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ABSTRACT

Clustering high-dimensional data, such as images or biological measurements, is a
long-standing problem and has been studied extensively. Recently, Deep Cluster-
ing gained popularity due to the non-linearity of neural networks, which allows for
flexibility in fitting the specific peculiarities of complex data. Here we introduce
the Mixture-of-Experts Similarity Variational Autoencoder (MoE-Sim-VAE), a
novel generative clustering model. The model can learn multi-modal distribu-
tions of high-dimensional data and use these to generate realistic data with high
efficacy and efficiency. MoE-Sim-VAE is based on a Variational Autoencoder
(VAE), where the decoder consists of a Mixture-of-Experts (MoE) architecture.
This specific architecture allows for various modes of the data to be automatically
learned by means of the experts. Additionally, we encourage the lower dimen-
sional latent representation of our model to follow a Gaussian mixture distribution
and to accurately represent the similarities between the data points. We assess the
performance of our model on synthetic data, the MNIST benchmark data set, and
a challenging real-world task of defining cell subpopulations from mass cytom-
etry (CyTOF) measurements on hundreds of different datasets. MoE-Sim-VAE
exhibits superior clustering performance on all these tasks in comparison to the
baselines and we show that the MoE architecture in the decoder reduces the com-
putational cost of sampling specific data modes with high fidelity.

1 INTRODUCTION

Clustering has been studied extensively (Aljalbout et al., 2018; Min et al., 2018) in machine learning.
Recently, many Deep Clustering approaches were proposed, which modified (Variational) Autoen-
coder ((V)AE) architectures (Min et al., 2018; Zhang et al., 2017) or with varying regularization
of the latent representation (Dizaji et al., 2017; Jiang et al., 2017; Yang et al., 2017; Fortuin et al.,
2019).

Reconstruction error usually drives the definition of the latent representation learned from an AE or
VAE. The representation for AE models is unconstrained and typically places data objects close to
each other according to an implicit similarity measure that also yields favorable reconstruction error.
In contrast, VAE models regularize the latent representation such that the represented inputs follow
a certain variational distribution. This construction enables sampling from the latent representation
and data generation via the decoder of a VAE. Typically, the variational distribution is assumed
standard Gaussian, but for example, Jiang et al. (2017) introduced a mixture of Gaussian variational
distribution for clustering purposes.

A key component of clustering approaches is the choice of similarity metric for the considered data
objects which we try to group (Irani et al., 2016). Such similarity metrics are either defined a priori
or learned from the data to specifically solve classification tasks via a Siamese network architecture
(Chopra et al., 2005). Dimensionality reduction approaches, such as UMAP (McInnes et al., 2018)
or t-SNE (van der Maaten & Hinton, 2008), allow to specify a similarity metric for projection and
thereby define the data separation in the inferred latent representation.

In this work, we introduce the Mixture-of-Experts Similarity Variational Autoencoder (MoE-Sim-
VAE), a new deep architecture that performs similarity-based representation learning, clustering of
the data and generation of data from each specific data mode. Due to a combined loss function,
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Figure 1: Overview of the proposed model MoE-Sim-VAE. Data (in panel A) gets encoded via a
encoder network (B) into a latent representation (C) which is trained to be a mixture of standard
Gaussians. Via a clustering network (G), which is trained to reconstruct a user-defined similarity
matrix (F), the encoded samples get assigned to the data mode-specific decoder subnetworks (which
we call experts) in the MoE Decoder (D). The experts reconstruct the original input data and can be
used for data generation when sampling from the variational distribution (E).

it can be jointly optimized. We assess the scope of the model on synthetic data and we present
superior clustering performance on MNIST. Moreover, in an ablation study, we show the efficiency
and precision of MoE-Sim-VAE for data generation purposes in comparison to the most related
state-of-the-art method (Jiang et al., 2017). Finally, we show an application of MoE-Sim-VAE on a
real-world clustering problem in biology on multiple datasets.

Our main contributions are to

• Develop a novel autoencoder architecture for
– similarity-based representation learning
– unsupervised clustering
– accurate and efficient data generation

• Embed the Mixture-of-Expert architecture into a Variational Autoencoder setup to train a
separate generator for each data mode

• Show superior clustering performance of the model on benchmark dataset and real-world
biological data

2 MIXTURE-OF-EXPERTS SIMILARITY VARIATIONAL AUTOENCODER

Here we introduce the Mixture-of-Experts Similarity Variational Autoencoder (MoE-Sim-VAE, Fig-
ure 1). The model is based on the Variational Autoencoder (Kingma & Welling, 2014). While the
encoder network is shared across all data points, the decoder of the MoE-Sim-VAE consists of
a number of K different subnetworks, forming a Mixture-of-Experts architecture (Shazeer et al.,
2017). Each subnetworks constitutes a generator for a specific data mode and is learned from the
data.

The variational distribution over the latent representation is defined to be a mixture of multivari-
ate Gaussians, first introduced by Jiang et al. (2017). In our model, we aim to learn the mixture
components in the latent representation to be standard Gaussians

z ∼
K∑
k=0

ωkN (µk, I) (1)
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where ωk are mixture coefficients, µk are the means for each mixture component, I is the identity
matrix and K is the number of mixture components. The dimension of the latent representation
z needs to be defined to suit the demands of Gaussian mixtures which have limitations in higher
dimensions (Bishop, 1995). Similar to optimizing an Evidence Lower Bound (ELBO), we penalize
the latent representation via the reconstruction loss of the data Lreconst and by using the Kullback-
Leibler (KL) divergence for multivariate Gaussians (Jiang et al., 2017) on the latent representation

LKL = DKL(N0,N1) =
1

2
{tr(Σ−11 Σ0) + (µ1 − µ0)

TΣ−11 (µ1 − µ0)− k + ln
|Σ1|
|Σ0|
} (2)

where k is a constant, N0 ∼ N (µ0,Σ0 = I), and I is the identity matrix. Further, N1 ∼
N (µ1,Σ1 = diag(σj)), where σj for j = 1, . . . , D, for a number of dimensions D, is estimated
from the samples of the latent representation. Finally, we assumeµ0 = µ1 resulting in the following
simplified objective

LKL = DKL(N0,N1) =
1

2
{tr(Σ−11 Σ0)− k + ln

|Σ1|
|Σ0|
} , (3)

to penalize exclusively the covariance of each cluster. It remains to define the reconstruction loss
Lreconst, where we choose a Binary Cross-Entropy

Lreconst =
N∑
i

D∑
d

xi,d log(x
reconst
i,d ) (4)

between the original data x (scaled between 0 and 1) and the reconstructed data xreconst, where i
iterates the batch size N and d the dimensions of the data D. Finally the loss for the VAE part is
defined by

LV AE = Lreconst + π1LKL (5)

with a weighting coefficient π1 which can be optimized as a hyperparameter.

SIMILARITY CLUSTERING AND GATING OF LATENT REPRESENTATION

Training of a data mode-specific generator expert requires samples from the same data mode. This
necessitates to solve a clustering problem, that is, mapping the data via the latent representation into
K clusters, each corresponding to one of the K generator experts. We solve this clustering problem
via a clustering network, also referred to as gating network for MoE models. It takes as input the
latent representation zi of sample i and outputs probabilities pik ∈ [0, 1] for clustering sample i into
cluster k. According to this cluster assignment, sample i is then gated to expert k = argmaxk pik
for each sample i. We further define the cluster centers µk for k ∈ {1, . . . ,K} similar as in the
Expectation Maximization (EM) algorithm for Gaussian Mixture models (Bishop, 2006) as

µk =
1

Nk

N∑
i=1

pikzi , (6)

whereNk is the absolute number of data points assigned to cluster k based on highest probability pik
for each sample i = 1, . . . , N . The Gaussian mixture distributed latent representation (via KL loss
in Equation 3) is motivation for the empirical computation of the cluster means and further, similar
as in the EM algorithm, it allows iterative optimization of the means of the Gaussians. We train the
clustering network to reconstruct a data-driven similarity matrix S, using the Binary Cross-Entropy

LSimilarity =

N∑
i

N∑
j

Si,j log((PP
T )i,j) (7)

to minimize the error in PP T ≈ S, with P := {pik}i∈{1,...,N},k∈{1,...,K} where N is the number
of samples (e.g., batch size). Intuitively, PP T approximates the similarity matrix S since values
in PP T are only close to 1 when similar data objects are assigned to the same cluster, similar to
the entries in the adjacency similarity matrix S. This similarity matrix is derived in an unsupervised
way in our experiments (e.g. UMAP projection of the data and k-nearest-neighbors or distance
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thresholding to define the adjacency matrix for the batch), but can also be used to include weakly-
supervised information (e.g., knowledge about diseased vs. non-diseased patients). If labels are
available, the model could even be used to derive a latent representation with supervision. The
similarity feature in MoE-Sim-VAE thus allows to include prior knowledge about the best similarity
measure on the data.

Moreover, we apply the DEPICT loss from Dizaji et al. (2017), to improve the robustness of the
clustering. For the DEPICT loss, we additionally propagate a noisy probability p̂ik through the
clustering network using dropout after each layer. The goal is to predict the same cluster for both,
the noisy p̂ik and the clean probability pik (without applying dropout). Dizaji et al. (2017) derived
as objective function a standard cross-entropy loss

LDEPICT = − 1

N

N∑
i=0

K∑
k=0

qik log(p̂ik) (8)

whereby qik is computed via the auxiliary function

qik =
pik/(

∑
i′ pi′k)

1
2∑

k′ pik′/(
∑
i′ pi′k′)

1
2

(9)

where we refer to Dizaji et al. (2017) for exact derivation. The DEPICT loss encourages the model
to learn invariant features from the latent representation for clustering with respect to noise (Dizaji
et al., 2017). Looking at it from a different perspective, the loss helps to define a latent representation
which has those invariant features to be able to reconstruct the similarity and therefore the clustering
correctly. The complete clustering loss function LClustering is then defined by

LClustering = LSimilarity + π2LDEPICT (10)

with a mixture coefficient π2 which can be optimized as a hyperparameter.

MOE-SIM-VAE LOSS FUNCTION

Finally, the MoE-Sim-VAE model loss is defined by

LMoE−Sim−V AE = LV AE︸ ︷︷ ︸
Lreconst+π1LKL

+ LClustering︸ ︷︷ ︸
LSimilarity+π2LDEPICT

(11)

which consists of the two main loss functions LV AE , acting as a regularization for the latent repre-
sentation, andLClustering, which helps to learn the mixture components based on an a priori defined
data similarity. The model objective function LMoE−Sim−V AE can then be optimized end-to-end
to train all parts of the model.

3 RELATED WORK

(V)AEs have been extensively used for clustering (Xie et al., 2016; Dizaji et al., 2017; Li et al., 2017;
Yang et al., 2017; Saito & Tan, 2017; Chen et al., 2017; Aljalbout et al., 2018; Fortuin et al., 2019).
The most related approaches to MoE-Sim-VAE are Jiang et al. (2017) and Zhang et al. (2017).

Jiang et al. (2017) introduced the VaDE model, comprising a mixture of Gaussians as underlying dis-
tribution in the latent representation of a Variational Autoencoder. Optimizing the Evidence Lower
Bound (ELBO) of the log-likelihood of the data can be rewritten to optimize the reconstruction loss
of the data and KL divergence between the variational posterior and the mixture of Gaussians prior.
Jiang et al. (2017) motivate the use of to two separate networks for reconstruction and the gener-
ation process of the model. Further, to effectively generate images from a specific data mode and
to increase image quality, the sampled points have to surpass a certain posterior threshold and are
otherwise rejected. This leads to an increased computational effort. The MoE Decoder of our model,
which is used for both reconstruction and generation, does not need such a threshold, as we discuss
in more detail in Section 4.2.1.

Zhang et al. (2017) have introduced a mixture of autoencoders (MIXAE) model. The latent rep-
resentation of the MIXAE is defined as the concatenation of the latent representation vectors of
each single autoencoder in the model. Based on this concatenated latent representation, a Mixture

4



Under review as a conference paper at ICLR 2020

Table 1: Performance comparison of our method MoE-Sim-VAE with several published methods.
The Table is mainly extracted from Aljalbout et al. (2018) and complemented with results of interest.
(“ - ”: metric not reported)

METHOD NMI ACC
JULE, Yang et al. (2016b) 0.915 - 10
CCNN, Hsu & Lin (2017) 0.876 -

DEC, Xie et al. (2016) 0.8 0.843
DBC, Li et al. (2017) 0.917 0.964

DEPICT, Dizaji et al. (2017) 0.916 0.965
DCN, Yang et al. (2017) 0.81 0.83

Neural Clustering, Saito & Tan (2017) - 0.966
UMMC, Chen et al. (2017) 0.864 -
VaDE, Jiang et al. (2017) - 0.945

TAGnet, Wang et al. (2016) 0.651 0.692
IMSAT, Hu et al. (2017) - 0.984
Aljalbout et al. (2018) 0.923 0.961

MIXAE, Zhang et al. (2017) - 0.945
Spectral clustering, Shaham et al. (2018) 0.754 0.717

SpectralNet (input space, Euclidean dist.), Shaham et al. (2018) 0.687±0.004 0.622±0.008
SpectralNet (input space, Siamese dist.), Shaham et al. (2018) 0.884±0.02 0.826±0.03
SpectralNet (code space, Euclidean dist.), Shaham et al. (2018) 0.814±0.008 0.800±0.003
SpectralNet (code space, Siamese dist.), Shaham et al. (2018) 0.924±0.001 0.971±0.001

MoE-Sim-VAE (proposed) 0.935 0.975

Assignment Network predicts probabilities which are used in the Mixture Aggregation to form the
output of the generator network. Each AE model learns the manifold of a specific cluster, similarly
to our MoE Decoder. However, MIXAE does not optimize a variational distribution, such that gen-
eration of data from a distribution over the latent representation is not possible, in contrast to the
MoE-Sim-VAE (Figure 2).

4 EXPERIMENTS

We evaluate the MoE-Sim-VAE using synthetic data and the MNIST data set of handwritten digits
(LeCun et al., 1998) for clustering and data generation. Furthermore, we performed an ablation study
to demonstrate the importance of the MoE Decoder. Finally, we present experiments on a real-world
application of defining cellular subpopulations from mass cytometry measurements (Bandura et al.,
2009) of multiple publicly available datasets (Weber & Robinson, 2016; Bodenmiller et al., 2012).
Model implementation details are reported in the appendix in section A.1

We found that our model achieves superior clustering performance compared to other models on
synthetic, MNIST and real-world datasets. Moreover, we show that MoE-Sim-VAE can more effec-
tively and efficiently generate data from specific modes in comparison to other methods.

4.1 EVALUATION OF MOE-SIM-VAE ON SYNTHETIC DATA

We evaluated our model using data sampled from a 100-dimensional multivariate Gaussian with
equal mixture weights for each component. We tested two aspects of our model: Firstly, we evalu-
ated up to how many clusters our model can fit well. Therefore, we sampled data from distributions
with up to a hundred mixture components. For this experiment, we assume knowledge of the true
number of clusters in the data for both methods, MoE-Sim-VAE and GMMs. Secondly, we tested
if our model is able to identify the true number of clusters in the data. The similarity matrix S was
defined as an adjacency matrix over the data items. Adjacency indicators were based on projecting
the data via dimensionality reduction with UMAP (McInnes et al., 2018) and selecting neighbors
according to a distance threshold. Details on model parameters can be found in Section A.1.1.

MoE-Sim-VAE performs better or comparable to the baseline for the number of clusters of up to 40
(Figure A1a). The model predicts with a close to perfect F-measure until reaching a true number
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Figure 2: Generation of MNIST digit images. Data points from the latent representation were
sampled from the variational distribution (A) which is learned to be a mixture of standard Gaussians
and then clustered and gated (B) to the data-mode-specific experts of the MoE Decoder (C). (D) All
samples from the variational distribution were correctly classified and therefore also correctly gated.

of clusters of 30. Within the range of true number of clusters from 30 to 40, the model performs
comparable to GMMs. Further, MoE-Sim-VAE learns the true number of clusters on its own (Figure
A1b). For up to 23 components in the data, MoE-Sim-VAE learns the true number of clusters even
when defining a model with K = 40 experts in the MoE Decoder. This suggests that the model is
robust to misspecification regarding the number of experts.

4.2 UNSUPERVISED CLUSTERING, EMBEDDING AND DATA GENERATION OF MNIST

We trained a MoE-Sim-VAE model on images from MNIST. We compared our model against mul-
tiple models which were recently reviewed in Aljalbout et al. (2018), and specifically against VaDE
(Jiang et al., 2017) which shares similar properties with MoE-Sim-VAE (see Sec 3).

We compare the models with the Normalized Mutual Information (NMI) criterion but also classifi-
cation accuracy (ACC) (Table 1). The MoE-Sim-VAE outperforms the other methods w.r.t. cluster-
ing performance when comparing NMI and achieves the second-best result when comparing ACC.
Note that we used the number of experts k = 10 in our model to fit the existing number of digits
in MNIST. Regarding the similarity measure, we decided to use as similarity a UMAP projection
(McInnes et al., 2018) of MNIST and then apply k-nearest-neighbors of each sample in a batch.
More details on the model are reported in Section A.1.2. In an ablation study we show the im-
portance of the similarity matrix to create a clear separation of the different digits in the latent
representation (Figure A4)

In addition to the clustering network, we can make use of the latent representation for image genera-
tion purposes. The latent representation is trained as a mixture of standard Gaussians. The means of
these Gaussians are the centers of the clusters trained via the clustering network. Therefore, the vari-
ational distribution can be sampled from and gated to the cluster-specific expert in the MoE-decoder.
The expert then generates new data points for the specific data mode. Results and the schematic are
displayed in Figure 2 and in more detail and with greater sample size in the Appendix in Figure A2.

4.2.1 WHY DOES A MOE DECODER ACTUALLY MATTER?

In an ablation study, we compare the two models MoE-Sim-VAE and VaDE (Jiang et al., 2017)
on generating MNIST images with the request for a specific digit. The goal is to show that a MoE
decoder, as proposed in our model, is beneficial. We focus our comparison to VaDE since this model,
as the MoE-Sim-VAE, resorts to a mixture of Gaussian latent representation but differs in generating
images by means of a single decoder network instead of a Mixture-of-Expert decoder network. The
rationale for our design choice is to ensure that smaller sub-networks learn to reproduce and generate
specific modes of the data, in this case of specific MNIST digits.

To show that both models’ latent representations are separating the different clusters well, we com-
puted the Maximum Mean Discrepancy (MMD), defined in Section A.1.2. The MMD can be inter-
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preted as a distance between distributions computed based on samples drawn from these distribu-
tions. The heatmaps of the MMDs for VaDE and MoE-Sim-VAE as well as an UMAP projection of
the latent representation colored with the mixture component confirm visually the separation of the
clusters in the latent representations of both models (Fig. A3). As a result, we can conclude that both
latent representations can separate the clusters of respective digits well, such that the decoder gets
well-defined samples to generate the requested digit. Therefore, the main difference of generating
specific digits arises in the decoder/generator networks.

We evaluated the importance of the MoE-Decoder to (1) accurately generate requested digits and
(2) be efficient in generating requested digits. Specifically, we sampled 10, 000 points from each
mixture component in the latent representation, generated images, and used the model’s internal
clustering to assign a probability to which digits were generated. To generate correct and high-
quality images with VaDE, the posterior of the latent representation needs to be evaluated for each
sample. This was done for the different thresholds φ ∈ [0.0, 0.1, 0.2, · · · , 0.9, 0.999]. The default
threshold Jiang et al. (2017) used was φ = 0.999. Instead of thresholding the latent representation,
we ran the generation process for MoE-Sim-VAE for each threshold with the same settings. To gen-
erate images from VaDE we used the Python implementation1 and model weights publicly available
from Jiang et al. (2017).

As a result of this analysis we report a confusion matrix for MoE-Sim-VAE in Figure A6, the confu-
sion matrices for each threshold for VaDE in Figure A7, the accuracy of generating a requested digit
and the number of runs required in Figure A5. In summary, one can see that the MoE-Sim-VAE
generates digits more accurately with fewer resources required. This can especially be seen when
comparing the number of iterations required to fulfill the default posterior threshold of 0.999. VaDE
needs nearly 2 million iterations to find samples that fulfill the aforementioned threshold criterion
whereas the MoE-Sim-VAE only requires 10, 000 for a comparable sample accuracy. In comparison
the mean accuracy over all thresholds for MoE-Sim-VAE is 0.970, whereas VaDE reaches on aver-
age 0.944. VaDE reaches a maximum accuracy of 0.995, which costs the aforementioned 2 million
iterations for generating 100, 000 images, whereas MoE-Sim-VAE reaches a maximum accuracy of
0.971 with 100, 000 runs, without accounting for a systematic generating/clustering error (confusing
5 and 8) of MoE-Sim-VAE which can be seen in the confusion matrix in Figure A6.

4.3 LEARNING CELL TYPE COMPOSITION IN PERIPHERAL BLOOD MONONUCLEAR CELLS
USING CYTOF MEASUREMENTS

In the following, we want to show representation learning performance on a real-world problem in
biology. Specifically, we focus on cell type definition from single-cell measurements. Cytometry
by time-of-flight mass spectrometry (CyTOF) (Bandura et al., 2009) is a state-of-the-art technique
allowing measurement of up to 1, 000 cells per second and in parallel over 40 protein markers of the
cells (Kay et al., 2013). Defining biologically relevant cell subpopulations by clustering this data is
a common learning task (Aghaeepour et al., 2013; Weber & Robinson, 2016).

Many methods have been developed to tackle the problem introduced above and were compared
on four publicly available datasets in Weber & Robinson (2016). The best out of 18 methods were
FlowSOM (Gassen et al., 2015), PhenoGraph (Levine et al., 2015) and X-shift (Samusik et al.,
2016). These are based on k-nearest-neighbors heuristics, either defined from a spanning graph
or from estimating the data density. In contrast to these methods, MoE-Sim-VAE can map new
cells into the latent representation, assign probabilities for cell types and infer an interpretable latent
representation allowing intuitive downstream analysis by domain experts.

We applied MoE-Sim-VAE to the same datasets as in Weber & Robinson (2016) and achieve superior
results in classification using the F-measure (Equation 12) in three out of four datasets. Similarly
as in Weber & Robinson (2016) we trained MoE-Sim-VAE 30 times and report in Table 2 (adopted
from Weber & Robinson (2016)) the means across all runs. The reproducibility of our model for
each dataset can be seen in Figure A8.

Further, we trained a MoE-Sim-VAE model on 268 datasets from Bodenmiller et al. (2012) (more
details on the data in A.1.3), and achieve superior classification results of cell subpopulations in the
data when comparing to state-of-the-art methods in this field (PhenoGraph, X-Shift, FlowSOM).

1https://github.com/slim1017/VaDE
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Table 2: Comparison of MoE-Sim-VAE performance to competitor methods in defining cell type
composition in CyTOF measurements. The results in the table are extracted from the review paper
of Weber & Robinson (2016), where 18 methods are compared on four different datasets. Our model
outperforms the baselines on four out of five data sets.

Method Levine 32dim Levine 13dim Samusik 01 Samusik all
ACCENSE 0.494 0.358 0.517 0.502
ClusterX 0.682 0.474 0.571 0.603
DensVM 0.66 0.448 0.239 0.496
FLOCK 0.727 0.379 0.608 0.631

flowClust NA 0.416 0.612 0.61
flowMeans 0.769 0.518 0.625 0.653
flowMerge NA 0.247 0.452 0.341
flowPeaks 0.237 0.215 0.058 0.323
FlowSOM 0.78 0.495 0.707 0.702

FlowSOM pre 0.502 0.422 0.583 0.528
immunoClust 0.413 0.308 0.552 0.523

kmeans 0.42 0.435 0.65 0.59
PhenoGraph 0.563 0.468 0.671 0.653
Rclusterpp 0.605 0.465 0.637 0.613

SamSPECTRAL 0.512 0.253 0.263 0.138
SPADE NA 0.127 0.169 0.13
SWIFT 0.177 0.179 0.202 0.208
Xshift 0.691 0.47 0.679 0.657

MoE-Sim-VAE (proposed) 0.70 0.68 0.76 0.74

Exact results can be seen in Table A1 or visualized in Figure 3. More details on the MoE-Sim-VAE
setting used for all results on CyTOF data are reported in the appendix (Section A.1.3).

5 CONCLUSION

Our MoE-Sim-VAE model can infer similarity-based representations, perform clustering tasks, and
efficiently as well as accurately generate high-dimensional data. The training of the model is per-
formed by optimizing a joint objective function consisting of data reconstruction, clustering, and
KL loss, where the latter regularizes the latent representation. On synthetic data, we have shown
the strengths and limitations of the model. On the benchmark dataset of MNIST, we presented
superior clustering performance and the efficiency and accuracy of MoE-Sim-VAE in generating
high-dimensional data. On the biological real-world task of defining cell subpopulations in complex
single-cell data, we show superior clustering performances compared to state-of-the-art methods on
over 270 datasets and therefore demonstrate MoE-Sim-VAE’s real-world usefulness.

Future work might include to add adversarial training to the MoE decoder, which could improve
image generation to create even more realistic images. Also, specific applications might benefit
from replacing the Gaussian with a different mixture model. So far the MoE-Sim-VAE’s similarity
measure has to be defined by the user. Relaxing this requirement and allowing for learning a useful
similarity measure automatically for inferring latent representations will be an interesting extension
to explore. This could be useful in a weakly-supervised setting, which often occurs for example
in clinical data consisting of healthy and diseased patients. Minor details between a healthy and
diseased patient might make a huge difference and could be learned from the data using neural
networks.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

In the following sections we provide more details on model implementations, metrics used and
additional result figures for the experiments described in the main text.

A.1.1 EVALUATION OF MOE-SIM-VAE ON SYNTHETIC DATA

Model and training details:

• number of experts: {2, . . . , 40}
• batch size: 512
• code size: 10
• Number of iterations: 5000
• activation function; elu
• loss coefficient data reconstruction: 0.487
• loss coefficient clustering : 0.487
• loss coefficient mixture of Gaussian: 0.024
• learning rate: 0.001
• batch normalization
• dropout rate: 0.5
• distance threshold (perplexity parameter): 2
• depth clustering network: 5
• internal size clustering network: 100
• trainable parameters: depending on number of experts

We compare results based on F-measure (Aghaeepour et al., 2013), which is defined as follows

F (C,K) =
∑
ci∈C

|ci|
N

max
kj∈K

{F (ci, kj)} (12)

where N is the number of samples C{c1, c2, . . . , cn} and K{k1, k2, . . . , km} are the cluster result
and the reference cluster, respectively. Further F (ci, kj) is the harmonic mean of precision and
recall according to

F (ci, kj) =
2Pr(ci, kj)Re(ci, kj)

Pr(ci, kj) +Re(ci, kj)
(13)

whereby Pr(ci, kj) is the precision and Re(ci, kj) is the recall. Results are shown in Table 2.
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(a)

(b)

Figure A1: Testing MoE-Sim-VAE on data sampled from a Gaussian mixture model with random
sampled parameters. Figure A1a: Testing with exact numbers of experts. When comparing to
classification results with GMMs one can see that our model achievs better results until around
30 mixture components and is still compatitive until 40 mixture components. With more then 40
mixture components ourr MoE-Sim-VAE is not able anymore to compete with a GMM. Figure A1b:
Testing for specific number of synthetic mixture components and iterating number of experts. Until
a number of GMM components of 23 MoE-Sim-VAE is very precise in learning the real number of
clusters even when allowing the model to have 40 experts.

A.1.2 UNSUPERVISED CLUSTERING, EMBEDDING AND DATA GENERATION OF MNIST

Model and training details:

• number of experts: 10

• batch size: 128

• code size: 68

• Number of iterations: 20000

• activation function; elu

• loss coefficient data reconstruction: 0.487
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• loss coefficient clustering : 0.487
• loss coefficient mixture of Gaussian: 0.024
• learning rate: 0.0001
• batch normalization
• dropout rate: 0.5
• k from kNN (perplexity parameter): 10
• depth clustering network: 3
• internal size clustering network: 200
• trainable parameters: 1619446

One estimator of the Maximum Mean Discrepancy (MMD) (Gretton et al., 2008) is defined as

MMD̂
2
(X,Y ) =

1(
m
2

) ∑
i 6=i′

k(Xi, Xi′) +
1(
m
2

) ∑
j 6=j′

k(Yj , Yj′)−
2(
m
2

) ∑
i,j

k(Xi, Yj) (14)

where X = {x̂1, · · · , x̂m}
iid∼ P , Y = {ŷ1, · · · , ŷm}

iid∼ Q are samples from two distributions (e.g.
samples from two different clusters of the latent representation, for MNIST of two different digits)
and k is a kernel function, where we use the popular RBF kernel. Based on that estimator Sutherland
et al. (2019) introduced the hypothesis test

H0 : P = Q (15)
H1 : P 6= Q (16)

using the statistic mMMD̂
2
(X,Y ). The distribution for P and Q is not required to be known.

Sutherland et al. (2019) used MMD and this test to train a Generative Adversarial Network (GAN)

and also to evaluate the generative performance of the model. In this work we use MMD̂
2
(X,Y )

to test if samples of different clusters of the latent representation are similar, or in other words the
distance of the distributions. We used the Python implementation2 from Sutherland et al. (2019).

A.1.3 LEARNING CELL TYPE COMPOSITION IN PERIPHERAL BLOOD MONONUCLEAR CELLS
USING CYTOF MEASUREMENTS

Model and training details for all experiments on CyTOF data:

• number of experts: 25 (Weber & Robinson, 2016), 15 (Bodenmiller et al., 2012)
• batch size: 128
• code size: 9
• Number of iterations: 30000 (Weber & Robinson, 2016), 20000 (Bodenmiller et al., 2012)
• activation function: relu
• loss coefficient data reconstruction: 1
• loss coefficient clustering : 1
• loss coefficient mixture of Gaussian: 0
• learning rate: 0.001 (Weber & Robinson, 2016), 0.005 (Bodenmiller et al., 2012)
• batch normalization
• dropout rate: 0.5
• distance threshold (perplexity parameter): 2
• distance metric: correlation
• depth clustering network: 5
• internal size clustering network: 9

2https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/
mmd_test.py

13

https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd_test.py
https://github.com/dougalsutherland/opt-mmd/blob/master/two_sample/mmd_test.py


Under review as a conference paper at ICLR 2020

Figure A2: More detailed overview of results and generated samples of MNIST images. The plot
on the left side shows the latent representation where the red crosses are the cluster centers. Those
can be used as a mean to sample from a standard Gaussian for data generation via the MoE Decoder.
The boxplots on the right show the clustering and gating result of each sample from the variational
distribution.

• trainable parameters: 37563 (Weber & Robinson, 2016), 22228 (Bodenmiller et al., 2012)

Results are computed setting the loss coefficient for the KL loss 3 equal to zero, since we do not in-
tend to generate any data, but rather give the chance to the AE to pick up the correct subpouplations.
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(a)

(b)

Figure A3: Comparison of two sample MMD test (Sutherland et al., 2019) on the distributions
from the different mixture components in the latent representation. The heatmaps on the left side
show the estimation of the MMD which can be seen as the distance between pairs of distributions.
The figures on the right side show the separation of the cluster in the latent representation based
on a dimensionality reduction via UMAP (McInnes et al., 2018). Figure A3a shows the results
for the clusters of VaDE at a posterior threshold of 0.8 which is the first threshold which shows
total separation of all clusters. Figure A3b shows the separation of the clusters in latent space
learned from MoE-Sim-VAE. For both methods, all distributions belonging to clusters of different
respective digits show a larger distance compared to the diagonal of matching distributions, such
that we generate images from a well-separated latent representation for both methods and therefore
the main difference comes from the decoders.

Also here we use the F-measure defined in Equation 12 as metric to evaluate the models. For the
data compared in Weber & Robinson (2016) we ran each model 30 times and report reproducability
of our results in A8. The model was trained on all data and validated on the on with labels.

For the data from Bodenmiller et al. (2012) we run each model on one time on the each of the 268
datasets. Hereby we focused on the following surface markers: CD3(110:114)Dd, CD45(In115)Dd,
CD4(Nd145)Dd, CD20(Sm147)Dd, CD33(Nd148)Dd, CD123(Eu151)Dd, CD14(Gd160)Dd,
IgM(Yb171)Dd, HLA-DR(Yb174)Dd, CD7(Yb176)Dd. The subpopulations were originally de-
fined via the SPADE algorithm (Qiu et al., 2011), which is a visualization tool using Agglomerative
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(a)

(b)

Figure A4: Ablation study on the similarity matrix S. Both figures show the MMD statistic and
UMAP (McInnes et al., 2018) projection of reconstructed MNIST digits computed on the latent
representation. Figure A4a shows the results on MoE-Sim-VAE trained with the similarity matrix.
The different digits separate well which can also be seen in the heatmap showing the MMD statistics
between all digits. In comparison, Figure A4b shows results of the MoE-Sim-VAE model ignoring
the similarity matrix setting the loss coefficient to zero. One can observe that the MMD statistic,
which can be seen as a similarity measure of two distributions, is way lower compared to the model
including the similarity matrix. Further, also the UMAP projection confirms less separation in the
latent representation between the different digits.

hierarchical clustering and minimum spanning trees. The gating of the cells is done manually via
coloring of the tree leaves. With MoE-Sim-VAE we try to reconstruct the defined manually defined
subpopulations. Bodenmiller et al. (2012) performed experiments on multiple well plates were dif-
ferent inhibitors and their effect was tested. We selected for each well plate row A to test our model
on. We decided for all methods to discard subpopulations which are smaller then 30 cells. As a
similarity measure for MoE-Sim-VAE we reduced the dimension of the data using UMAP (McInnes
et al., 2018) using the Canberra distance

d(p, q) =

n∑
i=1

|pi − qi|
|pi|+ |qi|

(17)
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(a)

(b)

Figure A5: Comparison of data generation process between Moe-Sim-VAE and VaDE (Jiang et al.,
2017). Figure A5a shows the accuracy of how certain a specific digit can be generated from the
respective cluster in the latent representation whereas Figure A5b compares the number of runs
until a sample from the latent representation satisfied the posterior criterion from VaDE. It needs
to be mentioned that MoE-Sim-VAE does not require any thresholding such that we ran the data
generation process multiple times with the same settings to compare with VaDE. In total 10000
samples are generated for each digit.

where p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn). Cells were defined to be similar in MoE-Sim-
VAE when the distance between the cells in the UMAP-projection was smaller then a threshold.
We trained and tested MoE-Sim-VAE on a splitted dataset with rations 0.8/0.2 and evaluated the
performance on the unseen test dataset. In comparison the compatitor methods were trained and
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Figure A6: Confusion map for data generation using MoE-Sim-VAE. Besides the systematic error of
confusing digit 5 and 8, which can also depend on the clustering network, the digit generation of our
model performs very precise with a high accuracy of generating the digit asked for. In comparison
to VaDE (Jiang et al., 2017) our model does not need any threshold on samples from the latent
representation which reduces the computational costs by far.

tested on all the data, which is an advantage in comparison to our model, but still MoE-Sim-VAE
outpreforms the compatitors.
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(a)

(b)

(c)

Figure A7: Confusion maps for data generation using VaDE.
Figure A7a Posterior threshold 0.0.
Figure A7b Posterior threshold 0.1.
Figure A7c Posterior threshold 0.2.
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(d)

(e)

(f)

Figure A7: Confusion maps for data generation using VaDE.
Figure A7d Posterior threshold 0.3.
Figure A7e Posterior threshold 0.4.
Figure A7f Posterior threshold 0.5.
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(g)

(h)

(i)

Figure A7: Confusion maps for data generation using VaDE.
Figure A7g Posterior threshold 0.6.
Figure A7h Posterior threshold 0.7.
Figure A7i Posterior threshold 0.8.
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(j)

(k)

Figure A7: Confusion maps for data generation using VaDE.
Figure A7j Posterior threshold 0.9.
Figure A7k Posterior threshold 0.999. (default for Jiang et al. (2017))
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Figure A8: The boxplots show similar as in Weber & Robinson (2016) the reproducibility of MoE-
Sim-VAE on the four datasets when running MoE-Sim-VAE 30 times. The variance on defining the
correct subpopulations of MoE-Sim-VAE is quite small and therefore also an improvment to many
methods compared in Weber & Robinson (2016).

23



Under review as a conference paper at ICLR 2020

Table A1: Results of MoE-Sim-VAE on data published in Bodenmiller et al. (2012). CyTOF mea-
surements from peripheral blood mononuclear cells (PBMCs) were taken and the goal is to define
the different cell types present in the data. The ground truth was definied using the SPADE algo-
rithm (Qiu et al., 2011), which can visualize the high dimensional data in such a way to be able to
manual gate the cells. We compare to other fully unsupervised methods as FlowSOM, X-shift and
PhenoGraph and achieve in most cases the best F-measure, which is defined as in Equation 12.

Inhibitor Well MoE-Sim-VAE FlowSOM X-shift PhenoGraph
AKTi A02 0.7666 0.5147 0.5704 0.6588
AKTi A03 0.7541 0.4793 0.546 0.6026
AKTi A04 0.6815 0.6405 0.5298 0.5974
AKTi A05 0.7127 0.7108 0.6089 0.6104
AKTi A06 0.6711 0.7383 0.572 0.6611
AKTi A07 0.7233 0.7034 0.5583 0.6981
AKTi A08 0.7901 0.7024 0.4541 0.5287
AKTi A09 0.7604 0.4292 0.5014 0.6414
AKTi A10 0.7275 0.4952 0.4144 0.677
AKTi A11 0.7540 0.6456 0.6673 0.6302
BTKi A02 0.7261 0.698 0.7136 0.7478
BTKi A03 0.7982 0.6643 0.6012 0.7141
BTKi A04 0.7835 0.6864 0.6983 0.7103
BTKi A05 0.7484 0.6397 0.7454 0.7474
BTKi A06 0.8196 0.703 0.7625 0.7949
BTKi A07 0.7976 0.6729 0.6841 0.7102
BTKi A08 0.8108 0.6715 0.5887 0.6884
BTKi A09 0.7789 0.5299 0.6426 0.7236
BTKi A10 0.7726 0.6319 0.6775 0.7148
BTKi A11 0.7857 0.6078 0.5939 0.6786
BTKi A12 0.6600 0.5503 0.6028 0.6308

Crassin A01 0.6727 0.6488 0.6315 0.6237
Crassin A02 0.8225 0.557 0.6435 0.7165
Crassin A03 0.8346 0.5736 0.6628 0.7085
Crassin A04 0.8446 0.5348 0.7146 0.7045
Crassin A05 0.8462 0.7444 0.6227 0.7202
Crassin A06 0.8569 0.7448 0.7078 0.6972
Crassin A07 0.8170 0.5164 0.6546 0.6309
Crassin A08 0.8431 0.8283 0.5504 0.6546
Crassin A09 0.8412 0.5814 0.6027 0.6684
Crassin A10 0.8527 0.7537 0.6586 0.6338
Crassin A11 0.8453 0.7174 0.6437 0.7358
Crassin A12 0.7320 0.6161 0.6436 0.6949

Dasatinib A01 0.7235 0.4466 0.554 0.6725
Dasatinib A02 0.8019 0.516 0.6238 0.701
Dasatinib A03 0.7864 0.5108 0.5366 0.6566
Dasatinib A04 0.6661 0.4796 0.5527 0.647
Dasatinib A05 0.7910 0.5014 0.5804 0.6904
Dasatinib A06 0.7979 0.5167 0.6258 0.6707
Dasatinib A07 0.8105 0.5215 0.6016 0.6809
Dasatinib A08 0.8047 0.6928 0.5802 0.633
Dasatinib A09 0.7485 0.5203 0.5958 0.6861
Dasatinib A10 0.8062 0.5158 0.5742 0.6503
Dasatinib A11 0.7837 0.5066 0.6331 0.6813

GDC-0941 A01 0.5632 0.6434 0.5987 0.6279
GDC-0941 A02 0.8257 0.7291 0.7349 0.7507
GDC-0941 A03 0.8268 0.7321 0.6822 0.7853
GDC-0941 A04 0.8389 0.7115 0.7569 0.7421
GDC-0941 A05 0.8382 0.7946 0.7171 0.7735
GDC-0941 A06 0.8463 0.6125 0.6858 0.764
GDC-0941 A07 0.8382 0.6061 0.7776 0.7612
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GDC-0941 A08 0.8249 0.5493 0.6058 0.7796
GDC-0941 A09 0.8606 0.7689 0.8043 0.7206
GDC-0941 A10 0.8412 0.7227 0.653 0.6465
GDC-0941 A11 0.7859 0.5703 0.7297 0.7891
GDC-0941 A12 0.7803 0.6326 0.69 0.6727

Go69 A01 0.6520 0.6571 0.718 0.5822
Go69 A02 0.7835 0.7693 0.6075 0.7322
Go69 A03 0.7305 0.7334 0.757 0.6414
Go69 A04 0.7640 0.7456 0.8013 0.7425
Go69 A05 0.7812 0.7555 0.7294 0.7727
Go69 A06 0.7816 0.7404 0.7437 0.6443
Go69 A07 0.7407 0.8513 0.7527 0.6811
Go69 A08 0.7293 0.7338 0.6984 0.6525
Go69 A09 0.8228 0.6955 0.6985 0.7317
Go69 A10 0.7560 0.7512 0.7689 0.7071
Go69 A11 0.7565 0.7373 0.7213 0.7315
Go69 A12 0.7426 0.7086 0.7846 0.6442
H89 A01 0.6734 0.6952 0.6003 0.6105
H89 A02 0.7288 0.5391 0.5918 0.678
H89 A03 0.8051 0.5414 0.6856 0.6759
H89 A04 0.8144 0.7314 0.662 0.7287
H89 A05 0.7821 0.5468 0.6485 0.6672
H89 A06 0.7647 0.5636 0.8281 0.7165
H89 A07 0.7762 0.6983 0.7284 0.6442
H89 A09 0.8131 0.5442 0.5906 0.6707
H89 A10 0.7517 0.5549 0.6028 0.682
H89 A11 0.7417 0.7414 0.6863 0.7257
H89 A12 0.7939 0.6934 0.5831 0.6401
IKKi A02 0.7945 0.6619 0.7371 0.6475
IKKi A03 0.6873 0.6568 0.5661 0.6895
IKKi A04 0.7942 0.6754 0.6386 0.7052
IKKi A05 0.6977 0.6569 0.6157 0.6899
IKKi A06 0.7442 0.6931 0.7024 0.7077
IKKi A07 0.7352 0.5303 0.669 0.7001
IKKi A08 0.7470 0.7006 0.5358 0.6869
IKKi A09 0.8097 0.5175 0.6299 0.6969
IKKi A10 0.7647 0.6308 0.657 0.7334
IKKi A11 0.7878 0.6365 0.6757 0.6613
IKKi A12 0.6673 0.5629 0.497 0.6043

Imatinib A02 0.7935 0.7571 0.6721 0.7677
Imatinib A03 0.7763 0.7429 0.7041 0.7499
Imatinib A04 0.8058 0.7564 0.6921 0.7229
Imatinib A05 0.7714 0.7559 0.6689 0.7609
Imatinib A06 0.7756 0.746 0.6956 0.7296
Imatinib A07 0.7468 0.7515 0.6974 0.7137
Imatinib A08 0.7631 0.7534 0.5189 0.7096
Imatinib A09 0.8082 0.5605 0.5819 0.7447
Imatinib A10 0.7964 0.5645 0.5637 0.78
Imatinib A11 0.7289 0.7664 0.7576 0.7395
Imatinib A12 0.7012 0.8451 0.6369 0.7259

Jak1i A02 0.8210 0.5167 0.5771 0.616
Jak1i A03 0.7343 0.7139 0.6526 0.7133
Jak1i A04 0.7321 0.7066 0.6346 0.7189
Jak1i A05 0.7413 0.5163 0.6551 0.7089
Jak1i A06 0.7244 0.5525 0.6804 0.6905
Jak1i A07 0.7779 0.5499 0.5605 0.7099
Jak1i A08 0.7281 0.6995 0.6021 0.6605
Jak1i A09 0.8043 0.5064 0.6054 0.6717
Jak1i A10 0.7801 0.5295 0.5538 0.7015
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Jak1i A11 0.7128 0.7307 0.7386 0.6812
Jak1i A12 0.7204 0.6229 0.6321 0.6905
Jak2i A01 0.6944 0.6379 0.6014 0.6207
Jak2i A02 0.7961 0.664 0.6656 0.7083
Jak2i A03 0.7629 0.6742 0.7138 0.7024
Jak2i A04 0.7890 0.6716 0.6227 0.7072
Jak2i A05 0.6666 0.4689 0.5314 0.6459
Jak2i A06 0.8110 0.6474 0.6651 0.6833
Jak2i A07 0.7595 0.6818 0.7593 0.6982
Jak2i A08 0.8050 0.6601 0.6152 0.686
Jak2i A09 0.8028 0.5253 0.6414 0.6501
Jak2i A10 0.8030 0.6762 0.6067 0.6364
Jak2i A11 0.8228 0.5398 0.694 0.7473
Jak2i A12 0.6831 0.6214 0.5825 0.5687
Jak3i A02 0.7986 0.7108 0.5666 0.6912
Jak3i A03 0.7170 0.7116 0.6991 0.7001
Jak3i A04 0.7983 0.5243 0.6654 0.691
Jak3i A05 0.7087 0.6498 0.6884 0.7073
Jak3i A06 0.7272 0.7244 0.654 0.7059
Jak3i A07 0.7768 0.5167 0.696 0.735
Jak3i A08 0.7196 0.6797 0.5946 0.7287
Jak3i A09 0.7988 0.6918 0.6013 0.6826
Jak3i A10 0.8026 0.7103 0.7104 0.7219
Jak3i A11 0.7281 0.5107 0.6854 0.6614
Jak3i A12 0.7511 0.6135 0.4861 0.61
Lcki A01 0.7359 0.7582 0.6106 0.7201
Lcki A02 0.7605 0.7453 0.6391 0.7696
Lcki A03 0.8032 0.5608 0.6814 0.721
Lcki A04 0.7608 0.5764 0.6788 0.7904
Lcki A05 0.8210 0.5435 0.7204 0.7442
Lcki A06 0.7564 0.7662 0.728 0.7556
Lcki A07 0.8304 0.579 0.6992 0.696
Lcki A08 0.7854 0.7457 0.5904 0.6972
Lcki A09 0.8452 0.5859 0.6018 0.7569
Lcki A10 0.7387 0.744 0.6598 0.6627
Lcki A11 0.7835 0.7639 0.6836 0.7558
Lcki A12 0.7467 0.8271 0.6888 0.6878
PP2 A02 0.7687 0.759 0.7717 0.7605
PP2 A03 0.8395 0.7644 0.7304 0.7953
PP2 A04 0.8442 0.7703 0.7116 0.7162
PP2 A05 0.8248 0.5777 0.7205 0.7547
PP2 A06 0.7866 0.7612 0.7461 0.7431
PP2 A07 0.8595 0.7616 0.724 0.7213
PP2 A08 0.8505 0.7489 0.7109 0.7195
PP2 A09 0.7902 0.5755 0.6511 0.7738
PP2 A10 0.8089 0.743 0.6635 0.7389
PP2 A11 0.7977 0.5852 0.6564 0.7846
PP2 A12 0.7667 0.6012 0.6524 0.6636

Rapamycin A01 0.7028 0.675 0.5882 0.5677
Rapamycin A02 0.7215 0.6831 0.6124 0.6697
Rapamycin A03 0.7322 0.6707 0.6296 0.6861
Rapamycin A04 0.6787 0.6696 0.6887 0.7267
Rapamycin A05 0.7231 0.653 0.7134 0.6466
Rapamycin A06 0.7310 0.6473 0.7009 0.6386
Rapamycin A07 0.7595 0.6642 0.748 0.5882
Rapamycin A08 0.7773 0.836 0.6371 0.571
Rapamycin A09 0.7732 0.6573 0.6826 0.6615
Rapamycin A10 0.7586 0.6702 0.7136 0.6344
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Rapamycin A12 0.6955 0.6361 0.6561 0.5472
SB202 A01 0.6884 0.6713 0.941 0.7101
SB202 A03 0.7869 0.7549 0.6686 0.7633
SB202 A05 0.7856 0.5564 0.7387 0.6999
SB202 A06 0.7707 0.755 0.7913 0.7869
SB202 A10 0.7559 0.7554 - 0.7749

SP6 A01 0.7033 0.6882 0.4191 0.532
SP6 A02 0.7536 0.5035 0.5104 0.657
SP6 A03 0.7387 0.6973 0.534 0.5858
SP6 A04 0.6910 0.503 0.5065 0.5975
SP6 A05 0.7210 0.5068 0.5643 0.6869
SP6 A06 0.7052 0.719 0.5063 0.6384
SP6 A07 0.7281 0.7074 0.5382 0.6501
SP6 A08 0.7301 0.6832 0.4665 0.6133
SP6 A09 0.7743 0.5001 0.4618 0.6208
SP6 A10 0.7198 0.5111 0.524 0.6773
SP6 A11 0.7494 0.493 0.5407 0.5935
SP6 A12 0.7311 0.6131 0.4488 0.6198

Sorafenib A01 0.7185 0.7217 0.5884 0.6574
Sorafenib A02 0.8250 0.7659 0.6658 0.7664
Sorafenib A03 0.7689 0.7732 0.7078 0.6869
Sorafenib A04 0.8360 0.7094 0.7114 0.7218
Sorafenib A05 0.8304 0.5571 0.7672 0.7153
Sorafenib A06 0.8021 0.5783 0.6991 0.7506
Sorafenib A07 0.8461 0.7051 0.7267 0.6701
Sorafenib A09 0.8226 0.7275 0.7522 0.7587
Sorafenib A10 0.8103 0.7561 0.7457 0.7214
Sorafenib A11 0.8465 0.5777 0.7192 0.7503
Sorafenib A12 0.7715 0.6533 0.6084 0.6129

Staurosporine A01 0.7985 0.8464 0.6057 0.5945
Staurosporine A02 0.8347 0.8312 0.5999 0.6626
Staurosporine A03 0.8079 0.7072 0.6704 0.6787
Staurosporine A04 0.8418 0.8666 0.6452 0.6776
Staurosporine A05 0.8657 0.7305 0.7071 0.7515
Staurosporine A06 0.8694 0.516 0.6453 0.6619
Staurosporine A07 0.8277 0.7052 0.6349 0.6657
Staurosporine A08 0.8310 0.8316 0.6213 0.678
Staurosporine A09 0.8319 0.5117 0.6747 0.6726
Staurosporine A10 0.8417 0.5108 0.6211 0.7126
Staurosporine A11 0.8246 0.8711 0.6547 0.7445
Streptonigrin A01 0.7128 0.5689 0.6571 0.6599
Streptonigrin A02 0.7836 0.5095 0.549 0.6155
Streptonigrin A03 0.7776 0.547 0.6497 0.6527
Streptonigrin A04 0.8466 0.7521 0.5762 0.7061
Streptonigrin A05 0.8130 0.5406 0.6459 0.6928
Streptonigrin A06 0.8031 0.7409 0.6446 0.6343
Streptonigrin A07 0.7987 0.5353 0.5882 0.6657
Streptonigrin A08 0.7470 0.7458 0.5864 0.6443
Streptonigrin A09 0.7586 0.7034 0.5928 0.6196
Streptonigrin A10 0.7159 0.6974 0.5174 0.6809
Streptonigrin A11 0.8178 0.5649 0.593 0.6814
Streptonigrin A12 0.7410 0.6034 0.5896 0.6286

Sunitinib A01 0.7152 0.6622 0.5653 0.6522
Sunitinib A02 0.8056 0.498 0.6138 0.6521
Sunitinib A03 0.8095 0.6873 0.6889 0.6913
Sunitinib A04 0.8142 0.6925 0.6467 0.7121
Sunitinib A05 0.8157 0.6959 0.673 0.7073
Sunitinib A06 0.7968 0.5061 0.6654 0.7025
Sunitinib A07 0.8110 0.7 0.6333 0.6572
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Sunitinib A08 0.8186 0.6894 0.5999 0.674
Sunitinib A09 0.8029 0.4886 0.6699 0.6621
Sunitinib A10 0.8126 0.848 0.6087 0.6713
Sunitinib A11 0.8241 0.824 0.6408 0.6811
Sunitinib A12 0.7747 0.7898 0.5942 0.5867

Syki A02 0.7682 0.7073 0.6636 0.685
Syki A03 0.7224 0.7042 0.6424 0.7116
Syki A04 0.7461 0.7069 0.7908 0.7256
Syki A05 0.7468 0.7182 0.6263 0.6804
Syki A06 0.7381 0.7134 0.7718 0.7154
Syki A07 0.7891 0.7 0.7434 0.6479
Syki A08 0.7509 0.7154 0.6903 0.6542
Syki A09 0.7712 0.73 0.7357 0.6918
Syki A10 0.7695 0.7531 0.7197 0.7242
Syki A11 0.7360 0.7311 0.7577 0.78
Syki A12 0.6717 0.6793 0.7426 0.7123

U0126 A01 0.6844 0.6178 - 0.6486
U0126 A02 0.8440 0.5545 0.5362 0.7043
U0126 A03 0.8340 0.5346 0.616 0.6881
U0126 A04 0.8263 0.7079 0.6166 0.7059
U0126 A05 0.8535 0.5468 0.7091 0.7031
U0126 A06 0.8199 0.5285 0.6018 0.6874
U0126 A07 0.8079 0.5304 0.5671 0.7249
U0126 A08 0.8278 0.6864 0.5359 0.6577
U0126 A09 0.8331 0.5394 0.5678 0.6967
U0126 A10 0.8436 0.5593 0.6092 0.6867
U0126 A11 0.7654 0.5072 0.6374 0.6767
U0126 A12 0.7227 0.6496 0.6253 0.6281
VX680 A01 0.6930 0.4818 0.6028 0.6452
VX680 A02 0.7340 0.711 0.5587 0.633
VX680 A03 0.7525 0.6976 0.5663 0.7292
VX680 A04 0.8127 0.6435 0.6722 0.5954
VX680 A05 0.6937 0.6742 0.7374 0.6454
VX680 A06 0.7168 0.7101 0.5769 0.6202
VX680 A07 0.7663 0.4944 0.5382 0.718
VX680 A08 0.7315 0.7082 0.4753 0.6482
VX680 A09 0.7703 0.7054 0.5859 0.6722
VX680 A10 0.7143 0.7137 0.6648 0.6167
VX680 A11 0.7050 0.6773 0.7269 0.6947
VX680 A12 0.7852 0.7922 0.5583 0.6808
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