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ABSTRACT

Artificial neural networks suffer from catastrophic forgetting when they are se-
quentially trained on multiple tasks. To overcome this problem, we present a novel
approach based on task-conditioned hypernetworks, i.e., networks that generate
the weights of a target model based on task identity. Continual learning (CL) is
less difficult for this class of models thanks to a simple key feature: instead of
recalling the input-output relations of all previously seen data, task-conditioned
hypernetworks only require rehearsing task-specific weight realizations, which can
be maintained in memory using a simple regularizer. Besides achieving state-of-
the-art performance on standard CL benchmarks, additional experiments on long
task sequences reveal that task-conditioned hypernetworks display a very large
capacity to retain previous memories. Notably, such long memory lifetimes are
achieved in a compressive regime, when the number of trainable hypernetwork
weights is comparable or smaller than target network size. We provide insight into
the structure of low-dimensional task embedding spaces (the input space of the
hypernetwork) and show that task-conditioned hypernetworks demonstrate transfer
learning. Finally, forward information transfer is further supported by empirical
results on a challenging CL benchmark based on the CIFAR-10/100 image datasets.

1 INTRODUCTION

We assume that a neural network f(x,Θ) with trainable weights Θ is given data from a set of
tasks {(X(1),Y(1)), . . . , (X(T ),Y(T ))}, with input samples X(t) = {x(t,i)}nt

i=1 and output samples
Y(t) = {y(t,i)}nt

i=1, where nt ≡ |X(t)|. A standard training approach learns the model using data
from all tasks at once. However, this is not always possible in real-world problems, nor desirable in
an online learning setting. Continual learning (CL) refers to an online learning setup in which tasks
are presented sequentially (see van de Ven & Tolias, 2019, for a recent review on CL). In CL, when
learning a new task t, starting with weights Θ(t−1) and observing only (X(t),Y(t)), the goal is to
find a new set of parameters Θ(t) that (1) retains (no catastrophic forgetting) or (2) improves (positive
backward transfer) performance on previous tasks compared to Θ(t−1) and (3) solves the new task
t potentially utilizing previously acquired knowledge (positive forward transfer). Achieving these
goals is non-trivial, and a longstanding issue in neural networks research.

Here, we propose addressing catastrophic forgetting at the meta level: instead of directly attempting to
retain f(x,Θ) for previous tasks, we fix the outputs of a metamodel fh(e,Θh) termed task-conditioned
hypernetwork which maps a task embedding e to weights Θ. Now, a single point has to be memorized
per task. To motivate such approach, we perform a thought experiment: we assume that we are allowed
to store all inputs {X(1), . . . ,X(T )} seen so far, and to use these data to compute model outputs
corresponding to Θ(T−1). In this idealized setting, one can avoid forgetting by simply mixing data
from the current task with data from the past, {(X(1), Ŷ(1)), . . . , (X(T−1), Ŷ(T−1)), (X(T ),Y(T ))},
where Ŷ(t) refers to a set of synthetic targets generated using the model itself f( · ,Θ(t−1)). Hence,
by training to retain previously acquired input-output mappings, one can obtain a sequential algorithm
in principle as powerful as multi-task learning. Multi-task learning, where all tasks are learned

1



Published as a conference paper at ICLR 2020

simultaneously, can be seen as a CL upper-bound. The strategy described above has been termed
rehearsal (Robins, 1995). However, storing previous task data violates our CL desiderata.

Therefore, we introduce a change in perspective and move from the challenge of maintaining
individual input-output data points to the problem of maintaining sets of parameters {Θ(t)}, without
explicitly storing them. To achieve this, we train the metamodel parameters Θh analogous to the
above outlined learning scheme, where synthetic targets now correspond to weight configurations
that are suitable for previous tasks. This exchanges the storage of an entire dataset by a single
low-dimensional task descriptor, yielding a massive memory saving in all but the simplest of tasks.
Despite relying on regularization, our approach is a conceptual departure from previous algorithms
based on regularization in weight (e.g., Kirkpatrick et al., 2017; Zenke et al., 2017) or activation
space (e.g., He & Jaeger, 2018).

Our experimental results show that task-conditioned hypernetworks do not suffer from catastrophic
forgetting on a set of standard CL benchmarks. Remarkably, they are capable of retaining memories
with practically no decrease in performance, when presented with very long sequences of tasks.
Thanks to the expressive power of neural networks, task-conditioned hypernetworks exploit task-to-
task similarities and transfer information forward in time to future tasks. Finally, the task-conditional
metamodelling perspective that we put forth is generic, as it does not depend on the specifics of the
target network architecture. We exploit this key principle and show that the very same metamodelling
framework extends to, and can improve, an important class of CL methods known as generative
replay methods, which are current state-of-the-art performers in many practical problems (Shin et al.,
2017; Wu et al., 2018; van de Ven & Tolias, 2018).

2 MODEL

2.1 TASK-CONDITIONED HYPERNETWORKS

Hypernetworks parameterize target models. The centerpiece of our approach to continual learn-
ing is the hypernetwork, Fig. 1a. Instead of learning the parameters Θtrgt of a particular function ftrgt
directly (the target model), we learn the parameters Θh of a metamodel. The output of such meta-
model, the hypernetwork, is Θtrgt. Hypernetworks can therefore be thought of as weight generators,
which were originally introduced to dynamically parameterize models in a compressed form (Ha
et al., 2017; Schmidhuber, 1992; Bertinetto et al., 2016; Jia et al., 2016).
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Figure 1: Task-conditioned hypernetworks for continual learning. (a) Commonly, the parame-
ters of a neural network are directly adjusted from data to solve a task. Here, a weight generator
termed hypernetwork is learned instead. Hypernetworks map embedding vectors to weights, which
parameterize a target neural network. In a continual learning scenario, a set of task-specific em-
beddings is learned via backpropagation. Embedding vectors provide task-dependent context and
bias the hypernetwork to particular solutions. (b) A smaller, chunked hypernetwork can be used
iteratively, producing a chunk of target network weights at a time (e.g., one layer at a time). Chunked
hypernetworks can achieve model compression: the effective number of trainable parameters can be
smaller than the number of target network weights.
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Continual learning with hypernetwork output regularization. One approach to avoid catas-
trophic forgetting is to store data from previous tasks and corresponding model outputs, and then fix
such outputs. This can be achieved using an output regularizer of the following form, where past
outputs play the role of pseudo-targets (Robins, 1995; Li & Hoiem, 2018; Benjamin et al., 2018):

Loutput =

T−1∑
t=1

|X(t)|∑
i=1

‖f(x(t,i),Θ∗)− f(x(t,i),Θ)‖2, (1)

In the equation above, Θ∗ is the set of parameters before attempting to learn task T , and f is the
learner. This approach, however, requires storing and iterating over previous data, a process that is
known as rehearsing. This is potentially expensive memory-wise and not strictly online learning. A
possible workaround is to generate the pseudo-targets by evaluating f on random patterns (Robins,
1995) or on the current task dataset (Li & Hoiem, 2018). However, this does not necessarily fix the
behavior of the function f in the regions of interest.

Hypernetworks sidestep this problem naturally. In target network weight space, a single point (i.e.,
one set of weights) has to be fixed per task. This can be efficiently achieved with task-conditioned
hypernetworks, by fixing the hypernetwork output on the appropriate task embedding.

Similar to Benjamin et al. (2018), we use a two-step optimization procedure to introduce memory-
preserving hypernetwork output constraints. First, we compute a candidate change ∆Θh which
minimizes the current task loss L(T )

task = Ltask(Θh, e
(T ),X(T ),Y(T )) with respect to Θ. The candidate

∆Θh is obtained with an optimizer of choice (we use Adam throughout; Kingma & Ba, 2015). The
actual parameter change is then computed by minimizing the following total loss:

Ltotal = Ltask(Θh, e
(T ),X(T ),Y(T )) + Loutput(Θ

∗
h ,Θh,∆Θh, {e(t)})

= Ltask(Θh, e
(T ),X(T ),Y(T )) +

βoutput

T − 1

T−1∑
t=1

‖fh(e(t),Θ∗h)− fh(e(t),Θh + ∆Θh))‖2, (2)

where Θ∗h is the set of hypernetwork parameters before attempting to learn task T , ∆Θh is considered
fixed and βoutput is a hyperparameter that controls the strength of the regularizer. On Appendix D, we
run a sensitivity analysis on βoutput and experiment with a more efficient stochastic regularizer where
the averaging is performed over a random subset of past tasks.

More computationally-intensive algorithms that involve a full inner-loop refinement, or use second-
order gradient information by backpropagating through ∆Θh could be applied. However, we found
empirically that our one-step correction worked well. Exploratory hyperparameter scans revealed
that the inclusion of the lookahead ∆Θh in (2) brought a minor increase in performance, even when
computed with a cheap one-step procedure. Note that unlike in Eq. 1, the memory-preserving term
Loutput does not depend on past data. Memory of previous tasks enters only through the collection of
task embeddings {e(t)}T−1

t=1 .

Learned task embeddings. Task embeddings are differentiable deterministic parameters that can
be learned, just like Θh. At every learning step of our algorithm, we also update the current task
embedding e(T ) to minimize the task loss L(T )

task . After learning the task, the final embedding is saved
and added to the collection {e(t)}.

2.2 MODEL COMPRESSION WITH CHUNKED HYPERNETWORKS

Chunking. In a straightforward implementation, a hypernetwork produces the entire set of weights
of a target neural network. For modern deep neural networks, this is a very high-dimensional output.
However, hypernetworks can be invoked iteratively, filling in only part of the target model at each
step, in chunks (Ha et al., 2017; Pawlowski et al., 2017). This strategy allows applying smaller
hypernetworks that are reusable. Interestingly, with chunked hypernetworks it is possible to solve
tasks in a compressive regime, where the number of learned parameters (those of the hypernetwork)
is effectively smaller than the number of target network parameters.

Chunk embeddings and network partitioning. Reapplying the same hypernetwork multiple
times introduces weight sharing across partitions of the target network, which is usually not desirable.

3



Published as a conference paper at ICLR 2020

To allow for a flexible parameterization of the target network, we introduce a set C = {ci}NC
i=1 of

chunk embeddings, which are used as an additional input to the hypernetwork, Fig. 1b. Thus, the
full set of target network parameters Θtrgt = [fh(e, c1), . . . , fh(e, cNC)] is produced by iteration
over C, keeping the task embedding e fixed. This way, the hypernetwork can produce distinct
weights for each chunk. Furthermore, chunk embeddings, just like task embeddings, are ordinary
deterministic parameters that we learn via backpropagation. For simplicity, we use a shared set of
chunk embeddings for all tasks and we do not explore special target network partitioning strategies.

How flexible is our approach? Chunked neural networks can in principle approximate any target
weight configuration arbitrarily well. For completeness, we state this formally in Appendix E.

2.3 CONTEXT-FREE INFERENCE: UNKNOWN TASK IDENTITY

Determining which task to solve from input data. Our hypernetwork requires a task embedding
input to generate target model weights. In certain CL applications, an appropriate embedding can
be immediately selected as task identity is unambiguous, or can be readily inferred from contextual
clues. In other cases, knowledge of the task at hand is not explicitly available during inference.
In the following, we show that our metamodelling framework generalizes to such situations. In
particular, we consider the problem of inferring which task to solve from a given input pattern, a
noted benchmark challenge (Farquhar & Gal, 2018; van de Ven & Tolias, 2019). Below, we explore
two different strategies that leverage task-conditioned hypernetworks in this CL setting.

Task-dependent predictive uncertainty. Neural network models are increasingly reliable in sig-
nalling novelty and appropriately handling out-of-distribution data. For categorical target distributions,
the network ideally produces a flat, high entropy output for unseen data and, conversely, a peaked,
low-entropy response for in-distribution data (Hendrycks & Gimpel, 2016; Liang et al., 2017). This
suggests a first, simple method for task inference (HNET+ENT). Given an input pattern for which
task identity is unknown, we pick the task embedding which yields lowest predictive uncertainty, as
quantified by output distribution entropy. While this method relies on accurate novelty detection,
which is in itself a far from solved research problem, it is otherwise straightforward to implement and
no additional learning or model is required to infer task identity.

Hypernetwork-protected synthetic replay. When a generative model is available, catastrophic
forgetting can be circumvented by mixing current task data with replayed past synthetic data (for
recent work see Shin et al., 2017; Wu et al., 2018). Besides protecting the generative model itself,
synthetic data can protect another model of interest, for example, another discriminative model. This
conceptually simple strategy is in practice often the state-of-the-art solution to CL (van de Ven &
Tolias, 2019). Inspired by these successes, we explore augmenting our system with a replay network,
here a standard variational autoencoder (VAE; Kingma & Welling, 2014) (but see Appendix F for
experiments with a generative adversarial network, Goodfellow et al., 2014).

Synthetic replay is a strong, but not perfect, CL mechanism as the generative model is subject to
drift, and errors tend to accumulate and amplify with time. Here, we build upon the following key
observation: just like the target network, the generator of the replay model can be specified by a
hypernetwork. This allows protecting it with the output regularizer, Eq. 2, rather than with the model’s
own replay data, as done in related work. Thus, in this combined approach, both synthetic replay and
task-conditional metamodelling act in tandem to reduce forgetting.

We explore hypernetwork-protected replay in two distinct setups. First, we consider a minimalist
architecture (HNET+R), where only the replay model, and not the target classifier, is parameterized
by a hypernetwork. Here, forgetting in the target network is obviated by mixing current data with
synthetic data. Synthetic target output values for previous tasks are generated using a soft targets
method, i.e., by simply evaluating the target function before learning the new task on synthetic
input data. Second (HNET+TIR), we introduce an auxiliary task inference classifier, protected using
synthetic replay data and trained to predict task identity from input patterns. This architecture requires
additional modelling, but it is likely to work well when tasks are strongly dissimilar. Furthermore,
the task inference subsystem can be readily applied to process more general forms of contextual
information, beyond the current input pattern. We provide additional details, including network
architectures and the loss functions that are optimized, in Appendices B and C.
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3 RESULTS

We evaluate our method on a set of standard image classification benchmarks on the MNIST, CIFAR-
10 and CIFAR-100 public datasets1. Our main aims are to (1) study the memory retention capabilities
of task-conditioned hypernetworks across three continual learning settings, and (2) investigate
information transfer across tasks that are learned sequentially.

Continual learning scenarios. In our experiments we consider three different CL scenarios (van de
Ven & Tolias, 2019). In CL1, the task identity is given to the system. This is arguably the standard
sequential learning scenario, and the one we consider unless noted otherwise. In CL2, task identity
is unknown to the system, but it does not need to be explicitly determined. A target network with a
fixed head is required to solve multiple tasks. In CL3, task identity has to be explicitly inferred. It
has been argued that this scenario is the most natural, and the one that tends to be harder for neural
networks (Farquhar & Gal, 2018; van de Ven & Tolias, 2019).

Experimental details. Aiming at comparability, for the experiments on the MNIST dataset we
model the target network as a fully-connected network and set all hyperparameters after van de Ven
& Tolias (2019), who recently reviewed and compared a large set of CL algorithms. For our CIFAR
experiments, we opt for a ResNet-32 target neural network (He et al., 2016) to assess the scalability
of our method. A summary description of the architectures and particular hyperparameter choices, as
well as additional experimental details, is provided in Appendix C. We emphasize that, on all our
experiments, the number of hypernetwork parameters is always smaller or equal than the number of
parameters of the models we compare with.
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Figure 2: 1D nonlinear regression. (a) Task-conditioned hypernetworks with output regularization
can easily model a sequence of polynomials of increasing degree, while learning in a continual fashion.
(b) The solution found by a target network which is trained directly on all tasks simultaneously is
similar. (c) Fine-tuning, i.e., learning sequentially, leads to forgetting of past tasks. Dashed lines
depict ground truth, markers show model predictions.

Nonlinear regression toy problem. To illustrate our approach, we first consider a simple nonlinear
regression problem, where the function to be approximated is scalar-valued, Fig. 2. Here, a sequence
of polynomial functions of increasing degree has to be inferred from noisy data. This motivates
the continual learning problem: when learning each task in succession by modifying Θh with the
memory-preserving regularizer turned off (βoutput = 0, see Eq. 2) the network learns the last task but
forgets previous ones, Fig. 2c. The regularizer protects old solutions, Fig. 2a, and performance is
comparable to an offline non-continual learner, Fig. 2b.

Permuted MNIST benchmark. Next, we study the permuted MNIST benchmark. This problem
is set as follows. First, the learner is presented with the full MNIST dataset. Subsequently, novel
tasks are obtained by applying a random permutation to the input image pixels. This process can
be repeated to yield a long task sequence, with a typical length of T = 10 tasks. Given the low
similarity of the generated tasks, permuted MNIST is well suited to study the memory capacity of a
continual learner. For T = 10, we find that task-conditioned hypernetworks are state-of-the-art on
CL1, Table 1. Interestingly, inferring tasks through the predictive distribution entropy (HNET+ENT)
works well on the permuted MNIST benchmark. Despite the simplicity of the method, both synaptic
intelligence (SI; Zenke et al., 2017) and online elastic weight consolidation (EWC; Schwarz et al.,
2018) are overperformed on CL3 by a large margin. When complemented with generative replay

1Source code is available under https://github.com/chrhenning/hypercl.
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Figure 3: Experiments on the permuted MNIST benchmark. (a) Final test set classification
accuracy on the t-th task after learning one hundred permutations (PermutedMNIST-100). Task-
conditioned hypernetworks (hnet, in red) achieve very large memory lifetimes on the permuted
MNIST benchmark. Synaptic intelligence (SI, in blue; Zenke et al., 2017), online EWC (in orange;
Schwarz et al., 2018) and deep generative replay (DGR+distill, in green; Shin et al., 2017) methods are
shown for comparison. Memory retention in SI and DGR+distill degrade gracefully, whereas EWC
suffers from rigidity and can never reach very high accuracy, even though memories persist for the
entire experiment duration. (b) Compression ratio |Θh∪{e(t)}|

|Θtrgt| versus task-averaged test set accuracy
after learning all tasks (labelled ‘final’, in red) and immediately after learning a task (labelled ‘during’,
in purple) for the PermutedMNIST-10 benchmark. Hypernetworks allow for model compression and
perform well even when the number of target model parameters exceeds their own. Performance
decays nonlinearly: accuracies stay approximately constant for a wide range of compression ratios
below unity. Hyperparameters were tuned once for compression ratio ≈ 1 and were then used for all
compression ratios. Shaded areas denote STD (a) resp. SEM (b) across 5 random seeds.

methods, task-conditioned hypernetworks (HNET+TIR and HNET+R) are the best performers on all
three CL scenarios.

Performance differences become larger in the long sequence limit, Fig. 3a. For longer task sequences
(T = 100), SI and DGR+distill (Shin et al., 2017; van de Ven & Tolias, 2018) degrade gracefully,
while the regularization strength of online EWC prevents the method from achieving high accuracy
(see Fig. A6 for a hyperparameter search on related work). Notably, task-conditioned hypernetworks
show minimal memory decay and find high performance solutions. Because the hypernetwork
operates in a compressive regime (see Fig. 3b and Fig. A7 for an exploration of compression ratios),
our results do not naively rely on an increase in the number of parameters. Rather, they suggest that
previous methods are not yet capable of making full use of target model capacity in a CL setting.
We report a set of extended results on this benchmark on Appendix D, including a study of CL2/3
(T = 100), where HNET+TIR strongly outperforms the related work.

Split MNIST benchmark. Split MNIST is another popular CL benchmark, designed to introduce
task overlap. In this problem, the various digits are sequentially paired and used to form five binary
classification tasks. Here, we find that task-conditioned hypernetworks are the best overall performers.
In particular, HNET+R improves the previous state-of-the-art method DGR+distill on both CL2 and
CL3, almost saturating the CL2 upper bound for replay models (Appendix D). Since HNET+R is
essentially hypernetwork-protected DGR, these results demonstrate the generality of task-conditioned
hypernetworks as effective memory protectors. To further support this, in Appendix F we show that
our replay models (we experiment with both a VAE and a GAN) can learn in a class-incremental
manner the full MNIST dataset. Finally, HNET+ENT again outperforms both EWC and SI, without
any generative modelling.

On the split MNIST problem, tasks overlap and therefore continual learners can transfer information
across tasks. To analyze such effects, we study task-conditioned hypernetworks with two-dimensional
task embedding spaces, which can be easily visualized. Despite learning happening continually, we
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Table 1: Task-averaged test accuracy (± SEM, n = 20) on the permuted (‘P10’) and split (‘S’)
MNIST experiments. In the table, EWC refers to online EWC and DGR refers to DGR+distill (results
reproduced from van de Ven & Tolias, 2019). We tested three hypernetwork-based models: for
HNET+ENT (HNET alone for CL1), we inferred task identity based on the entropy of the predictive
distribution; for HNET+TIR, we trained a hypernetwork-protected recognition-replay network (based
on a VAE, cf. Fig. A1) to infer the task from input patterns; for HNET+R the main classifier was
trained by mixing current task data with synthetic data generated from a hypernetwork-protected
VAE.

EWC SI DGR HNET+ENT HNET+TIR HNET+R

P10-CL1 95.96 ± 0.06 94.75 ± 0.14 97.51 ± 0.01 97.57 ± 0.02 97.57 ± 0.02 97.87 ± 0.01
P10-CL2 94.42 ± 0.13 95.33 ± 0.11 97.35 ± 0.02 92.80 ± 0.15 97.58 ± 0.02 97.60 ± 0.01
P10-CL3 33.88 ± 0.49 29.31 ± 0.62 96.38 ± 0.03 91.75 ± 0.21 97.59 ± 0.01 97.76 ± 0.01

S-CL1 99.12 ± 0.11 99.09 ± 0.15 99.61 ± 0.02 99.79 ± 0.01 99.79 ± 0.01 99.83 ± 0.01
S-CL2 64.32 ± 1.90 65.36 ± 1.57 96.83 ± 0.20 87.01 ± 0.47 94.43 ± 0.28 98.00 ± 0.03
S-CL3 19.96 ± 0.07 19.99 ± 0.06 91.79 ± 0.32 69.48 ± 0.80 89.59 ± 0.59 95.30 ± 0.13
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Figure 4: Two-dimensional task embedding space for the split MNIST benchmark. Color-
coded test set classification accuracies after learning the five splits, shown as the embedding vector
components are varied. Markers denote the position of final task embeddings. (a) High classification
performance with virtually no forgetting is achieved even when e-space is low-dimensional. The
model shows information transfer in embedding space: the first task is solved in a large volume that
includes embeddings for subsequently learned tasks. (b) Competition in embedding space: the last
task occupies a finite high performance region, with graceful degradation away from the embedding
vector. Previously learned task embeddings still lead to moderate, above-chance performance.

find that the algorithm converges to a hypernetwork configuration that can produce target model
parameters that simultaneously solve old and new tasks, Fig. 4, given the appropriate task embedding.

Split CIFAR-10/100 benchmark. Finally, we study a more challenging benchmark, where the
learner is first asked to solve the full CIFAR-10 classification task and is then presented with sets
of ten classes from the CIFAR-100 dataset. We perform experiments both with a high-performance
ResNet-32 target network architecture (Fig. 5) and with a shallower model (Fig. A3) that we exactly
reproduced from previous work (Zenke et al., 2017). Remarkably, on the ResNet-32 model, we find
that task-conditioned hypernetworks essentially eliminate altogether forgetting. Furthermore, forward
information transfer takes place; knowledge from previous tasks allows the network to find better
solutions than when learning each task individually from initial conditions. Interestingly, forward
transfer is stronger on the shallow model experiments (Fig. A3), where we otherwise find that our
method performs comparably to SI.

4 DISCUSSION

Bayesian accounts of continual learning. According to the standard Bayesian CL perspec-
tive, a posterior parameter distribution is recursively updated using Bayes’ rule as tasks arrive
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Figure 5: Split CIFAR-10/100 CL
benchmark. Test set accuracies (mean
± STD, n = 5) on the entire CIFAR-
10 dataset and subsequent CIFAR-100
splits of ten classes. Our hypernetwork-
protected ResNet-32 displays virtually
no forgetting; final averaged perfor-
mance (hnet, in red) matches the imme-
diate one (hnet-during, in blue). Further-
more, information is transferred across
tasks, as performance is higher than
when training each task from scratch
(purple). Disabling our regularizer leads
to strong forgetting (in yellow).

(Kirkpatrick et al., 2017; Huszár, 2018; Nguyen et al., 2018). While this approach is theoretically
sound, in practice, the approximate inference methods that are typically preferred can lead to stiff
models, as a compromise solution that suits all tasks has to be found within the mode determined
by the first task. Such restriction does not apply to hypernetworks, which can in principle model
complex multimodal distributions (Louizos & Welling, 2017; Pawlowski et al., 2017; Henning et al.,
2018). Thus, rich, hypernetwork-modelled priors are one avenue of improvement for Bayesian CL
methods. Interestingly, task-conditioning offers an alternative possibility: instead of consolidating
every task onto a single distribution, a shared task-conditioned hypernetwork could be leveraged
to model a set of parameter posterior distributions. This conditional metamodel naturally extends
our framework to the Bayesian learning setting. Such approach will likely benefit from additional
flexibility, compared to conventional recursive Bayesian updating.

Related approaches that rely on task-conditioning. Our model fits within, and in certain ways
generalizes, previous CL methods that condition network computation on task descriptors. Task-
conditioning is commonly implemented using multiplicative masks at the level of modules (Rusu
et al., 2016; Fernando et al., 2017), neurons (Serra et al., 2018; Masse et al., 2018) or weights
(Mallya & Lazebnik, 2018). Such methods work best with large networks and come with a significant
storage overhead, which typically scales with the number of tasks. Our approach differs by explicitly
modelling the full parameter space using a metamodel, the hypernetwork. Thanks to this metamodel,
generalization in parameter and task space is possible, and task-to-task dependencies can be exploited
to efficiently represent solutions and transfer present knowledge to future problems. Interestingly,
similar arguments have been drawn in work developed concurrently to ours (Lampinen & McClelland,
2019), where task embedding spaces are further explored in the context of few-shot learning. In the
same vein, and like the approach developed here, recent work in CL generates last-layer network
parameters as part of a pipeline to avoid catastrophic forgetting (Hu et al., 2019) or distills parameters
onto a contractive auto-encoding model (Camp et al., 2018).

Positive backwards transfer. In its current form, the hypernetwork output regularizer protects
previously learned solutions from changing, such that only weak backwards transfer of information
can occur. Given the role of selective forgetting and refinement of past memories in achieving
intelligent behavior (Brea et al., 2014; Richards & Frankland, 2017), investigating and improving
backwards transfer stands as an important direction for future research.

Relevance to systems neuroscience. Uncovering the mechanisms that support continual learning
in both brains and artificial neural networks is a long-standing question (McCloskey & Cohen, 1989;
French, 1999; Parisi et al., 2019). We close with a speculative systems interpretation (Kumaran et al.,
2016; Hassabis et al., 2017) of our work as a model for modulatory top-down signals in cortex. Task
embeddings can be seen as low-dimensional context switches, which determine the behavior of a
modulatory system, the hypernetwork in our case. According to our model, the hypernetwork would
in turn regulate the activity of a target cortical network.

As it stands, implementing a hypernetwork would entail dynamically changing the entire connectivity
of a target network, or cortical area. Such a process seems difficult to conceive in the brain. However,
this strict literal interpretation can be relaxed. For example, a hypernetwork can output lower-
dimensional modulatory signals (Marder, 2012), instead of a full set of weights. This interpretation
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is consistent with a growing body of work which suggests the involvement of modulatory inputs in
implementing context- or task-dependent network mode-switching (Mante et al., 2013; Jaeger, 2014;
Stroud et al., 2018; Masse et al., 2018).

5 CONCLUSION

We introduced a novel neural network model, the task-conditioned hypernetwork, that is well-suited
for CL problems. A task-conditioned hypernetwork is a metamodel that learns to parameterize target
functions, that are specified and identified in a compressed form using a task embedding vector.
Past tasks are kept in memory using a hypernetwork output regularizer, which penalizes changes in
previously found target weight configurations. This approach is scalable and generic, being applicable
as a standalone CL method or in combination with generative replay. Our results are state-of-the-art
on standard benchmarks and suggest that task-conditioned hypernetworks can achieve long memory
lifetimes, as well as transfer information to future tasks, two essential properties of a continual learner.
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A TASK-CONDITIONED HYPERNETWORKS: MODEL SUMMARY

In our model, a task-conditioned hypernetwork produces the parameters Θtrgt = fh(e,Θh) of a
target neural network. Given one such parameterization, the target model then computes predictions
ŷ = ftrgt(x,Θtrgt) based on input data. Learning amounts to adapting the parameters Θh of the
hypernetwork, including a set of task embeddings {e(t)}Tt=1, as well as a set of chunk embeddings
{ci}NC

i=1 in case compression is sought or if the full hypernetwork is too large to be handled directly.
To avoid castastrophic forgetting, we introduce an output regularizer which fixes the behavior of the
hypernetwork by penalizing changes in target model parameters that are produced for previously
learned tasks.
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Variables that need to be stored while learning new tasks. What are the storage requirements
of our model, when learning continually?

1. Memory retention relies on saving one embedding per task. This collection {e(t)}Tt=1
therefore grows linearly with T . Such linear scaling is undesirable asymptotically, but
it turns out to be essentially negligible in practice, as each embedding is a single low-
dimensional vector (e.g., see Fig. 4 for a run with 2D embeddings).

2. A frozen snapshot of the hypernetwork parameters Θ∗h , taken before learning a new task,
needs to be kept, to evaluate the output regularizer in Eq. 2.

B ADDITIONAL DETAILS ON HYPERNETWORK-PROTECTED REPLAY MODELS

Variational autoencoders. For all HNET+TIR and HNET+R experiments reported on the main
text we use VAEs as our replay models (Fig. A1a, Kingma & Welling, 2014). Briefly, a VAE consists
of an encoder-decoder network pair, where the encoder network processes some input pattern x and
its outputs fenc(x) = (µ,σ2) comprise the parameters µ and σ2 (encoded in log domain, to enforce
nonnegativity) of a diagonal multivariate Gaussian pZ(z;µ,σ2), which governs the distribution of
latent samples z. On the other side of the circuit, the decoder network processes a latent sample z and
a one-hot-encoded task identity vector and returns an input pattern reconstruction, fdec(z,1t) = x̂.

VAEs can preserve memories using a technique called generative replay: when training task T , input
samples are generated from the current replay network for old tasks t < T , by varying 1t and drawing
latent space samples z. Generated data can be mixed with the current dataset, yielding an augmented
dataset X̃ used to relearn model parameters. When protecting a discriminative model, synthetic ‘soft’
targets can be generated by evaluating the network on X̃ . We use this strategy to protect an auxiliary
task inference classifier in HNET+TIR, and to protect the main target model in HNET+R.

Hypernetwork-protected replay. In our HNET+TIR and HNET+R experiments, we parameterize
the decoder network through a task-conditioned hypernetwork, fh,dec(e,Θh,dec). In combination
with our output regularizer, this allows us to take advantage of the memory retention capacity of
hypernetworks, now on a generative model.

The replay model (encoder, decoder and decoder hypernetwork) is a separate subsystem that is
optimized independently from the target network. Its parameters Θenc and Θh,dec are learned by
minimizing our regularized loss function, Eq. 2, here with the task-specific term set to the standard
VAE objective function,

LVAE
(
X,Θenc,Θh,dec

)
= Lrec(X,Θenc,Θdec) + Lprior(X,Θenc,Θdec), (3)

with Θdec = fh,dec(e,Θh,dec) introducing the dependence on Θh,dec. LVAE balances a reconstruction
Lrec and a prior-matching Lprior penalties. For our MNIST experiments, we choose binary cross-
entropy (in pixel space) as the reconstruction loss, that we write below for a single example x

Lrec(x,Θenc,Θdec) = Lxent
(
x, fdec

(
z,1t(x),Θdec

))
, (4)

where Lxent(t, y) = −
∑
k tk log yk is the cross entropy. For a diagonal Gaussian pZ , the prior-

matching term can be evaluated analytically,

Lprior = −1

2

|z|∑
i=1

(
1 + log σ2

i − σ2
i − µ2

i

)
. (5)

Above, z is a sample from pZ(z;µ(x̃),σ2(x̃)) obtained via the reparameterization trick (Kingma &
Welling, 2014; Rezende et al., 2014). This introduces the dependency of Lrec on Θenc.

Task inference network (HNET+TIR). In the HNET+TIR setup, we extend our system to include
a task inference neural network classifier α(x) parameterized by ΘTI, where tasks are encoded with
a T -dimensional softmax output layer. In both CL2 and CL3 scenarios we use a growing single-head
setup for α, and increase the dimensionality of the softmax layer as tasks arrive.

13



Published as a conference paper at ICLR 2020

This network is prone to catastrophic forgetting when tasks are learned continually. To prevent this
from happening we resort to replay data generated from a hypernetwork-protected VAE, described
above. More specifically, we introduce a task inference loss,

LTI(x̃,ΘTI) = Lxent(1t(x̃),α(x̃,Θenc)), (6)

where t(x̃) denotes the correct task identity for a sample x̃ from the augmented dataset X̃ =

{X̃(1), . . . X̃(T−1), X̃(T )} with X̃(t) being synthetic data fdec(z,1t,Θdec) for t = 1 . . . T −1 and
X̃(T ) = X(T ) is the current task data. Importantly, synthetic data is essential to obtain a well defined
objective function for task inference; the cross-entropy loss LTI requires at least two groundtruth
classes to be optimized. Note that replayed data can be generated online by drawing samples z from
the prior.

a

fdec
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z task id

x
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Figure A1: Hypernetwork-protected replay model setups. (a) A hypernetwork-protected VAE,
that we used for HNET+R and HNET+TIR main text experiments. (b) A hypernetwork-protected
GAN, that we used for our class-incremental learning Appendix F experiments. (c) A task inference
classifier protected with synthetic replay data, used on HNET+TIR experiments.

Hypernetwork-protected GANs. Generative adversarial networks (Goodfellow et al., 2014) have
become an established method for generative modelling and tend to produce higher quality images
compared to VAEs, even at the scale of datasets as complex as ImageNet (Brock et al., 2019; Lučić
et al., 2019; Donahue & Simonyan, 2019). This makes GANs perfect candidates for powerful replay
models. A suitable GAN instantiation for CL is the conditional GAN (Mirza & Osindero, 2014) as
studied by Wu et al. (2018). Recent developments in the GAN literature already allude towards the
potential of using hypernetwork-like structures, e.g., when injecting the latent noise (Karras et al.,
2019) or when using class-conditional batch-normalization as in (Brock et al., 2019). We propose
to go one step further and use a hypernetwork that maps the condition to the full set of generator
parameters Θ∗gen. Our framework allows training a conditional GAN one condition at the time. This is
potentially of general interest, and goes beyond the scope of replay models, since conditional GANs
trained in a mutli-task fashion as in Brock et al. (2019) require very large computational resources.

For our showcase experiment on class-incremental MNIST learning, Fig. A8, we did not aim to
compare to related work and therefore did not tune to have less weights in the hypernetwork than
on the target network (for the VAE experiments, we use the same compressive setup as in the main
text, see Appendix C). The GAN hypernetwork is a fully-connected chunked hypernetwork with 2
hidden layers of size 25 and 25 followed by an output size of 75,000. We used learning rates for both
discriminator and the generator hypernetwork of 0.0001, as well as dropout of 0.4 in the discriminator
and the system is trained for 10000 iterations per task. We use the Pearson Chi2 Least-Squares GAN
loss from Mao et al. (2017) in our experiments.

C ADDITIONAL EXPERIMENTAL DETAILS

All experiments are conducted using 16 NVIDIA GeForce RTX 2080 TI graphics cards.

For simplicity, we decided to always keep the previous task embeddings e(t), t = 1, . . . , T − 1, fixed
and only learn the current task embedding e(T ). In general, performance should be improved if the

14



Published as a conference paper at ICLR 2020

regularizer in Eq. 2 has a separate copy of the task embeddings e(t,∗) from before learning the current
task, such that e(t) can be adapted. Hence, the targets become fh(e(t,∗),Θ∗h) and remain constant
while learning task T . This would give the hypernetwork the flexibility to adjust the embeddings i.e.
the preimage of the targets and therefore represent any function that includes all desired targets in its
image.

Nonlinear regression toy problem. The nonlinear toy regression from Fig. 2 is an illustrative
example for a continual learning problem where a set of ground-truth functions {g(1), . . . , g(T )} is
given from which we collect 100 noisy training samples per task {(x,y) | y = g(t)(x) + ε with ε ∼
N (0, σ2I),x ∼ U(X (t))}, where X (t) denotes the input domain of task t. We set σ = 0.05 in this
experiment.

We perform 1D regression and choose the following set of tasks:

g(1)(x) = x+ 3 X (1) = [−4,−2] (7)

g(2)(x) = 2x2 − 1 X (2) = [−1, 1] (8)

g(3)(x) = (x− 3)3 X (3) = [2, 4] (9)

The target network ftrgt consists of two fully-connected hidden layers using 10 neurons each. For
illustrative purposes we use a full hypernetwork fh that generates all 141 weights of ftrgt at once,
also being a fully-connected network with two hidden-layers of size 10. Hence, this is the only setup
where we did not explore the possibility of a chunked hypernetwork. We use sigmoid activation
functions in both networks. The task embedding dimension was set to 2.

We train each task for 4000 iterations using the Adam optimizer with a learning rate of 0.01 (and
otherwise default PyTorch options) and a batch size of 32.

To test our regularizer in Fig. 2a we set βoutput to 0.005, while it is set to 0 for the fine-tuning
experiment in Fig. 2c.

For the multi-task learner in Fig. 2b we trained only the target network (no hypernetwork) for 12000
iterations with a learning rate of 0.05. Comparable performance could be obtained when training the
task-conditioned hypernetwork in this multi-task regime (data not shown).

It is worth noting that the multi-task learner from Fig. 2b that uses no hypernetwork is only able to
learn the task since we choose the input domains to be non-overlapping.

Permuted MNIST benchmark. For our experiments conducted on MNIST we replicated the
experimental setup proposed by van de Ven & Tolias (2019) whenever applicable. We therefore use
the same number of training iterations, the same or a lower number of weights in the hypernetwork
than in the target network, the same learning rates and the same optimizer. For the replay model,
i.e., the hypernetwork-empowered VAE, as well as for the standard classifier we used 5000 training
iterations per task and learning rate is set to 0.0001 for the Adam optimizer (otherwise PyTorch
default values). The batchsize is set to 128 for the VAE whereas the classifier is simultaneously
trained on a batch of 128 samples of replayed data (evenly distributed over all past tasks) and a
batch of 128 images from the currently available dataset. MNIST images are padded with zeros,
which results in network inputs of size 32× 32, again strictly following the implementation of the
compared work. We experienced better performance when we condition our replay model on a
specific task input. We therefore construct for every task a specific input namely a sample from
a standard multivariate normal of dimension 100. In practice we found the dimension to be not
important. This input stays constant throughout the experiment and is not learned. Note that we use
the same hyperparameters for all learning scenarios, which is not true for the reported related work
since they have tuned special hyperparameters for all scenarios and all methods.

• Details of hypernetwork for the VAE. We use one hypernetwork configuration to generate
weights for all variational autoencoders used for our PermutedMNIST-10 experiments
namely a fully-connected chunked hypernetwork with 2 hidden layers of size 25 and 25
followed by an output size of 85,000. We use ELU nonlinearities in the hidden layers

15



Published as a conference paper at ICLR 2020

a

1 50 100
Task t

50

75

100

A
cc

ur
ac

y
[%

]

PermutedMNIST-100

βoutput = 1

βoutput = 0.5

βoutput = 0.1

βoutput = 0.05

βoutput = 0.01

βoutput = 0.005

βoutput = 0.001

βoutput = 0.0005

b

1 50 100
Task t

80

90

100

A
cc

ur
ac

y
[%

]

96.78% 95.66%

PermutedMNIST-100

(12 + 128)→ 200→ 250→ 350→ 7500, βoutput = 0.01

(12 + 128)→ 200→ 250→ 300→ 6000, βoutput = 0.01

c

0.001 0.01 0.1 1
0.0005 0.005 0.05 0.5

βoutput

80

90

100

A
cc

ur
ac

y
[%

]

PermutedMNIST-100

during final

Figure A2: Additional experiments on the PermutedMNIST-100 benchmark. (a) Final test set
classification accuracy on the t-th task after learning one hundred permutations (PermutedMNIST-
100). All runs use exactly the same hyperparameter configuration except for varying values of
βoutput. The final accuracies are robust for a wide range of regularization strengths. If βoutput is too
weak, forgetting will occur. However, there is no severe disadvantage of choosing βoutput too high
(cmp. (c)). A too high βoutput simply shifts the attention of the optimizer away from the current task,
leading to lower baseline accuracies when the training time is not increased. (b) Due to an increased
number of output neurons, the target network for PermutedMNIST-100 has more weights than for
PermutedMNIST-10 (this is only the case for CL1 and CL3). This plot shows that the performance
drop is minor when choosing a hypernetwork with a comparable number of weights as the target
network in CL2 (orange) compared to one that has a similar number of weights as the target network
for CL1 in PermutedMNIST-100 (red). (c) Task-averaged test set accuracy after learning all tasks
(labelled ‘final’, in red) and immediately after learning a task (labelled ‘during’, in purple) for the runs
depicted in (a). For low values of βoutput final accuracies are worse than immediate once (forgetting
occurs). If βoutput is too high, baseline accuracies decrease since the optimizer puts less emphasis
on the current task (note that the training time per task is not increased). Shaded areas in (a) and (b)
denote STD, whereas error bars in (c) denote SEM (always across 5 random seeds).
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of the hypernetwork. The size of task embeddings e has been set to 24 and the size of
chunk embeddings c to 8. The parameter βoutput is 0.05 . The number of weights in this
hypernetwork is 2,211,907 (2,211,691 network weights + 216 task embedding weights).
The corresponding target network (and therefore output of the chunked hypernetwork), as
taken from related work, has 2,227,024 weights.
• Details of the VAE for HNET+TIR. For this variational autoencoder, we use two fully-

connected neural networks with layers of size 1000, 1000 for the encoder and 1000, 1000
for the decoder and a latent space of 100. This setup is again copied from work we compare
against.
• Details of the VAE for HNET+R. For this variational autoencoder, we use two fully-

connected neural networks with layers of size 400, 400 for the encoder and 400, 400 for the
decoder (both 1000, 1000 in the related work) and a latent space of dimension 100. Here,
we departure from related work by choosing a smaller architecture for the autoencoder. Note
that we still use a hypernetwork with less trainable parameters than the target network (in
this case the decoder) that is used in related work.
• Details of the hypernetwork for the target classifier in PermutedMNIST-10

(HNET+TIR & HNET+ENT). We use the same setup for the hypernetwork as used
for the VAEs above, but since the target network is smaller we reduce the output of the
hypernetwork to 78,000. We also adjust the parameter βoutput to 0.01, consistent with our
PermutedMNIST-100 experiments. The number of weights in this hypernetwork is therefore
2,029,931 parameters (2,029,691 network weights + 240 task embedding weights). The
corresponding target network (from related work) would have 2,126,100 weights for CL1
and CL3 and 2,036,010 for CL2 (only one output head).
• Details of the hypernetwork for the target classifier for PermutedMNIST-100. For

these experiments we chose an architecture that worked well on the PermutedMNIST-10
benchmark and did not conduct any more search for new architectures. For PermutedMNIST-
100, the reported results were obtained by using a chunked hypernetwork with 3 hidden layers
of size 200, 250 and 350 (300 for CL2) and an output size of 7500 (6000 for CL2) (such that
we approximately match the corresponding target network size for CL1/CL2/CL3). Interest-
ingly, Fig. A2b shows that even if we don’t adjust the number of hypernetwork weights to the
increased number of target network weights, the superiority of our method is evident. Aside
from this, the plots in Fig. 3 have been generated using the PermutedMNIST-10 HNET+TIR
setup (note that this includes the conditions set by related work for PermutedMNIST-10,
e.g., target network sizes, the number of training iterations, learning rates, etc.).
• Details of the VAE and the hypernetwork for the VAE in PermutedMNIST-100 for
CL2/CL3. We use a very similar setup for the VAE and it’s hypernetwork used in
HNET+TIR for PermutedMNIST-10 as described above. We only applied the follow-
ing changes: Fully-connected hypernetwork with one hidden layer of size 100; chunk
embedding sizes are set to 12; task embedding sizes are set two 128 and the hidden layer
sizes of the VAE its generator are 400, 600. Also we increased the regularisation strength
βoutput = 0.1 for the VAE its generator hypernetwork.
• Details of the target classifier for HNET+TIR & HNET+ENT. For this classifier, we

use the same setup as in the study we compare to (van de Ven & Tolias, 2019), i.e., a
fully-connected network with layers of size 1000, 1000. Note that if the classifier is used as
a task inference model, it is trained on replay data and the corresponding hard targets, i.e.,
the argmax of the soft targets.

Below, we report the specifications for our automatic hyperparameter search (if not noted otherwise,
these specifications apply for the split MNIST and split CIFAR experiments as well):

• Hidden layer sizes of the hypernetwork: (no hidden layer), "5,5" "10,10", "25,25", "50,50",
"100,100", "10", "50", "100"
• Output size of the hypernetwork: fitted such that we obtain less parameters then the target

network which we compare against
• Embedding sizes (for e and c): 8, 12, 24, 36, 62, 96, 128
• βoutput: 0.0005, 0.001, 0.005, 0.01, 0.005, 0.1, 0.5, 1.0
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• Hypernetwork transfer functions: linear, ReLU, ELU, Leaky-ReLU

Note that only a random subset of all possible combinations of hyperparameters has been explored.

After we found a configuration with promising accuracies and a similar number of weights compared
to the original target network, we manually fine-tuned the architecture to increase/decrease the
number of hypernetwork weights to approximately match the number of target network weights.

The choice of hypernetwork architecture seems to have a strong influence on the performance.
It might be worth exploring alternatives, e.g., an architecture inspired by those used in typical
generative models. We note that in addition to the above specifications we explored manually some
hyperparameter configurations to gain a better understanding of our method.

Split MNIST benchmark. Again, whenever applicable we reproduce the setup from van de Ven &
Tolias (2019). Differences to the PermutedMNIST-10 experiments are just the learning rate (0.001)
and the number of training iterations (set to 2000).

• Details of hypernetwork for the VAE. We use one hypernetwork configuration to generate
weights for all variational autoencoders used for our split MNIST experiments, namely a
fully-connected chunked hypernetwork with 2 hidden layers of size 10, 10 followed by an
output size of 50,000. We use ELU nonlinearities in the hidden layers of the hypernetwork.
The size of task embeddings e has been set to 96 and the size of chunk embeddings c to 96.
The parameter βoutput is 0.01 for HNET+R and 0.05 for HNET+TIR . The number of weights
in this hypernetwork is 553,576 (553,192 network weights + 384 task embedding weights).
The corresponding target network (and therefore output of the chunked hypernetwork), as
taken from related work, has 555,184 weights. For a qualitative analyses of the replay data
of this VAE (class incrementally learned), see A8.

• Details of the VAE for HNET+TIR. For this variational autoencoder, we use two fully-
connected neural networks with layers of size 400, 400 for the encoder and 50, 150 for the
decoder (both 400, 400 in the related work) and a latent space of dimension 100.

• Details of the VAE for HNET+R. For this variational autoencoder, we use two fully-
connected neural networks with layers of size 400, 400 for the encoder and 250, 350 for the
decoder (both 400, 400 in the related work) and a latent space of dimension 100.

• Details of the hypernetwork for the target classifier in split MNIST (HNET+TIR &
HNET+ENT). We use the same setup for the hypernetwork as used for the VAE above,
but since the target network is smaller we reduce the output of the hypernetwork to 42,000.
We also adjust the βoutput to 0.01 although this parameter seems to not have a strong effect
on the performance. The number of weights in this hypernetwork is therefore 465,672
parameters (465,192 network weights + 480 task embedding weights). The corresponding
target network (from related work) would have 478,410 weights for CL1 and CL3 and
475,202 for CL2 (only one output head).

• Details of the target classifier for HNET+TIR & HNET+ENT. For this classifier, we
again use the same setup as in the study we compare to (van de Ven & Tolias, 2019), i.e.,
a fully-connected neural networks with layers of size 400, 400. Note that if the classifier
is used as a task inference model, it is trained on replay data and the corresponding hard
targets, i.e., the argmax the soft targets.

Split CIFAR-10/100 benchmark. For these experiments, we used as a target network a ResNet-32
network (He et al. (2016)) and again produce the weights of this target network by a hypernetwork
in a compressive manner. The hypernetwork in this experiment directly maps from the joint task
and chunk embedding space (both dimension 32) to the output space of the hypernetwork, which is
of dimension 7,000. This hypernetwork has 457,336 parameters (457,144 network weights + 192
task embedding weights). The corresponding target network, the ResNet-32, has 468.540 weights
(including batch-norm weights). We train for 200 epochs per task using the Adam optimizer with
an initial learning rate of 0.001 (and otherwise default PyTorch values) and a batch size of 32. In
addition, we apply the two learning rate schedules suggested in the Keras CIFAR-10 example2.

2See https://keras.io/examples/cifar10_resnet/.
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Due to the use of batch normalization, we have to find an appropriate way to handle the running
statistics which are estimated during training. Note, these are not parameters which are trained
through backpropagation. There are different ways how the running statistics could be treated:

1. One could ignore the running statistics altogether and simply compute statistics based on
the current batch during evaluation.

2. The statistics could be part of the hypernetwork output. Therefore, one would have to
manipulate the target hypernetwork output of the previous task, such that the estimated
running statistics of the previous task will be distilled into the hypernetwork.

3. The running statistics can simply be checkpointed and stored after every task. Note, this
method would lead to a linear memory growth in the number of tasks that scales with the
number of units in the target network.

For simplicity, we chose the last option and simply checkpointed the running statistics after every
task.

For the fine-tuning results in Fig. 5 we just continually updated the running statistics (thus, we applied
no checkpointing).

D ADDITIONAL EXPERIMENTS AND NOTES

Split CIFAR-10/100 benchmark using the model of Zenke et al. (2017). We re-run the split
CIFAR-10/100 experiment reported on the main text while reproducing the setup from Zenke et al.
(2017). Our overall classification performance is comparable to synaptic intelligence, which achieves
73.85% task-averaged test set accuracy, while our method reaches 71.29% ± 0.32%, with initial
baseline performance being slightly worse in our approach, Fig. A3.
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Figure A3: Replication of the split CIFAR-10/100 experiment of Zenke et al. (2017). Test set
accuracies on the entire CIFAR-10 dataset and subsequent CIFAR-100 splits. Both task-conditioned
hypernetworks (hnet, in red) and synaptic intelligence (SI, in green) transfer information forward and
are protected from catastrophic forgetting. The performance of the two methods is comparable. For
completeness, we report our test set accuracies achieved immediately after training (hnet-during, in
blue), when training from scratch (purple), and with our regularizer turned off (fine-tuning, yellow).

To obtain our results, we use a hypernetwork with 3 hidden-layers of sizes 100, 150, 200 and output
size 5500. The size of task embeddings e has been set to 48 and the size of chunk embeddings c to
80. The parameter βoutput is 0.01 and the learning rate is set to 0.0001.

The number of weights in this hypernetwork is 1,182,678 (1,182,390 network weights + 288 task
embedding weights). The corresponding target network would have 1,276,508 weights.

In addition to the above specified hyperparameter search configuration we also included the following
learning rates: 0.0001, 0.0005, 0.001 and manually tuned some architectural parameters.
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Figure A4: Context-free inference using hypernetwork-protected replay (HNET+TIR) on long
task sequences. Final test set classification accuracy on the t-th task after learning one hundred
permutations of the MNIST dataset (PermutedMNIST-100) for the CL2 (a) and CL3 (b) scenarios,
where task identity is not explicitly provided to the system. As before, the number of hypernetwork
parameters is not larger than that of the related work we compare to. (a) HNET+TIR displays almost
perfect memory retention. We used a stochastic regularizer (cf. Appendix D note below) which
evaluates the output regularizer in Eq. 2 only for a random subset of previous tasks (here, twenty).
(b) HNET+TIR is the only method that is capable of learning PermutedMNIST-100 in this learning
scenario. For this benchmark, the input data domains are easily separable and the task inference
system achieves virtually perfect (~100%) task inference accuracy throughout, even for this long
experiment. HNET+TIR uses a divide-and-conquer strategy: if task inference is done right, CL3
becomes just CL1. Furthermore, once task identity is predicted, the final softmax computation
only needs to consider the corresponding task outputs in isolation (here, of size 10). Curiously, for
HNET+TIR, CL2 can be harder than CL3 as the single output layer (of size 10, shared by all tasks)
introduces a capacity bottleneck. The related methods, on the other hand, have to consider the entire
output layer (here, of size 10*100) at once, which is known to be harder to train sequentially. This
leads to overwhelming error rates on long problems such as PermutedMNIST-100. Shaded areas in
(a) and (b) denote STD (n = 5).
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Upper bound for replay models. We obtain an upper bound for the replay-based experiments
(Table 2) by sequentially training a classifier, in the same way as for HNET+R and DGR, now using
true input data from past tasks and a synthetic, self-generated target. This corresponds to the rehearsal
thought experiment delineated in Sect. 1.

Table 2: Task-averaged test accuracy (± SEM, n = 20) on the permuted (‘P10’) and split (‘S’)
MNIST experiments. For HNET+R and DGR+distill (van de Ven & Tolias, 2019) the classification
network is trained sequentially on data from the current task and replayed data from all previous
tasks. Our HNET+R comes close to saturating the corresponding replay upper bound RPL-UB.

DGR HNET+R RPL-UB

P10-CL1 97.51 ± 0.01 97.85 ± 0.02 97.89 ± 0.02
P10-CL2 97.35 ± 0.02 97.60 ± 0.02 97.72 ± 0.01
P10-CL3 96.38 ± 0.03 97.71 ± 0.06 97.91 ± 0.01

S-CL1 99.61 ± 0.02 99.81 ± 0.01 99.83 ± 0.01
S-CL2 96.83 ± 0.20 97.88 ± 0.05 98.96 ± 0.03
S-CL3 91.79 ± 0.32 94.97 ± 0.18 98.38 ± 0.02

Quantification of forgetting in our continual learning experiments. In order to quantify forget-
ting of our approach, we compare test set accuracies of every single task directly after training with
it’s test set accuracy after training on all tasks.

Only CL1 is shown since other scenarios i.e. CL2 and CL3 depend on task inference which only is
measurable after training on all tasks.

Table 3: Task-averaged test accuracy (± SEM, n = 20) on the permutedMNIST-10 (‘P10’) and
splitMNIST (‘S’) experiments during and after training.

HNET+TIR
during

HNET+TIR
after

HNET+R
during

HNET+R
after

S-CL1 99.79 ± 0.01 99.79 ± 0.01 99.82 ± 0.01 99.83 ± 0.01

P10-CL1 97.58 ± 0.02 97.57 ± 0.02 98.03 ± 0.01 97.87 ± 0.01

Table 4: Task-averaged test accuracy (± SEM, n = 5) on the permutedMNIST-100 (‘P100’)
experiments during and after training.

HNET+TIR
during

HNET+TIR
after

P100-CL1 96.12 ± 0.08 96.18 ± 0.09
P100-CL2 - 95.97 ± 0.05
P100-CL3 - 96.00 ± 0.03

Table 5: Task-averaged test accuracy (± SEM, n = 5) on split CIFAR-10/100 on CL1 on two
different target network architectures.

during after

ZenkeNet 74.75 ± 0.09 71.29 ± 0.32
ResNet-32 82.36 ± 0.44 82.34 ± 0.44

Robustness of βoutput-choice. In Fig. A2a and Fig. A2c we provide additional experiments for our
method on PermutedMNIST-100. We show that our method performs comparable for a wide range of
βoutput-values (including the one depicted in Fig. 3a).
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Figure A5: Additional experiments with online EWC and fine-tuning on the PermutedMNIST-
100 benchmark. (a) Final test set classification accuracy on the t-th task after learning one hundred
permutations (PermutedMNIST-100) using the online EWC algorithm (Schwarz et al., 2018) to
prevent forgetting. All runs use exactly the same hyperparameter configuration except for varying
values of the regularization strength λ. Our method (hnet, in red) and the online EWC run (λ = 100,
in orange) from Fig. 3a are shown for comparison. It can be seen that even when tuning the
regularization strength one cannot attain similar performance as with our approach (cmp. Fig. A2a).
Too strong regularization prevents the learning of new tasks whereas too weak regularization doesn’t
prevent forgetting. However, a middle ground (e.g., using λ = 100) does not reach acceptable
per-task performances. (b) Task-averaged test set accuracy after learning all tasks (labelled ‘final’, in
red) and immediately after learning a task (labelled ‘during’, in purple) for a range of regularization
strengths λ when using the online EWC algorithm. Results are complementary to those shown in
(a). (c) Final test set classification accuracy on the t-th task after learning one hundred permutations
(PermutedMNIST-100) when applying fine-tuning to the hypernetwork (labelled ‘hnet fine-tuning’,
in blue) or target network (labelled ‘fine-tuning’, in green). Our method (hnet, in red) from Fig. 3a
is shown for comparison. It can be seen that without protection the hypernetwork suffers much
more severely from catastrophic forgetting as when training a target network only. (d) This plot is
complementary to (c). See description of (b) for an explanation of the labels. Shaded areas in (a) and
(c) denote STD, whereas error bars in (b) and (d) denote SEM (always across 5 random seeds).
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Figure A6: Hyperparameter search for online EWC and SI on the PermutedMNIST-100 bench-
mark. We conduct the same hyperparameter search as performed in van de Ven & Tolias (2018). We
did not compute different random seeds for this search. (a) Hyperparameter search on the regular-
isation strength c for the SI algorithm. Accuracies during and after the experiment are shown. (b)
Hyperparameter search for parameters λ and γ of the online EWC algorithm. Only accuracies after
the experiment are shown.

Varying the regularization strength for online EWC. The performance of online EWC in Fig. 3a
is closest to our method (labelled hnet, in red) compared to the other methods. Therefore, we take
a closer look at this method and show that further adjustments of the regularization strength λ do
not lead to better performance. Results for a wide range of regularization strengths can be seen
in Fig. A5a and Fig. A5b. As shown, online EWC cannot attain a performance comparable to our
method when tuning the regularization strength only.

The impact of catastrophic forgetting on the hypernetwork and target network. We have
successfully shown that by shifting the continual learning problem from the target network to the
hypernetwork we can successfully overcome forgetting due to the introduction of our regularizer in
Eq. 2. We motivated this success by claiming that it is an inherently simpler task to remember a few
input-output mappings in the hypernetwork (namely the weight realizations of each task) rather than
the massive number of input-output mappings {(x(t,i),y(t,i))}nt

i=1 associated with the remembering
of each task t by the target network.

Further evidence of this claim is provided by fine-tuning experiments in Fig. A5c and Fig. A5d.
Fine-tuning refers to sequentially learning a neural network on a set of tasks without any mechanism
in place to prevent forgetting. It is shown that fine-tuning a target network (no hypernetwork in this
setup) has no catastrophic influence on the performance of previous tasks. Instead there is a graceful
decline in performance. On the contrary, catastrophic forgetting has an almost immediate affect
when training a hypernetwork without protection (i.e., training our method with βoutput = 0. The
performance quickly drops to chance level, suggesting that if we weren’t solving a simpler task then
preventing forgetting in the hypernetwork rather than in the target network might not be beneficial.

Chunking and hypernetwork architecture sensitivity. In this note we investigate the perfor-
mance sensitivity for different (fully-connected) hypernetwork architectures on split MNIST
and PermutedMNIST-10, Fig. A7. We trained thousands of randomly drawn architectures
from the following grid (the same training hyperparameters as reported for for CL1, see Ap-
pendix C, were used throughout): possible number of hidden layers 1, 2, possible layer size
5, 10, 20, . . . , 90, 100, possible chunk embedding size 8, 12, 24, 56, 96 and hypernetwork output
size in {10, 50, 100, 200, 300, 400, 500, 750, 1k, 2k, . . . , 9k, 10k, 20k, 30k, 40k}. Since we realize
compression through chunking, we sort our hypernetwork architectures by compression ratio, and
consider only architectures with small compression ratios.

Performance of split MNIST stays in the high 90 percentages even when reaching compression ratios
close to 1% whereas for PermutedMNIST-10 accuracies decline in a non-linear fashion. For both
experiments, the choice of the chunked hypernetwork archicture is robust and high performing even in
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Figure A7: Robustness to hypernetwork architecture choice for a large range of compression
ratios. Performance vs. compression for random hypernetwork architecture choices, for split MNIST
and PermutedMNIST-10 (mean ± STD, n = 500 architectures per bin). Every model was trained
with the same setup (including all hyperparameters) used to obtain results reported in Table 1 (CL1).
We considered architectures yielding compression ratios |Θh ∪ {e(t)}|/|Θtrgt| ∈ [0.01, 2.0] (a) split
MNIST performance for CL1 stays high even for compression ratios ≈ 1%. (b) PermutedMNIST-10
accuracies degrade gracefully when compression ratios decline to 1%. Notably, for both benchmarks,
performance remained stable across a large pool of hypernetwork configurations.

the compressive regime. Note that the discussed compression ratio compares the amount of trainable
parameters in the hypernetwork to its output size, i.e. the parameters of the target network.

Small capacity target networks for the permuted MNIST benchmark. Swaroop et al. (2018)
argue for using only small capacity target networks for this benchmark. Specifically, they propose
to use hidden layer sizes [100, 100]. Again, we replicated the setup of van de Ven & Tolias (2019)
wherever applicable, except for the now smaller hidden layer sizes of [100, 100] in the target network.
We use a fully-connected chunked hypernetwork with chunk embeddings c having size 12, hidden
layers having size 100, 75, 50 and an output size of 2000, resulting in a total number of hypernetwork
weights of 122,459 (including 10 × 64 task embedding weights) compared to 122,700 weights that
are generated for the target network. βoutput is set to 0.05. The experiments performed here correspond
to CL1.

We achieve an average accuracy of 93.91 ± 0.04 for PermutedMNIST-10 after having trained on
all tasks. In general, we saw that the hypernetwork training can benefit from noise injection. For
instance, when training with soft-targets (i.e., we modified the 1-hot target to be 0.95 for the correct
class and 1−0.95

# classes−1 for the remaining classes), we could improve the average accuracy to 94.24 ±
0.03.

We also checked the challenging PermutedMNIST-50 benchmark with this small target network as
previously investigated by Ritter et al. (2018). Therefore, we slightly adapted the above setup by
using a hypernetwork with hidden layer sizes [100, 100] and a regularization strength of βoutput = 0.1.

This hypernetwork is slightly bigger than the corresponding target network |Θh∪{e(t)}|
|Θtrgt| = 1.37. With

this configuration, we obtain an average accuracy of 90.91 ± 0.07.

Comparison to HAT. Serra et al. (2018) proposed the hard attention to the task (HAT) algorithm, a
strong CL1 method which relies on learning a per-task, per-neuron mask. Since the masks are pushed
to become binary, HAT can be viewed as an algorithm for allocating subnetworks (or modules) within
the target network, which become specialized to solve a given task. Thus, the method is similar to
ours in the sense that the computation of the target network is task-dependent, but different in spirit,
as it relies on network modularity.

In HAT, task identity is assumed to be provided, so that the appropriate mask can be picked during
inference (scenario CL1). HAT requires explicitly storing a neural mask for each task, whose size
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scales with the number of neurons in the target network. In contrast, our method allows solving tasks
in a compressive regime. Thanks to the hypernetwork, whose input dimension can be freely chosen,
only a low-dimensional embedding needs to be stored per task (cf. Fig. 4), and through chunking
it is possible to learn to parameterize large target models with a small number of plastic weights
(cf. Fig. 3b).

Here, we compare our task-conditioned hypernetworks to HAT on the permuted MNIST benchmarks
(T = 10 and T = 100), cf. Table 6. For large target networks, both methods perform strongly,
reaching comparable final task-averaged accuracies. For small target network sizes, task-conditioned
hypernetworks perform better, the difference becoming more apparent on PermutedMNIST-100.

We note that the two algorithms use different training setups. In particular, HAT uses 200 epochs
(batch size set to 64) and applies a learning rate scheduler that acts on a held out validation set.
Furthermore, HAT uses differently tuned forgetting hyperparameters when target network sizes
change. This is important to control for the target network capacity used per task and assumes
knowledge of the (number of) tasks at hand. Using the code freely made available by the authors, we
were able to rerun HAT for our target network size and longer task sequences. Here, we used the setup
provided by the author’s code for HAT-Large for PermutedMNIST-10 and PermutedMNIST-100. To
draw a fairer comparison, when changing our usual target network size to match the ones reported
in Serra et al. (2018), we trained for 50 epochs per task (no training loss improvements afterwards
observed) and also changed the batch size to 64 but did not changed our training scheme otherwise;
in particular, we did not use a learning rate scheduler.

Table 6: Comparison of HNET and HAT, Serra et al. (2018). Task-averaged test accuracy on the
PermutedMNIST experiment with T = 10 and T = 100 tasks (’P10’, ’P100’) with three different
target network sizes, i.e., three fully connected neural networks with hidden layer sizes of (100, 100)
or (500, 500) or (2000, 2000) are shown. For these architectures, a single accuracy was reported by
Serra et al. (2018) without statistics provided. We reran HAT for PermutedMNIST-100 with code
provided at https://github.com/joansj/hat, and for PermutedMNIST-10 with hidden
layer size (1000, 1000) to match our setup. HAT and HNET perform similarly on large target
networks for PermutedMNIST-10, while HNET is able to achieve larger performances with smaller
target networks as well as for long task sequences.

HAT HNET

P10-100,100 91.6 95.92 ± 0.02
P10-500,500 97.4 97.35 ± 0.02
P10-2000,2000 98.6 98.06 ± 0.02

P10-1000,1000 97.67 ± 0.02 97.56 ± 0.02
P100-1000,1000 86.04 ± 0.26 94.98 ± 0.07

Efficient PermutedMNIST-250 experiments with a stochastic regularizer on subsets of previ-
ous tasks. An apparent drawback of Eq. 2 is that the runtime complexity of the regularizer grows
linearly with the number of tasks. To overcome this obstacle, we show here that it is sufficient to
consider a small random subset of previous tasks.

In particular, we consider the PermutedMNIST-250 benchmark (250 tasks) on CL1 using the hyper-
parameter setup from our PermutedMNIST-100 experiments except for a hypernetwork output size of
12000 (to adjust to the bigger multi-head target network) and a regularization strength βoutput = 0.1.
Per training iteration, we choose maximally 32 random previous tasks to estimate the regularizer
from Eq. 2. With this setup, we achieve a final average accuracy of 94.19 ± 0.16 (compared to an
average during accuracy (i.e., the accuracies achieved right after training on the corresponding task)
of 95.54 ± 0.05). All results are across 5 random seeds. These results indicate that a full evaluation
of the regularizer at every training iteration is not necessary such that the linear runtime complexity
can be cropped to a constant one.

Combining hypernetwork output regularizers with weight importance. Our hypernetwork reg-
ularizer pulls uniformly in every direction, but it is possible to introduce anisotropy using an EWC-like
approach (Kirkpatrick et al., 2017). Instead of weighting parameters, hypernetwork outputs can be
weighted. This would allow for a more flexible regularizer, at the expense of additional storage.
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Task inference through predictive entropy (HNET+ENT). In this setup, we rely on the capa-
bility of neural networks to separate in- from out-of-distribution data. Although this is a difficult
research problem on its own, for continual learning, we face a potentially simpler problem, namely to
detect and distinguish between the tasks our network was trained on. We here take the first minimal
step exploiting this insight and compare the predictive uncertainty, as quantified by output distribution
entropy, of the different models given an input. Hence, during test time we iterate over all embeddings
and therefore the models our metamodel can generate and compare the predictive entropies which
results in making a prediction with the model of lowest entropy. For future work, we wish to explore
the possibility of improving our predictive uncertainty by taking parameter uncertainty into account
through the generation of approximate, task-specific weight posterior distributions.

Learning without task boundaries with hypernetworks. An interesting problem we did not
address in this paper is that of learning without task boundaries. For most CL methods, it is crucial to
know when learning one task ends and training of a new tasks begins. This is no exception for the
methods introduced in this paper. However, this is not necessarily a realistic or desirable assumption;
often, one desires to learn in an online fashion without task boundary supervision, which is particularly
relevant for reinforcement learning scenarios where incoming data distributions are frequently subject
to change (Rolnick et al., 2018). At least for discrete changes, with our hypernetwork setup, this boils
down to a detection mechanism that activates the saving of the current model, i.e., the embedding
e(T ), and its storage to the collection of embeddings {e(t)}. We leave the integration of our model
with such a hypernetwork-specific switching detection mechanism for future work. Interestingly, our
task-conditioned hypernetworks would fit very well with methods that rely on fast remembering (a
recently proposed approach which appeared in parallel to our paper, He et al., 2019).

E UNIVERSAL FUNCTION APPROXIMATION WITH CHUNKED NEURAL
NETWORKS

Proposition 1. Given a compact subset K ⊂ Rm and a continuous function on K i.e. f ∈ C(K),
more specifically, f : K → Rn with n = r ·NC. Now ∀ε > 0, there exists a chunked neural network
fch : Rm × C → Rr with parameters Θh, discrete set C = {c1, . . . , cNC} and ci ∈ Rs such that
|f̄ch (x)− f(x)| < ε, ∀x ∈ K and with f̄ch (x) = [fch (x, c1), . . . , fch (x, cNC)].

For the following proof, we assume the existence of one form of the universal approximation theorem
(UAT) for neural networks (Leshno & Schocken, 1993; Hanin, 2017). Note that we will not restrict
ourselves to a specific architecture, nonlinearity, input or output dimension. Any neural network that
is proven to be a universal function approximator is sufficient.

Proof. Given any ε > 0, we assume the existence of a neural network fh : Rm → Rn that
approximates function f on K:

|fh(x)− f(x)| < ε

2
, ∀x ∈ K. (10)

We will in the following show that we can always find a chunked neural network fch : Rm × C → Rr
approximating the neural network fh on K and conclude with the triangle inequality

|f̄ch (x)− f(x)| ≤ |f̄ch (x)− fh(x)|+ |fh(x)− f(x)| < ε, ∀x ∈ K. (11)

Indeed, given the neural network fh such that (10) holds true, we construct

f̂h(x, c) =

{
fci

h (x) c = ci
0 else

(12)

by splitting the full neural network fh(x) = [fc1

h (x), fc2

h (x), . . . , f
cNC
h (x)] with f̂h : Rm×C → Rr.

Note that f̂h is continuous on Rm × C with the product topology composed of the topology on Rm
induced by the metric | ·− · | : Rm×Rm → R and the discrete topology on C. Now we can make use
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of the UAT again: Given the compact K ⊂ Rn, the discrete set C = {c1, . . . , cNC} and any ε
2NC

> 0,
there exists a neural network function fch : Rm × Rs → Rr such that

|fch (x, c)− f̂h(x, c)| < ε

2NC
, ∀x ∈ K, ∀c ∈ C. (13)

It follows that

∑
i

|fch (x, ci)− f̂h(x, ci)| <
∑
i

ε

2NC
=
ε

2
, ∀x ∈ K, (14)

which is equivalent to

|

 f
c
h (x, c1)

...
f ch(x, cNC)

−
 f̂h(x, c1)

...
f̂h(x, cNC)

 | = |f̄ch (x)− fh(x)| < ε

2
, ∀x ∈ K. (15)

We have shown (11) which concludes the proof.

Note that we did not specify the number of chunks NC, r or the dimension s of the embeddings ci.
Despite this theoretical result, we emphasize that we are not aware of a constructive procedure to
define a chunked hypernetwork that comes with a useful bound on the achievable performance and/or
compression rate. We evaluate such aspects empirically in our experimental section.
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F QUALITATIVE ANALYSES OF HYPERNETWORK-PROTECTED REPLAY MODELS

a b

Figure A8: Image samples from hypernetwork-protected replay models. The left column of both
of the subfigures display images directly after training the replay model on the corresponding class,
compared to the right column(s) where samples are obtained after training on eights and nines i.e. all
classes. (a) Image samples from a class-incrementally trained VAE. Here the exact same training
configuration to obtain results for split MNIST with the HNET+R setup are used, see Appendix
C. (b) Image samples from a class-incrementally trained GAN. For the training configurations, see
Appendix B. In both cases the weights of the generative part, i.e., the decoder or the generator, are
produced and protected by a hypernetwork.
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