W ,
dvis channels

Xvis dvis ×H ×W

Environment observations embeddings Eobs lobs × demb ×H ×W
lobs-word string that describes the objects in location
(i, j) in the grid-world

Eobs[:, :, i, j] lobs × demb

ldoc-word document embeddings Edoc ldoc × demb

linv-word inventory embeddings Einv linv × demb

lgoal-word goal embeddings Egoal lgoal × demb

Table 4: Variable dimensions
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C MODEL DETAILS

C.1 TXT2π

Hyperparameters. The txt2π used in our experiments consists of 5 consecutive FiLM2 layers,
each with 3x3 convolutions and padding and stride sizes of 1. The txt2π layers have channels of
16, 32, 64, 64, and 64, with residual connections from the 3rd layer to the 5th layer. The Goal-doc
LSTM (see Figure 3) shares weight with the Goal LSTM. The Inventory and Goal LSTMs have a
hidden dimension of size 10, whereas the Vis-doc LSTM has a dimension of 100. We use a word
embedding dimension of 30.

C.2 CNN WITH RESIDUAL CONNECTIONS

ConvGoal 
BiLSTM

Inventory 
BiLSTM

Doc
BiLSTM Selfattn

Goal

Inventory

Document

Positional features

cat

Conv Conv

Visual features

Linear

Policy 
MLP

Baseline 
MLP

policy

baseline

Selfattn

Selfattn
cat cat cat…

Figure 8: The convolutional network baseline. The FiLM baseline has the same structure, but with
convolutional layers replaced by FiLM layers.

Like txt2π, the CNN baseline consists of 5 layers of convolutions with channels of 16, 32, 64, 64,
and 64. There are residual connections from the 3rd layer to the 5th layer. The input to each layer
consists of the output of the previous layer, concatenated with positional features.

The input to the network is the concatenation of the observations V (0) and text representations. The
text representations consist of self-attention over bidirectional LSTM-encoded goal, document, and
inventory. These attention outputs are replicated over the dimensions of the grid and concatenated
feature-wise with the observation embeddings in each cell. Figure 8 illustrates the CNN baseline.

C.3 FILM BASELINE

The FiLM baseline encodes text in the same fashion as the CNN model. However, instead of using
convolutional layers, each layer is a FiLM layer from Bahdanau et al. (2019). Note that in our case,
the language representation is a self-attention over the LSTM states instead of a concatenation of
terminal LSTM states.
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D TRAINING PROCEDURE

We train using an implementation of IMPALA (Espeholt et al., 2018). In particular, we use 20 actors
and a batch size of 24. When unrolling actors, we use a maximum unroll length of 80 frames. Each
episode lasts for a maximum of 1000 frames. We optimise using RMSProp (Tieleman & Hinton,
2012) with a learning rate of 0.005, which is annealed linearly for 100 million frames. We set
α = 0.99 and ε = 0.01.

During training, we apply a small negative reward for each time step of −0.02 and a discount factor
of 0.99 to facilitate convergence. We additionally include a entropy cost to encourage exploration.
Let ypolicy denote the policy. The entropy loss is calculated as

Lpolicy = −
∑
i

ypolicyi log ypolicyi (23)

In addition to policy gradient, we add in the entropy loss with a weight of 0.005 and the baseline loss
with a weight of 0.5. The baseline loss is computed as the root mean square of the advantages (Es-
peholt et al., 2018).

When tuning models, we perform a grid search using the training environments to select hyperpa-
rameters for each model. We train 5 runs for each configuration in order to report the mean and
standard deviation. When transferring, we transfer each of the 5 runs to the new task and once again
report the mean and standard deviation.
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Scenario # graphs # edges # nodes

train dev unseen train dev % new train dev % new

permutation 30 30 y 20 20 n 60 60 n
new edge 20 20 y 48 36 y 17 13 n
new edge+nodes 60 60 y 20 20 y 5 5 y

Table 5: Statistics of the three variations of the Rock-paper-scissors task
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Figure 10: Performance on the Rock-paper-scissors task across models. Left shows final perfor-
mance on environments whose goals and dynamics were seen during training. Right shows perfor-
mance on the environments whose goals and dynamics were not seen during training.

E ROCK-PAPER-SCISSORS

Doc:
e beats d. 
c beats e. 
d beats c.

Inventory:
empty

B goblin A

You

C

B

Figure 9: The Rock-paper-scissors task requires jointly
reasoning over the game observations and a document
describing environment dynamics. The agent observes
cell content in the form of text (shown in white).

In addition to the main RTFM tasks,
we also study a simpler formulation
called Rock-paper-scissors that has a fixed
goal. In Rock-paper-scissors, the agent
must interpret a document that describes
the environment dynamics in order to
solve the task. Given an set of characters
(e.g. a-z), we sample 3 characters and set
up a rock-paper-scissors-like dependency
graph between the characters (e.g. “a beats
b, b beats c, c beats a”). We then spawn a
monster in the world with a randomly as-
signed type (e.g. “b goblin”), as well as an
item corresponding to each type (e.g. “a”,
“b”, and “c”). The attributes of the agent,
monster, and items are set up such that the
player must obtain the correct item and
then engage the monster in order to win.
Any other sequence of actions (e.g. en-
gaging the monster without the correct
weapon) results in a loss. The winning policy should then be to first identify the type of mon-
ster present, then cross-reference the document to find which item defeats that type, then pick up the
item, and finally engage the monster in combat. Figure 9 shows an instance of Rock-paper-scissors.

Reading models generalise to new environments. We split environment dynamics by per-
muting 3-character dependency graphs from an alphabet, which we randomly split into
training and held-out sets. This corresponds to the “permutations” setting in Table 5.
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Figure 11: Learning curve while transferring to the development environments. Win rates of indi-
vidual runs are shown in light colours. Average win rates are shown in bold, dark lines.
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Figure 12: Ablation training curves. Win rates of
individual runs are shown in light colours. Aver-
age win rates are shown in bold, dark lines.

We train models on the 10 × 10 worlds from
the training set and evaluate them on both
seen and not seen during training. The left
of Figure 10 shows the performance of mod-
els on worlds of varying sizes with training en-
vironment dynamics. In this case, the dynam-
ics (e.g. dependency graphs) were seen during
training. For 9 × 9 and 11 × 11 worlds, the
world configuration not seen during training.
For 10 × 10 worlds, there is a 5% chance that
the initial frame was seen during training.2 Fig-
ure 10 shows the performance on held-out envi-
ronments not seen during training. We see that
all models generalise to environments not seen
during training, both when the world configura-
tion is not seen (left) and when the environment
dynamics are not seen (right).

Reading models generalise to new concepts.
In addition to splitting via permutations, we de-
vise two additional ways of splitting environment dynamics by introducing new edges and nodes
into the held-out set. Table 5 shows the three different settings. For each, we study the transfer be-
haviour of models on new environments. Figure 11 shows the learning curve when training a model
on the held-out environments directly and when transferring the model trained on train environments
to held-out environments. We observe that all models are significantly more sample-efficient when
transferring from training environments, despite the introduction of new edges and new nodes.

txt2π is more sample-efficient and learns better policies. In Figure 10, we see that the FiLM
model outperforms the CNN model on both training environment dynamics and held-out environ-
ment dynamics. txt2π further outperforms FiLM, and does so more consistently in that the final
performance has less variance. This behaviour is also observed in the in Figure 11. When training
on the held-out set without transferring, txt2π is more sample efficient than FiLM and the CNN
model, and achieves higher win-rate. When transferring to the held-out set, txt2π remains more
sample efficient than the other models.

2There are 24360 unique grid configurations given a particular dependency graph, 4060 unique dependency
graphs in the training set, and 50 million frames seen during training. After training, the model finishes an
episode in approximately 10 frames. Hence the probability of seeing a redundant initial frame is 5e7/10

24360∗4060 =
5%.
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F CURRICULUM LEARNING TRAINING CURVES
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Figure 13: Curriculum learning results for txt2π on RTFM. Win rates of individual runs are shown
in light colours. Average win rates are shown in bold, dark lines.

G ENTITIES AND MODIFIERS

Below is a list of entities and modifiers contained in RTFM:

Monsters: wolf, jaguar, panther, goblin, bat, imp, shaman, ghost, zombie

Weapons: sword, axe, morningstar, polearm, knife, katana, cutlass, spear

Elements: cold, fire, lightning, poison

Modifiers: Grandmaster’s, blessed, shimmering, gleaming, fanatical, mysterious, Soldier’s, arcane

Teams: Star Alliance, Order of the Forest, Rebel Enclave

H LANGUAGE TEMPLATES

We collect human-written natural language templates for the goal and the dynamics. The goal
statements in RTFM describe which team the agent should defeat. We collect 12 language templates
for goal statements. The document of environment dynamics consists of two types of statements.
The first type describes which monsters are assigned to with team. The second type describes which
modifiers, which describe items, are effective against which element types, which are associated with
monsters. We collection 10 language templates for each type of statements. The entire document is
composed from statements, which are randomly shuffled. We randomly sample a template for each
statement, which we fill with the monsters and team for the first type and modifiers and element for
the second type.
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