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ABSTRACT

Building deep reinforcement learning agents that can generalize and adapt to
unseen environments remains a fundamental challenge for AI. This paper describes
progresses on this challenge in the context of man-made environments, which are
visually diverse but contain intrinsic semantic regularities. We propose a hybrid
model-based and model-free approach, LEArning and Planning with Semantics
(LEAPS), consisting of a multi-target sub-policy that acts on visual inputs, and a
Bayesian model over semantic structures. When placed in an unseen environment,
the agent plans with the semantic model to make high-level decisions, proposes
the next sub-target for the sub-policy to execute, and updates the semantic model
based on new observations. We perform experiments in visual navigation tasks
using House3D, a 3D environment that contains diverse human-designed indoor
scenes with real-world objects. LEAPS outperforms strong baselines that do not
explicitly plan using the semantic content.

1 INTRODUCTION

Deep reinforcement learning (DRL) has undoubtedly witnessed strong achievements in recent
years (Silver et al., 2016; Mnih et al., 2015; Levine et al., 2016). However, training an agent to solve
tasks in a new unseen scenario, usually referred to as its generalization ability, remains a challenging
problem (Geffner, 2018; Lake et al., 2017). In model-free RL, the agent is trained to reactively
make decisions from the observations, e.g., first-person view, via a black-box policy approximator.
However the generalization ability of agents trained by model-free RL is limited, and is even more
evident on tasks that require extensive planning (Tamar et al., 2016; Kansky et al., 2017). On the
other hand, model-based RL learns a dynamics model, predicting the next observation when taking
an action. With the model, sequential decisions can be made via planning. However, learning a
model for complex tasks and with high dimensional observations, such as images, is challenging.
Current approaches for learning action-conditional models from video are only accurate for very
short horizons (Finn & Levine, 2017; Ebert et al., 2017; Oh et al., 2015). Moreover, it is not clear
how to efficiently adapt such models to changes in the domain.

In this work, we aim to improve the generalization of RL agents in domains that involve high-
dimensional observations. Our insight is that in many realistic settings, building a pixel-accurate
model of the dynamics is not necessary for planning high-level decisions. There are semantic
structures and properties that are shared in real-world man-made environments. For example, rooms
in indoor scenes are often arranged by their mutual functionality (e.g. , bathroom next to bedroom,
dining room next to kitchen). Similarly, objects in rooms are placed at locations of practical
significance (e.g. , nightstand next to bed, chair next to table). Humans often make use of such
structural priors when exploring a new scene, or when making a high-level plan of actions in the
domain. However, pixel-level details are still necessary for carrying out the high-level plan. For
example, we need high-fidelity observations to locate and interact with objects, open doors, etc.

Based on this observation, we propose a hybrid framework, LEArning and Planning with Semantics
(LEAPS), which consists of a model-based component that works on the semantic level to pursue
a high-level target, and a model-free component that executes the target by acting on pixel-level
inputs. Concretely, we (1) train model-free multi-target subpolicies in the form of neural networks
that take the first-person views as input and sequentially execute sub-targets towards the final goal;
(2) build a semantic model in the form of a latent variable model that only takes semantic signals,
i.e., low-dimensional binary vectors, as input and is dynamically updated to plan the next sub-target.
LEAPS has following advantages: (1) via model-based planning, generalization ability is improved;
(2) by learning the prior distribution of the latent variable model, we capture the semantic consistency
among the environments; (3) the semantic model can be efficiently updated by posterior inference
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when the agent is exploring the unseen environment, which is effective even with very few exploration
experiences thanks to the Bayes rule; and (4) the semantic model is lightweight and fully interpretable.

Our approach requires observations that are composed of both pixel-level data and a list of semantic
properties of the scene. In general, automatically extracting high-level semantic structure from
data is difficult. As a first step, in this work we focus on domains where obtaining semantics is
easy. In particular, we consider environments which resemble the real-world and have strong object
detectors available (He et al., 2017). An example of such environments is House3D which contains
45k human-designed 3D scenes (Wu et al., 2018). House3D provides a diverse set of scene layouts,
object types, sizes and connectivity, which all conform to a consistent “natural” semantics. Within
these complex scenes, we tackle navigation tasks within novel indoor scenes. Note that this problem
is extremely challenging as the agent needs to reach far-away targets which can only be completed
effectively if it can successfully reason about the overall structure of the new scenario. Lastly, we
emphasize that although we consider navigation as a concrete example in this work, our approach is
general and can be applied to other tasks for which semantic structures and signals are available

Our extensive experiments show that our LEAPS framework outperforms strong model-free RL
approaches, even when the semantic signals are given as input to the policy. Furthermore, the relative
improvements of LEAPS over baselines become more significant when the targets are further away
from the agent’s birthplace, indicating the effectiveness of planning on the learned semantic model.

2 RELATED WORK

Most deep RL agents are tested in the same training environments (Mirowski et al., 2016), disregarding
generalization. While limited, robust training approaches have been proposed to enforce an agent’s
generalization ability, such as domain randomization (Tobin et al., 2017) and data augmentation by
generating random mazes for training (Oh et al., 2017; Parisotto & Salakhutdinov, 2017). In our
work, we use a test set of novel unseen environments, where an agent cannot resort to memorization
or simple pattern matching to solve the task.

Meta-learning has shown promising results for fast adaptation to novel environments. Methods
include learning a good initialization for gradient descent (Finn et al., 2017) or learning a neural
network that can adapt its policy during exploration (Duan et al., 2016; Mishra et al., 2017). We
propose to learn a Bayesian model over the semantic level and infer the posterior structure via the
Bayes rule. Our approach (1) can work even without any exploration steps in a new environment and
(2) is interpretable and can be potentially combined with any graph-based planning algorithm.

Our work can be viewed as a special case of hierarchical reinforcement learning (HRL). Unlike
other approaches (Vezhnevets et al., 2017; Bacon et al., 2017), in our work high-level planning is
performed based on the semantic signals. With orders of magnitudes fewer parameters, our approach
is easier to learn compared to recurrent controllers.

LEAPS assumes a discrete semantic signal in addition to the continuous state. A similar assumption
is also adopted in (Zhang et al., 2018), where the discrete signals are called “attributes” and used for
planning to solve compositional tasks within the same fully observable environment. (Riedmiller
et al., 2018) use additional discrete signals to tackle the sparse reward problem. The schema
network (Kansky et al., 2017) further assumes that even the continuous visual signal can be completely
represented in a binary form and therefore directly runs logical reasoning on the binary states.

For evaluating our approach, we focus on the problem of visual navigation, which has been studied
extensively (Leonard & Durrant-Whyte, 1992). Classical approaches build a 3D map of the scene
using SLAM, which is subsequently used for planning (Fox et al., 2005). More recently, end-to-end
approaches have been applied to tackle various domains, such as maze (Mirowski et al., 2016), indoor
scenes (Zhu et al., 2017) and Google street view (Mirowski et al., 2018). Evidently, navigation
performance deteriorates as the agent’s distance from the target increases (Zhu et al., 2017; Wu et al.,
2018). To aid navigation and boost performance, auxiliary tasks (Mirowski et al., 2016; Jaderberg
et al., 2016) are often introduced during training. Another direction for visual navigation is to use a
recurrent neural network and represent the memory in the form of a 2D spatial map (Khan et al., 2018;
Parisotto & Salakhutdinov, 2017; Tamar et al., 2016; Gupta et al., 2017) such that a differentiable
planning computation can be performed on the spatial memory. Our approach considers more general
graph structures beyond dense 2D grids and captures relationships between semantic signals, which
we utilize as an informative latent structure in semantically rich environments like House3D.
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Similar to our work, Savinov et al. (Savinov et al., 2018) constructs a graph of nodes corresponding
to different locations of the environment. However, they rely on a pre-exploration step within the test
scene and build the graph completely from the pixel space. In LEAPS, we use semantic knowledge
and learn a prior over the semantic structures that are shared across real-world scenes. This allows us
to directly start solving for the task at hand without any exploratory steps.

3 BACKGROUND

We assume familiarity with standard DRL notations. Complete definitions are in Appendix A.

Environment: We consider a contextual Markov decision process (Hallak et al., 2015) E(c) defined
by E(c) = (S,A, P (s′|s, a; c), r(s, a; c)). Here c represents the objects, layouts and any other
semantic information describing the environment, and is sampled from C, the distribution of possible
semantic scenarios. For example, c can be intuitively understood as encoding the complete map for
navigation, or the complete object and obstacle layouts in robotics manipulations, not known to the
agent in advance, and we refer to them as the context.

Semantic Signal: At each time step, the agent observes from s a tuple (so, ss), which consists of:
(1) a high-dimensional observation so, e.g., the first person view image, and (2) a low-dimensional
discrete semantic signal ss, which encodes semantic information. Such signals are common in AI,
e.g., in robotic manipulation tasks ss indicates whether the robot is holding an object; for games it is
the game status of a player; in visual navigation it indicates whether the agent reached a landmark;
while in the AI planning literature, ss is typically a list of predicates that describe binary properties
of objects. We assume ss is provided by an oracle function, which can either be directly provided by
the environment or extracted by some semantic extractor.

Generalization: Let µ(a|{s(t)}t; θ) denote the agent’s policy parametrized by θ conditioned on the
previous states {s(t)}t. The objective of generalization is to train a policy on training environments
Etrain such that the accumulative reward R(µ(θ); c) on test set Etest is maximized.

4 LEARNING AND PLANNING WITH A SEMANTIC MODEL

The key motivation of LEAPS is the fact that while each environment can be different in visual
appearances, there are structural similarities between environments that can be captured as a proba-
bilistic graphical model over the semantic information. On a high level, we aim to learn a Bayesian
model M?(D, c) that captures the semantic properties of the context c, from the agent’s exploration
experiences D. Given a new environment E(c′), the agent computes the posterior P (c′|D′,M?) for
the unknown context c′ via the learned model M? and its current experiences D′. This allows the
agent to plan according to its belief of c′ to reach the goal more effectively. Thanks to the Bayes rule,
this formulation allows probabilistic inference even with limited (or even no) exploration experiences.

Learning an accurate and complete Bayesian model M?(D, c) can be challenging. We learn an
approximate latent variable model M(y, z;ψ) parameterized by ψ with observation variable y
and latent variable z that only depend on the semantic signal ss. Suppose we have K different
semantic signals T1, . . . , TK and ss ∈ {0, 1}K where ss(Tk) denotes whether the kth signal Tk (e.g.,
landmarks in navigation) is reached or not. Assuming T1 is the final goal of the task, from any state
s, we want to reach some final state s′ with s′s(T1) = 1. In this work, we consider navigation as
a concrete example, which can be represented as reaching a state where a desired semantic signal
becomes ‘true’. We exploit the fact that navigation to a target can be decomposed into reaching
several way points on way to the target, and therefore can be guided by planning on the semantic
signals, i.e., arrival at particular way points.

4.1 THE SEMANTIC MODEL

Note that there can be 2K different values for ss. For efficient computation, we assume independence
between different semantic signals Tk: we use a binary variable zi,j to denote whether some state
s′ with s′s(Tj) = 1 can be “directly reached”, i.e., by a few exploration steps, from some state s
with ss(Ti) = 1, regardless of other signals Tk 6∈ {Ti, Tj}. In addition, we also assume reversibility,
i.e., zi,j = zj,i, so only K(K − 1)/2 latent variables are needed. Before entering the unknown
environment, the agent does not know the true value of zi,j , but holds some prior belief P (zi,j),
defined by zi,j ∼ Bernoulli(ψprior

i,j ), where ψprior
i,j is some parameter to be learned. After some

exploration steps, the agent receives a noisy observation yi,j of zi,j , i.e., whether a state s′ with
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s′s(Tj) = 1 is reached. We define the observation model P (yi,j |zi,j) as follows:

yi,j ∼
{

Bernoulli(ψobs
i,j,0) if zi,j = 0

Bernoulli(1− ψobs
i,j,1) if zi,j = 1

(1)

At any time step, the agent hold an overall belief P (z|Y) of the semantic structure of the unknown
environment, based on its experiences Y , namely the samples of y.

4.2 COMBINING THE SEMANTIC MODEL WITH MULTI-TARGET SUB-POLICIES

Multi-target sub-policies: With our semantic model, we correspondingly learn multi-target sub-
policies µ(a|{s(t)o }t;Ti, θ) taking so as input such that µ(Ti, θ) is particularly trained for sub-target
Ti, i.e., reaching a state s′ with s′s(Ti) = 1. Hence the semantic model can be treated as a model-
based planning module that picks an intermediate sub-target for the sub-policies to execute so that
the final target T1 can be reached with the highest probability.

Inference and planning on M: We assume the agent explores the current environment for a short
horizon of N steps and receives semantic signals ss(1), . . . , ss(N). Then we compute the bit-OR
operation over these binary vectors B = ss

(1) OR . . . OR ss
(N). By the reversibility assumption,

for Ti and Tj with B(Ti) = B(Tj) = 1, we know that Ti and Tj are “directly reachable” for each
other, namely a sample of yi,j = 1, and otherwise yi,j = 0. Combining all the history samples of y
and the current batch from B as Y , we can perform posterior inference P (z|Y) by the Bayes rule.
By the independence assumption, we can individually compute the belief of each latent variable
zi,j , denoted by ẑi,j = P (zi,j |Yi,j). Given the current beliefs ẑi,j , the current semantic signals ss
and the goal T1, we search for an optimal plan τ∗ = {τ0, τ1, . . . , τm−1, τm}, where τi ∈ {1 . . .K}
denotes an index of concepts and particularly τm = 1, so that the joint belief along the path from
some current signal to the goal is maximized:

τ? = argmax
τ

ss(Tτ0)

m∏
t=1

ẑτt−1,τt . (2)

After obtaining τ?, we execute the sub-policy for the next sub-target Tτ?
1

, and then repeatedly update
the model and replan every N steps.

4.3 LEARNING THE SEMANTIC MODEL

The model parameters ψ have two parts: ψprior for the prior of z and ψobs for the noisy observation y.
Note that ψobs is related to the performance of the sub-policies µ(θ): if µ(θ) has a high success rate
for reaching sub-targets, ψobs should be low; when µ(θ) is poor, ψobs should be higher (cf. Eq. (1)).

Learning ψprior: We learn ψprior from Etrain. During training, for each pair of semantic signals Ti
and Tj , we run random explorations from some state s with s(Ti) = 1. If eventually we reach some
state s′ with s′(Tj) = 1, we consider Ti and Tj are reachable and therefore a positive sample zi,j = 1;
otherwise a negative sample zi,j = 0. Suppose Z denotes the samples we obtained for z from Etrain.
We run maximum likelihood estimate for ψprior by maximizing LMLE(ψ

prior) = P (Z|ψprior).

Learning ψobs: There is no direct supervision for ψobs. However, we can evaluate a particular value
of ψobs by policy evaluation on the validation environments Evalid. We optimize the accumulative
reward Lvalid(ψ

obs) = EE(c)∈Evalid [R(µ(θ),M(ψ); c)] , with the semantic model M(ψ). Analytically
optimizing Lvalid is hard. Instead, we apply local search in practice to find the optimal ψobs.

4.4 LEARNING THE LEAPS AGENT

The LEAPS agent consists of two parts, the multi-target sub-policy µ(Ti, θ) and the semantic model
M(ψ). Learning the multi-target sub-policies can be accomplished by any standard deep RL method
on Etrain. For the semantic model, learning ψprior does not depend on the sub-policies and can be
reused even with different sub-policies; ψobs depends on the sub-policies so it should be learned after
µ(Ti, θ) is obtained.
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Figure 1: Visualization of learned semantic prior of M(ψ): the most and least likely nearby rooms
for dining room (L), bedroom (M) and outdoor (R), with numbers denoting ψz , i.e., the probability
of two rooms connecting to each other.

Figure 2: Example of a successful trajectory. The agent is spawned inside the house, targeting
“outdoor”. Left: the 2D top-down map with sub-target trajectories (“outdoor” – orange; “garage” –
blue; “living room” – green); Right, 1st row: RGB visual image; Right, 2nd row: the posterior of
the semantic graph and the proposed sub-targets (red arrow). Initially, the agent starts by executing
the sub-policy "outdoor" and then "garage" according to the prior knowledge (1st graph), but both
fail (top orange and blue trajectories in the map). After updating its belief that garage and outdoor
are not nearby (grey edges in the 2nd graph), it then executes the "living room" sub-policy with
success (red arrow in the 2nd graph, green trajectory). Finally, it executes “outdoor” sub-policy
again, explores the living room and reaches the goal (3rd graph, bottom orange trajectory).

5 ROOMNAV: A 3D NAVIGATION TASK FOR RL GENERALIZATION

RoomNav is a concept driven navigation task based on the House3D environment (Wu et al., 2018).
In RoomNav, the agent is given a concept target, i.e., a room type, and needs to navigate to find the
target room. RoomNav pre-selected a fixed set of target room types and provides a training set of 200
houses, a testing set of 50 houses and a small validation set of 20 houses.

Semantic signals: We choose the K = 8 most common room types as our semantic signals, such
that ss(Ti) denotes whether the agent is currently in a room with type Ti1. When given a target Ti,
reaching a state s with ss(Ti) = 1 becomes our final goal. House3D provides bounding boxes for
rooms, which can be directly used as the oracle for semantic signals. But in practice, we only use
these oracle signals to train a room type detector and use this detector to extract semantic information
during evaluation. Details can be found in the beginning part of Sec. 6.

The semantic model and sub-policies: In navigation, the reachability variable zi,j can naturally
represent the connectivity between room type Ti and room type Tj2. We run random explorations in
training houses between rooms to collect samples for learning ψprior. For learning ψobs, we perform
a grid search and evaluate on the validation set. For sub-policies, we learn target driven LSTM
policies by A3C (Mnih et al., 2016) with shaped reward on Etrain. More details are in Appendix. G.

6 EXPERIMENTS

In this section, we experiment on RoomNav and try to answer the following questions: (1) Does
the learned prior distribution capture meaningful semantic consistencies? (2) Does our LEAPS
agent generalize better than the model-freel RL agent that only takes image input? (3) Our LEAPS

1We also treat ss = 0 as a special semantic signal. So M actually contains K + 1 signals.
2A house can have multiple rooms of the same type. But even this simplification improves generalization.
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Figure 3: Comparison in success rate with model-free baselines (Sec. 6.2). We evaluate performance
of random policy (blue), model-free RL baseline (pure µ(θ), green) and our LEAPS agent (red),
with increasing horizon H from left to right (left: H = 300; middle: H = 500; right: H = 1000).
Each row shows a particular metric. Top row: success rate (y-axis) w.r.t. the distance in meters
from the birthplace to target room (x-axis); middle row: success rate with confidence interval (y-
axis) w.r.t. the shortest planning distance in the ground truth semantic model (x-axis); bottom row:
relative improvement of LEAPS over the baseline (y-axis) w.r.t. the optimal plan distance (x-axis).
As the number of planning computations, i.e., H/N , increases (from left to right), LEAPS agent
outperforms baselines more. LEAPS also has higher relative improvements, i.e., 40% to 180%, for
targets requiring more semantic planning computations (i.e., plan-steps > 2).

agent takes additional semantic signals as input. How does LEAPS compare to other model-free RL
approaches that also take the semantic signals as part of the inputs but in a different way from our
semantic model? For example, what about replacing our semantic model with a complicated RNN
controller? (4) What do our LEAPS agents perform under some other metric considering the episode
length? We consider a recently proposed metric, SPL (Anderson et al., 2018) in Sec. 6.4.

Semantic Signals: All the semantic signals fed to our semantic model at test time are extracted by a
CNN room type detector, which is trained on the (noisy) oracle semantic information provided by the
House3D on Etrain and validated on Evalid. During training, all the approaches directly use the oracle
semantic signals. More details are in Appendix J and Appendix D.

6.1 THE LEARNED PRIOR OF THE SEMANTIC MODEL

We visualize the learned prior P (z|ψprior) in Fig. 1 with 3 room types and their most and least likely
connected rooms. The learned prior indeed captures reasonable relationships: bathroom is likely to
connect to a bedroom; kitchen is often near a dining room while garage is typically outdoor.
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6.2 COMPARISON WITH MODEL-FREE RL BASELINES

We follow measure the testing success rate of different agents under various horizon lengths on Etest.
More details are in Appendix C and F. We compare our LEAPS agent with two baselines (1) random
policy (denoted by “random”) and (2) model-free RL agent that only takes in image input so and
executes µ(Ti, θ) throughout the episode (denoted by “pure µ(θ)”). For LEAPS agent, we setN = 30,
i.e., update the semantic model every 30 steps. We experiment on horizons H = 300, 500, 1000
and evaluate the success rate and relative improvements of our LEAPS agent over the baselines in
Fig. 3. As the number of planning computations, H/N , increases, our LEAPS agent outperforms the
baselines more significantly in success rate. Note that since targets of plan-steps 1 do not require any
planning computations, hence it is as expected that LEAPS does not improve much over the pure
policy. The best relative improvements are achieved for targets neither too faraway nor too close, i.e.,
plan steps equal to 3 or 4. Interestingly, we observe that there is a small success rate increase for
targets that are 5 plan steps away. We suspect that this is because it is rare to see houses that has a
diameter of 5 in the semantic model (imagine a house where you need to go through 5 rooms to reach
a place). Such houses may have structural properties that makes navigation easier. Fig. 2 shows an
example of a success trajectory of our LEAPS agent. We visualize the progression of the episode,
describe the plans and show the updated graph after exploration.

6.3 COMPARING TO SEMANTIC-AWARE AGENTS WITHOUT A GRAPH REPRESENTATION

Here we consider two semantic-aware agents that also takes the semantic signals as input.

Semantic augmented agents: We train new sub-policies µs(θs) taking both so and ss as input.

HRL agents with a RNN controller: Note that updating and planning on M (Eq. 2) only depend
on (1) the current semantic signal ss, (2) the target Ti, and (3) the accumulative bit-OR feature B.
Hence, we fixed the same set of sub-policies µ(θ) used by our LEAPS agent, and train an LSTM
controller with 50 hidden units on Etrain that takes all the necessary semantic information, and produce
a sub-target every N steps. Training details are in Appendix I. Note that the only difference between
our LEAPS agent and this HRL agent is the representation of the planning module. The LSTM
controller has access to exactly the same semantic information as our model M and uses a much
more complicated neural model. Thus we expect it to perform competitively to our LEAPS agent.

The results are shown in Fig. 4, where our LEAPS agent outperforms both baselines. The semantic
augmented policy µs(θs) does not improve much on the original µ(θ). For the HRL agent with an
LSTM controller, the LEAPS agent achieves higher relative improvements for targets requiring more
planning computations (i.e., plan-steps > 1), and also has the following advantages: (1) M can be
learned more efficiently with much fewer parameters: an LSTM with 50 hidden units has over 104

parameters while M(ψ) only has 38 parameters3; (2) M can adapt to new sub-policies µ(θ′) with
little fine-tuning (ψprior remains unchanged) while the LSTM controller needs to re-train; (3) the
model M and the planning procedure are fully interpretable.

6.4 EVALUATION UNDER METRICS CONSIDERING EPISODE LENGTH

In the previous evaluation, we only consider the metric success rate under different horizons. Indeed,
another informative metric will be the episode length. There are two important factors: (1) we
would expect a better navigation agent to finish the semantic task in a shorter amount of actions; (2)
we should assign more credits to the agent when it finishes a hard episode while less credits when
finishing an easy one. Recently, there is a new evaluation metric proposed for embodied navigation
agent by Anderson et al. (2018) capturing both these two factors, i.e., the Success weighted by Path
Length (SPL) metric. SPL is a function considering both success rate and the path length to reach the
goal from the starting point defined by 1

N

∑
i Si

Li

max(Li,Pi)
, where N is total episodes evaluated, Si

indicates whether the episode is success or not, Li is the ground truth shortest path distance in the
episode, Pi is the number of steps the agent actually took.

We evaluate the performance of LEAPS agents against all baseline agents in the metric of both
success rate and SPL in Figure 5. Our LEAPS agent has the highest average SPL (rightmost column)
with a big margin over all baseline agents in all the cases. Notably, the margin in SPL is much
more significant than the margin in pure success rate. More importantly, as the horizon increases,
namely, more planning computations allowed, the SPL margin of LEAPS over the best remaining

3We assign the same value to all ψobs
i,j,c for each c ∈ {0, 1}. See more in Appendix H.
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Figure 4: Comparison in success rate with semantic-aware policies (Sec. 6.3). We evaluate perfor-
mance of the semantic augmented model-free agent (“aug. µs(θ)”, blue), the HRL agent with the
same sub-policies as LEAPS but with an LSTM controller (“RNN control.”, green) and our LEAPS
agent (red), with increasing horizon H from left to right (left: H = 300; middle: H = 500; right:
H = 1000). Top row: success rate (y-axis) w.r.t. the distance in meters from birthplace to target
(x-axis); middle row: success rate with confidence interval (y-axis) w.r.t. the shortest planning
distance in the ground truth semantic model (x-axis); bottom row: relative improvements of LEAPS
over the baselines (y-axis) w.r.t. the optimal plan distance (x-axis). Our LEAPS agent outperforms
both of the baselines for targets requring planning computations (i.e., plan-steps > 1). For faraway
targets with plan-steps > 2 in longer horizons (H ≥ 500), LEAPS improves over augmented policy
by 80% and over RNN controller by 10% in success rate. Note that even though the LSTM controller
has two orders of magnitudes more parameters than our semantic model M, our LEAPS agent still
performs better.

baselines strictly increases. This again indicates the effectiveness of our semantic model and shows
that it indeed helps solve harder tasks, i.e., finding those faraway targets requiring more planning
computations.

We also notice that in shorter horizons (H ≤ 500), for plan-steps equal to 4, LEAPS agents have
the highest success rate but relatively lower SPL. This is because that our LEAPS agent updates the
semantic model every fixed N = 30 steps. This relatively low update frequency may potentially
increase the episode length to reach a goal that requires more planning computations. However, when
the horizon is long, i.e., allowing enough planning computations, our LEAPS agents significantly
outperform all the baselines in SPL metric. It will be helpful if the LEAPS agent can learn to update
the semantic model instead of updating it in a fixed frequency. We leave this to future works.

7 CONCLUSION AND FUTURE WORK

In this work, we proposed LEAPS to improve generalization of RL agents in unseen environments
with diverse room layouts and object arrangements, while the underlying semantic information is
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opt plan-steps 1 2 3 4 5 overall
Horizon H = 300

random 20.5 / 15.9 6.9 / 16.7 3.8 / 10.7 1.6 / 4.2 3.0 / 8.8 7.2 / 13.6
pure µ(θ) 49.4 / 47.6 11.8 / 27.6 2.0 / 4.8 2.6 / 10.8 4.2 / 13.2 13.1 / 22.9
aug.µS(θ) 47.8 / 45.3 11.4 / 23.1 3.0 / 7.8 3.4 / 8.1 4.4 / 11.2 13.0 / 20.5

RNN control. 52.7 / 45.2 13.6 / 23.6 3.4 / 9.6 3.4 / 10.2 6.0 / 17.6 14.9 / 21.9
LEAPS 53.4 / 58.4 15.6 / 31.5 4.5 / 12.5 3.6 / 6.6 7.0 / 18.0 16.4 / 27.9

Horizon H = 500

random 21.9 / 16.9 9.3 / 18.3 5.2 / 12.1 3.6 / 6.1 4.2 / 9.9 9.1 / 15.1
pure µ(θ) 54.0 / 57.5 15.9 / 25.6 3.8 / 7.7 2.8 / 6.4 4.8 / 8.6 16.2 / 22.9
aug.µS(θ) 54.1 / 51.8 15.5 / 26.5 4.6 / 8.2 3.0 / 11.8 4.6 / 12.5 16.1 / 23.5

RNN control. 57.4 / 43.8 20.2 / 28.0 7.2 / 14.6 4.2 / 8.0 9.0 / 16.0 19.9 / 24.6
LEAPS 57.2 / 61.9 21.5 / 34.4 10.0 / 14.8 6.4 / 11.6 12.0 / 23.5 21.6 / 31.1

Horizon H = 1000

random 24.3 / 17.6 13.5 / 20.3 9.1 / 14.3 8.0 / 9.3 7.0 / 11.5 13.0 / 17.0
pure µ(θ) 60.8 / 58.4 23.3 / 29.5 7.6 / 8.8 8.2 / 12.9 11.0 / 17.2 22.5 / 26.5
aug.µS(θ) 61.3 / 50.1 23.0 / 26.2 9.4 / 12.0 5.8 / 9.6 9.0 / 13.6 22.4 / 23.8

RNN control. 66.7 / 49.0 30.1 / 31.5 13.8 / 15.4 9.0 / 10.0 14.0 / 20.8 28.2 / 27.7
LEAPS 66.4 / 58.4 31.9 / 40.5 15.0 / 18.3 11.4 / 17.0 15.4 / 27.1 29.7 / 35.2

Figure 5: Metrics of Success Rate(%) / SPL(‰) evaluating the performances of LEAPS and baseline
agents. Our LEAPS agents have the highest success rates for all the cases requiring planning
computations, i.e., plan-steps larger than 1. For SPL metric, LEAPS agents have the highest overall
SPL value over all baseline methods (rightmost column). More importantly, as the horizon increases,
LEAPS agents outperforms best baselines more. LEAPS requires a relatively longer horizon for the
best practical performances since the semantic model is updated every fixed N = 30 steps, which
may potentially increase the episode length for short horizons. More discussions are in Sec. 6.4.

shared with the environments in which the agent is trained on. We adopt a graphical model over
semantic signals, which are low-dimensional binary vectors. During evaluation, starting from a prior
obtained from the training set, the agent plans on model, explores the unknown environment, and
keeps updating the semantic model after new information arrives. For exploration, sub-policies that
focus on multiple targets are pre-trained to execute primitive actions from visual input. The semantic
model in LEAPS is lightweight, interpretable and can be updated dynamically with little explorations.
As illustrated in the House3D environment, LEAPS works well for environments with semantic
consistencies – typical of realistic domains. On random environments, e.g., random mazes, LEAPS
degenerates to exhaustive search.

Our approach is general and can be applied to other tasks, such as robotics manipulations where
semantic signals can be status of robot arms and object locations, or video games where we can plan
on semantic signals such as the game status or current resources. In future work we will investigate
models for more complex semantic structures.
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A COMPLETE NOTATIONS AND DEFINITIONS

Environment: We consider a contextual Markov Decision Process (Hallak et al., 2015) E(c) defined
by E(c) = (S,A, P (s′|s, a; c), r(s, a; c)), where S is the state space and A is the action space. c
represents the objects, layouts and any other semantic information describing the environment, and
is sampled from C, the distribution of possible semantic scenarios. r(s, a; c) denotes the reward
function while P (s′|s, a; c) describes transition probability conditioned on c. For example, c can
be intuitively understood as encoding the complete map for navigation, or the complete object and
obstacle layouts in robotics manipulations, not known to the agent in advance, and we refer to them
as the context.

Semantic Signal: At each time step, the agent’s observation is a tuple (so, ss), which consists of:
(a) a high-dimensional observation so, e.g. the first person view image, and (b) a low-dimensional
semantic signal ss, which encodes semantic information. Such low-dimensional discrete signals are
commonly used in AI, e.g. in robotic manipulation tasks ss indicates whether the robot is holding
an object; for games it is the game status of a player; in visual navigation it indicates whether the
agent reached a landmark; while in the AI planning literature, ss is typically a list of predicates that
describe binary properties of objects. We assume ss is provided by an oracle function, which can
either be directly provided by the environment or extracted by some semantic extractor.

Generalization: Let µ(a|{s(t)}t; θ) denote the agent’s policy parametrized by θ conditioned on the
previous states {s(t)}t andR(µ(θ); c) denote the accumulative reward of µ(θ) inE(c). The objective
is to find the best policy that maximizes the expected accumulative reward Ec∼C [R(µ(θ); c, Ti)].
In practice, we sample a disjoint partition of a training set Etrain = {E(ci)}i and a testing set
Etest = {E(cj)}j , where {ci} and {cj} are samples from C. We train µ(θ) with a shaped reward rtrain
only on Etrain, and measure the empirical generalization performance of the learned policy on Etest
with the original unshaped reward (e.g., binary reward of success or not).

B ENVIRONMENT DETAILS

In RoomNav the 8 targets are: kitchen, living room, dining room, bedroom, bathroom, office, garage
and outdoor. We inherit the success measure of “see” from (Wu et al., 2018): the agent needs to see
some corresponding object for at least 450 pixels in the input frame and stay in the target area for at
least 3 time steps.

For the binary signal ss, we obtain from the bounding box information for each room provided from
SUNCG dataset (Song et al., 2017), which is very noisy.

Originally the House3D environment supports 13 discrete actions. Here we reduce it to 9 actions:
large forward, forward, left-forward, right-forward, large left rotate, large right rotate, left rotate,
right rotate and stay still.

C EVALUATION DETAILS

We following the evaluation setup from (Wu et al., 2018) and measure the success rate on Etest over
5750 test episodes, which consists of 5000 random generated configurations and 750 specialized for
faraway targets to increase the confidence of measured success rate. These 750 episodes are generated
such that for each plan-distance, there are at least 500 evaluation episodes. Each test episode has a
fixed configuration for a fair comparison between different approaches, i.e., the agent will always
start from the same location with the same target in that episode. Note that we always ensure that (1)
the target is connected to the birthplace of the agent, and (2) the the birthplace of the agent is never
within the target room.

D EVALUATION RESULTS USING GROUND TRUTH SEMANTIC SIGNALS

In the experiment sections, we use a CNN detector to extract the semantic signals at test time. Here
we also evaluate the performance of all the approaches when using the ground truth signal from the
oracle provided by the House3D environment. The results are in Figure 6, where we also include the
LEAPS agent using CNN detector as a references. Generally, using both the ground truth signal and
using the CNN detector yield comparable overall performances in both metrics of success rate and
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SPL. They all consistently outperform all the baseline methods, which indicates that our Bayesian
model is indeed robust over semantic signals. One interesting observation is that there are many cases,
using CNN detector produces better results than using the ground truth signals. We hypothesis that
this is because the semantic labels in House3D is noisy and therefore a well-trained CNN detector
will not be influenced by the noisy labels at test time.

plan-dist 1 2 3 4 5 overall
Horizon H = 300

random 20.5 / 15.9 6.9 / 16.7 3.8 / 10.7 1.6 / 4.2 3.0 / 8.8 7.2 / 13.6
pure µ(θ) 49.4 / 47.6 11.8 / 27.6 2.0 / 4.8 2.6 / 10.8 4.2 / 13.2 13.1 / 22.9

aug.µS(θ) (true) 51.9 / 66.4 11.1 / 24.2 3.3 / 7.8 2.4 / 6.0 3.0 / 8.7 13.2 / 23.3
RNN contrl. (true) 52.9 / 44.7 13.9 / 26.2 4.7 / 10.4 2.0 / 6.6 5.4 / 17.1 15.2 / 22.9

LEAPS (true) 54.1 / 67.4 15.9 / 34.1 6.1 / 15.1 2.8 / 5.4 6.2 / 22.1 16.7 / 31.0
LEAPS (CNN) 53.4 / 58.4 15.6 / 31.5 4.5 / 12.5 3.6 / 6.6 7.0 / 18.0 16.4 / 27.9

Horizon H = 500

random 21.9 / 16.9 9.3 / 18.3 5.2 / 12.1 3.6 / 6.1 4.2 / 9.9 9.1 / 15.1
pure µ(θ) 54.0 / 57.5 15.9 / 25.6 3.8 / 7.7 2.8 / 6.4 4.8 / 8.6 16.2 / 22.9

aug.µS(θ) (true) 55.1 / 58.3 15.3 / 23.0 4.9 / 8.7 2.2 / 5.9 6.2 / 15.5 16.3 / 22.4
RNN contrl. (true) 57.2 / 44.9 19.5 / 27.4 6.2 / 10.3 4.2 / 8.6 8.4 / 12.3 19.3 / 23.3

LEAPS (true) 57.0 / 59.8 21.0 / 33.5 9.5 / 17.3 6.6 / 10.8 10.2 / 22.3 21.1 / 30.6
LEAPS (CNN) 57.2 / 61.9 21.5 / 34.4 10.0 / 14.8 6.4 / 11.6 12.0 / 23.5 21.6 / 31.1

Horizon H = 1000

random 24.3 / 17.6 13.5 / 20.3 9.1 / 14.3 8.0 / 9.3 7.0 / 11.5 13.0 / 17.0
pure µ(θ) 60.8 / 58.4 23.3 / 29.5 7.6 / 8.8 8.2 / 12.9 11.0 / 17.2 22.5 / 26.5

aug.µS(θ) (true) 62.4 / 61.3 22.9 / 30.7 8.9 / 14.3 7.2 / 12.8 9.0 / 11.4 22.5 / 28.1
RNN contrl. (true) 65.4 / 50.7 29.9 / 33.8 14.6 / 16.6 9.2 / 12.8 13.6 / 21.7 28.1 / 29.6

LEAPS (true) 66.5 / 62.3 33.8 / 42.0 17.8 / 19.6 11.0 / 10.2 18.4 / 29.8 31.4 / 36.3
LEAPS (CNN) 66.4 / 58.4 31.9 / 40.5 15.0 / 18.3 11.4 / 17.0 15.4 / 27.1 29.7 / 35.2

Figure 6: Metrics of Success Rate(%) / SPL(‰) evaluating the performances of LEAPS and baselines
agents using the ground truth oracle semantic signals provided by the environments. We also include
the performance of LEAPS agent using CNN detector as a reference. Note that even using an CNN
detector, LEAPS agents outperforms all baselines in both metrics of success rate and SPL. Notably,
the performance of LEAPS-CNN agents is comparable to LEAPS-true agents and sometimes even
better. This indicates that our semantic model can indeed tolerate practical errors in CNN detectors.
More discussions are in Sec. D.

E EVALUATION DETAILS ON EPISODE LENGTH

We illustrate the ground truth shortest distance information as well as the average episode length of
success episodes for all the approaches. The results are shown in Figure 7. Note that the average
ground truth shortest path is around 46.86 steps. Considering the fact agent has 9 actions per step as
well as the strong partial observability, this indicates that our benchmark semantic navigation task is
indeed challenging.

F VISUALIZATION DETAILS

For confidence interval of the measured success rate, we computed it by fitting a binomial distribution.

For optimal plan steps, we firstly extract all the room locations, and then construct a graph where a
vertex is a room while an edge between two vertices is the shortest distance between these two rooms.
After obtaining the graph and a birthplace of the agent, we compute shortest path from the birthplace
to the target on this graph to derive the optimal plan steps.
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Average Ground Truth Shortest Path Length
plan-dist 1 2 3 4 5 overall
Oracle 12.27 42.53 61.09 72.47 63.74 46.86

Average Successful Episode Length
plan-dist 1 2 3 4 5 overall

Horizon H = 300

random 34.0 112.7 143.8 148.0 149.7 89.8
pure µ(θ) 55.2 107.0 127.9 140.8 139.4 84.7
aug.µS(θ) 49.7 112.5 159.9 179.1 176.8 89.2

RNN control. 61.6 122.9 127.1 131.0 124.5 96.2
LEAPS 58.3 120.6 160.1 178.6 154.7 99.7

Horizon H = 500

random 56.1 186.0 206.5 286.7 222.0 154.1
pure µ(θ) 74.1 184.6 205.9 190.6 215.6 140.4
aug.µS(θ) 86.7 178.1 240.6 185.5 267.3 145.6

RNN control. 94.0 206.4 237.7 252.0 256.3 171.0
LEAPS 83.1 203.9 267.6 258.3 248.6 173.1

Horizon H = 1000

random 121.7 354.7 426.6 532.8 409.5 322.1
pure µ(θ) 145.8 378.1 504.5 491.2 458.2 315.1
aug.µS(θ) 163.1 360.9 471.9 460.7 432.5 307.1

RNN control. 170.0 407.4 512.7 485.0 419.5 350.0
LEAPS 158.0 379.2 512.0 488.1 419.4 335.9

Figure 7: Averaged successful episode length for different approaches. The length of shortest path
reflects the strong difficulty of this task.

G DETAILS FOR LEARNING NEURAL SUB-POLICIES

Hyperparameters: We utilize the same policy architecture as (Wu et al., 2018). It was mentioned
in (Wu et al., 2018) that using segmentation mask + depth signals as input leads to relatively better
performances for policy learning. So we inherit this setting here. In the original House3D paper, a
gated attention module is used to incorporate the target instruction. Here, since we only have K = 8
different sub-policies, we simply train an individual policy for each target and we empirically observe
that this leads to better performances. We run A3C with γ = 0.97, batch size 64, learning rate 0.001
with Adam, weight decay 10−5, entropy bonus 0.1. We backprop through at most 30 time steps. We
also compute the squared l2 norm of logits and added to the loss with a coefficient 0.01. We also
normalize the advantage to mean 0 and standard deviation 1.

Reward shaping: We used a shaped reward function similar to (Wu et al., 2018): the reward at each
time step is computed by the difference of shortest paths in meters from the agent’s location to the
goal after taking a action. We also add a time penalty of 0.1 and a collision penalty of 0.3. When the
agent reaches the goal, the success reward is 10.

Curriculum learning: We run a curriculum learning by increasing the maximum of distance between
agent’s birth meters and target by 3 meters every 10000 iterations. We totally run 60000 training
iterations and use the final model as our learned policy µ(θ).

H DETAILS FOR LEARNING THE SEMANTIC MODEL

After evalution on the validation set, we choose to run random exploration for 300 steps to collect a
sample of z. For a particular environment, we collect totally 50 samples for each zi,j .

For all i 6= j, we set ψobs
i,j,0 = 0.001 and ψobs

i,j,1 = 0.15.
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I ADDITIONAL DETAILS FOR TRAINING SEMANTIC-AWARE POLICIES

For the LSTM controller, we ran A2C with batch size 32, learning rate 0.001 with adam, weight
decay 0.00001, gamma 0.99, entropy bonus 0.01 and advantage normalization. The reward function
is designed as follows: for every subtask it propose, it gets a time penalty of 0.1; when the agent
reach the target, it gets a success bonus of 2.

The input of the LSTM controller consists of (1) ss(t) (K bits), (2) B (K bits), (3) last subtask Tk,
and (4) the final target Ti. We convert Ti and Tk to a one-hot vector and combine the other two
features to feed into the LSTM. Hence the input dimension of LSTM controller is 4K, namely 32 in
RoomNav.

For the semantic augmented LSTM policy, µs(θs), we firstly use the CNN extract visual features
from so and combine the input semantic features and the visual features as the combined input to the
LSTM in the policy.

J ADDITIONAL DETAILS FOR TRAINING THE CNN SEMANTIC EXTRACTOR

We noticed that in order to have a room type classifier, only using the single first person view image is
not enough. For example, the agent may face towards a wall, which is not informative, but is indeed
inside the bedroom (and the bed is just behind).

So we take the panoramic view as input, which consists of 4 images, s1o, . . . , s
4
o with different first

person view angles. The only exception is that for target “outdoor”, we notice that instead of using
a panoramic view, simply keeping the recent 4 frames in the trajectory leads to the best prediction
accuracy. We use an CNN feature extractor to extract features f(sio) by applying CNN layers with
kernel size 3, strides [1, 1, 1, 2, 1, 2, 1, 2, 1, 2] and channels [4, 8, 16, 16, 32, 32, 64, 64, 128, 256]. We
also use relu activation and batch norm. Then we compute the attention weights over these 4 visual
features by li = f(sio)W

T
1 W2

[
f(s1o), . . . , f(s

4
o)
]

and ai = softmax(li). Then we compute the
weighted average of these four frames g =

∑
i aif(s

i
o) and feed it to a single layer perceptron with

32 hidden units. For each semantic signal, we generate 15k positive and 15k negative training data
from Etrain and use Adam optimizer with learning rate 5e-4, weight decay 1e-5, batch size 256 and
gradient clip of 5. We keep the model that has the best prediction accuracy on Evalid.

For a smooth prediction during testing, we also have a hard threshold and filtering process on the
CNN outputs: ss(Ti) will be 1 only if the output of CNN has confidence over 0.85 for consecutively
3 steps.
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