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Abstract—A number of imaging techniques are being used for
diagnosis and treatment of vascular pathologies like stenoses,
aneurysms, embolisms, malformations and remodelings, which
may affect a wide range of anatomical sites. For computer-aided
detection and highlighting of potential sites of pathology or to
improve visualization and segmentation, angiographic images are
often enhanced by Hessian based filters. These filters aim to
indicate elongated and/or rounded structures by an enhancement
function based on Hessian eigenvalues. However, established
enhancement functions generally produce a response, which
exhibits deficiencies such as poor and non-uniform response for
vessels of different sizes and varying contrast, at bifurcations
and aneurysms. This may compromise subsequent analysis of the
enhanced images. This paper has three important contributions:
i) reviews several established enhancement functions and elabo-
rates their deficiencies, ii) proposes a novel enhancement function,
which overcomes the deficiencies of the established functions,
and iii) quantitatively evaluates and compares the novel and the
established enhancement functions on clinical image datasets of
the lung, cerebral and fundus vasculatures.

Index Terms—angiography, vascular pathology, vessel, bifur-
cation, tube-like, enhancement filter, Hessian eigenvalue analysis

I. INTRODUCTION

ASCULAR pathologies like stenoses, aneurysms, em-
bolisms, malformations and remodelings may affect a
wide range of anatomical sites including cerebral, hepatic,
cardiac, pulmonary, peripheral, retinal, etc. The need for early
diagnosis and effective treatment of vascular pathologies led to
the development of a variety of vascular imaging techniques.
Because imaging plays an important role in the diagnosis,
treatment and follow-up of vascular pathologies, further im-
provement of these processes is immediately possible by
advancing the acquisition and/or image analysis techniques.
Vascular imaging or angiography involves 2D and 3D ac-
quisition techniques like ophthalmic fundus imaging, contrast
enhanced X-ray and digital subtraction angiography (DSA),
ultrasound, computed tomography angiography (CTA) and
magnetic resonance angiography (MRA). The choice of an
optimal imaging modality for a specific anatomical site or
vascular pathology may depend on several factors. For in-
stance, because of high resolution on a macroscopic level,
DSA is a reference standard for diagnosis of various vascular
pathologies, e.g. aneurysms [1]], [2]. The DSA is an inva-
sive imaging modality, while CTA and MRA are minimally
invasive alternatives, but generally have a lower resolution
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compared to DSA [3]]. For diagnosing the aneurysms, however,
a combined strategy of CTA, MRA and DSA imaging is
preferred as it is most cost-effective [4]. Several anatomical
sites and vascular pathologies may require imaging modalities
different from DSA, CTA and MRA. For instance, diabetic
retinopathy is diagnosed by optical coherence tomography
or color imaging of the fundus [5]. Because angiographic
acquisitions vary substantially in contrast, resolution, noise
and artifacts and because vascular networks are often com-
plex and surrounded by other structures, visual inspection of
angiographic images, let alone the diagnosis and quantification
of vascular pathologies, is clearly a difficult task.

Computer aided systems based on image analysis can reduce
the amount of time a clinician spends to inspect an image,
but also to diagnose and quantify vascular pathologies more
accurately and reliably. Image analysis, for instance, may
involve only detection and highlighting of potential sites of
pathology [6]-[8]] or segmentation and quantification of the
vascular structures [9]]. However, such analyses are often not
robust to highly varying intensities of vascular structures,
related to non-uniform contrast distribution across a vascular
network during image acquisition. When imaging a (large)
vascular network, even an ideally timed contrast bolus may
be non-uniformly distributed throughout the network, while
within and across vessels, blood flow velocity variations due to
laminar flow can disrupt contrast agent distribution and further
increase the non-uniformity. To remove to some extent these
undesired intensity variations in angiographic images, and to
suppress non-vascular structures and image noise, filters for
enhancing vascular structures are used extensively.

Among filtering methods for vascular structures, image
derivatives are widely used as they encode border (first order
derivatives) and shape (second order derivatives) information
about the structures in an image. For instance, structure
tensors [10]-[12]] are based on first order derivatives and
used to enhance boundaries of prominent local contrast and
direction. Such filters are generally susceptible to the presence
of noise in regions of uniform intensity. A large class of
filtering methods employs the analysis of Hessian matrix [[13]—
[[17], which is based on second order derivatives and which
enables differentiation between rounded, tubular, and planar
structures. Alternative to the Hessian matrix is the Weingarten
matrix [[18]], which is a combination of first and second
order derivatives. Vessel enhancement diffusion [[19]] combines
Hessian and diffusion filtering to further reduce the impact
of background noise. The mentioned filters are all based on
Gaussian scale space, hence, they may fuse adjacent vessel
boundaries. The boundaries can be preserved by employing
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Volume rendering of a synthetic vasculature with five typical structures and appearances: (1) bent (curved) vessel, (2) aneurysm, (3) vessel with

varying contrast, (4) bifurcation and (5) vessels of various diameters. Image patches in rows 1-5 correspond to medial cross-sections of synthetic vasculature
either of raw intensity or enhanced with multiscale filter based on a novel and several established enhancement functions. Responses of original Frangi’s,

Sato’s, Li’s and Erdt’s functions, which suppress rounded structures, are marked with

methods which are based on gradient vector flow [20] or
oriented flux [21]]. Due to high resistance to image noise,
matched filters [22], [23] are widely used on 2D images as
an alternative to the Hessian based filters. However, matched
filters require a high number of orientation kernels, which
makes them less suitable for use on 3D images.

Structural image filters based on Hessian analysis seem to
be the most popular. Their recent applications include segmen-
tation of liver vessels in abdominal CTA [24] and lung vessels
in thoracic CT [25[]; extraction of coronary vasculature from
cryomicrotome images [26]]; extraction of vessel centerlines
from CTA and contrast enhanced X-ray for 2D/3D coronary
artery registration [27]; detection of mesenteric vasculature
in CTA for small bowel segmentation [28]]; detection and
quantification of coronary artery stenoses in CTA [6]; and
computer-aided detection of cerebral aneurysms in 3D rota-
tional angiography, CTA and MRA [7].

In Hessian based filtering a certain enhancement function is
maximized across a Gaussian scale space of the angiographic
image. The enhancement function most frequently applied
is Frangi’s [13[]. Different, but less applied functions are
Sato’s [14]], Li’s [[15]], Erdt’s [16] and Zhou’s [17]. Most
of these functions were devised for the enhancement of 3D
images, while Frangi’s and Zhou’s can also be used for the
enhancement of 2D images. An ideal enhancement function
should exhibit a high and uniform response to i) variable
vascular morphology, e.g. straight and bending vessels, vessels
of different dimensions and cross-sections (circular-elliptical),
and bifurcations or crossings, ii) pathology (e.g. blob-like
aneurysms), iii) blood flow/contrast agent induced intensity
non-uniformities within and across vessels, iv) blurring of
the vessel boundary and v) image noise. Unfortunately, the
established enhancement functions are far from ideal (Fig. E])
which may compromise subsequent analysis of the enhanced
images.

Based on our previous work [29]], we advance the multi-

t. All responses were computed across the same range of scales.

scale Hessian filtering by a novel enhancement function,
which overcomes the deficiencies of the established functions
and has properties close to an ideal enhancement function.
Compared to [29], more detailed descriptions of the novel 3D
enhancement function and its extension to 2D are presented.
Furthermore, several established enhancement functions are
thoroughly reviewed and their performances evaluated on
several clinical 3D and 2D angiographic modalities to demon-
strate the benefits of the novel function for the enhancement
of vascular structures.

Quantitative evaluation was performed on three clinical
image datasets where the first consisted of 3D thoracic CT
images of lung vasculature, the second of 3D-DSAs of cere-
bral vasculature and the third of high resolution 2D color
images of fundus. The results on all three datasets showed
that, compared to the established functions, the proposed
3D and 2D enhancement functions have a higher and more
uniform response for variable vascular morphology, vascular
pathology like aneurysm, and intensity non-uniformities within
and across vessels. The same conclusions were made based
on visual assessment of enhanced cerebral 3D time-of-flight
(TOF)-MRA, a 3D-DSA image of cerebral aneurysm and
contrast enhanced 2D X-ray of the cerebral vasculature.

The paper is organized as follows: Section [lI| reviews the
Hessian-based multiscale filters and established enhancement
functions and their drawbacks, while Section introduces a
novel enhancement function. Clinical image datasets of lung,
cerebral and fundus vascular structures, and the experiments
and results of the evaluation of enhancement filters are de-
scribed in Section Discussion and conclusion are given in
Section [V]

II. BACKGROUND

Enhancement filters based on the analysis of eigenvalues
of the Hessian matrix applied on a D-dimensional image are
functions V : RP — R, which selectively amplify a specific



local intensity profile or structure in an image. A class of en-
hancement filters [[13[|-[|17]] distinguish between different local
structures by analyzing the second order intensity derivatives
or Hessian at each point in the image. To enhance the local
structures of various sizes, the analysis is typically performed
on a Gaussian scale space of the image.

Let I(x) denote the intensity of a D-dimensional image at
coordinate x = [z1,...,zp]T. The Hessian of I(x) at x and
scale s is then represented by a D x D matrix:
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where G(x,s) = (27s%)~P/2 exp(—xTx/2s?) is a D-variate
Gaussian and * denotes convolution.

Selective enhancement of local image structures that is
independent of orientation and based on shape and foreground
versus background brightness of the structures can be per-
formed by analyzing the signs and magnitudes of Hessian
eigenvalues. For each x, the eigenvalues are obtained through
eigenvalue decomposition eig H(x,s) — A, i = 1,...,D,
which can be computed fast for 2 x 2 or 3 x 3 Hessian matrices
in either 2D or 3D images, respectively, with the analytical
method proposed by Kopp [30].

Ideally, the Hessian-based enhancement is a response of an
indicator function 1z : [eigH(x,s)] — {0, 1} of a certain
set of eigenvalue relations E'R. For example, elongated tube-
like structures such as vessels in 3D images (DD = 3) can be
enhanced by functions indicating: Ao ~ Az A |A23] > A1,
where the eigenvalues \; of #(x,s) are sorted according to
their magnitudes: |A;| < |A\iy1]; @ = 1,..., D—1. The positive
(negative) signs of Ao and A3 indicate a dark (bright) structure
on a bright (dark) background. In 2D images (D = 2),
elongated structures are indicated by: |A2| > |A1|, whereas the
sign of A, indicates a bright (dark) structure on dark (bright)
background. For differently shaped structures the eigenvalue
relations can be obtained in a similar manner.

To cope with variations of shape and intensity of the
targeted structures, image noise, etc. the indicator functions
1gg are approximated by smooth enhancement functions V :
[eigH(x,s)] — R{, which have a non-negative response. A
multiscale filter response J(x) is then obtained by maximizing
a given enhancement function V), at each point x, over a range
of scales s as:

F(x) = sup{V[eig’H(x, s)] D Smin < 8 < smax}. 2)

The values of sy, and sp.x are selected according to the
respective minimal and maximal expected size of the structures
of interest.

Hii(x,s) = s> I(x)* G(x,s) fori,j=1,..,D, (1)

A. Enhancement of Vascular Structures

The vasculature mainly consist of straight vessels and
rounded structures like bending vessels, bifurcations and vas-
cular pathologies such as aneurysms.

To simultaneously enhance both elongated and rounded
structures in 3D the function V should indicate the following
Hessian eigenvalue relations:

1gr: A= A3 A ‘)\273|>> |)\1|. 3)

In 2D, the indicator function is defined as |[Az| > |A1].

As vessel enhancement functions } were primarily devised
to enhance elongated structures, they contain a component that
is aimed to suppress rounded structures. However, because
not all vascular structures are elongated, this is a serious
drawback, which is discussed in more detail in the next
subsection. Here we review several enhancement functions and
modify certain original expressions by removing suppression
of rounded structures. In this way, all the presented expressions
account for the indicator function in (3). As most established
functions were designed to enhance 3D images, we developed
the corresponding expressions for enhancing 2D images by
substituting A3 = Ay in the 3D enhancement functions and
then simplifying the expressions. The underlying assumption
made when deriving the 2D equivalents of the 3D enhance-
ment function is that vessels (and other vascular structures)
have a circular cross-section in 3D, a situation in which the
eigenvalues A3 and A, are equal.

Based on the relative brightness of the vascular structures
compared to the background, the enhancement functions V
yield a non-zero response only when a specific relation
between the eigenvalues \; is satisfied. For bright vascular
structures on a dark background (\; < 0,V%), V has a non-
negative response when A3 < Ay < 0 for D = 3 and
A < 0 for D 2, or zero otherwise. Conversely, for
vascular structures darker than background (\; > 0,V7), the
enhancement functions V yield a non-negative response when
A3 > X > 0for D =3 and Ay > 0 for D = 2. If not
noted otherwise, the same enhancement function ) can be
used irrespective of the relative brightness of the structures
of interest, however, the correct assumption for the relation
between eigenvalues \; needs to be considered.

The most widelS used function is Frangi’s [[13]], in which the
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factor exp (—% , with R = |A1|/vA2A3 and 8 = const,
suppresses rounded structures. By removing this factor, we
obtain the following function:

R2 2
(oo () ().

where S5 = /A7 + A3 + A2 is the 2nd order measure of

2i<p A}
i<D i
where D denotes dimension, and Ra = Ay/A3 distinguishes
between tubular and planar structures. Parameters o and
control the sensitivity of measures R and S, respectively.
In 2D, the corresponding modified Frangi’s enhancement
function consists only of the second factor of , ie. Vp =
1 —exp (—8%/2K7), where Sy = /AT + A3

The original Sato’s enhancement function [[14]] contains the
factor .(1 + J%)é ,0 > 0 to suppress rounded structures. By
removing this factor we get:

)\ vy
Vs = |3 ()\z) . (5)

The parameter v controls the sensitivity to elongated structures
and is typically set to 0.5 or 1, which simplifies the expression
lb to v/ A3Ag or |Ag|, respectively. We will refer to the former

image structureness, which is defined as Sp =



as Sato’s enhancement function and to the latter as |\z|. In
2D, Sato’s function reduces to |Az|.

The enhancement function proposed by Li et al. [15]]
contains an additive term —|A2| X (A1/A3) for suppression
of rounded structures, which when removed yields:

X —. (6)
3

The first factor represents the magnitude and the second
the likelihood of an elongated and rounded structure, since
A2/A3 — 0 in case of plane-like or no structure. In 2D,
similarly as Sato’s, Li’s function reduces to |Az|.

Erdt’s enhancement function [|16] suppresses rounded struc-
tures by an additive term +§K A1, which when removed
yields:

Ve = K|—X2 — Ag| , (7

where K = 1—|X2—A3|/| A2+ A3 is a cross-sectional isotropy
factor that approaches zero for plane-like structures (|[Az| >
|A1,2]) or one otherwise. In 2D, similarly as Sato’s and Li’s,
Erdt’s function reduces to |\a|.
To enhance both rounded and elongated structures, Zhou et
al. [17] proposed the following function:
D
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where parameter c is between % and % and S is the struc-
tureness measure as in (). The equivalent function in 2D is
Vz = |Xa| x exp (— ||A2|/S2 — ¢|) with ¢ between % and 1.

B. Deficiencies of Enhancement Functions

Fig. |1| shows a 3D rendering of synthetic vasculature with
five typical structures and appearances: (1) a bent (curved)
vessel, (2) an aneurysm, (3) a vessel with varying contrast,
(4) a bifurcation and (5) vessels of various diameters. Image
patches in rows 1-5 correspond to medial cross-sections of
synthetic vasculature either of the raw intensity or enhanced
with multiscale filter based on six established and a novel
enhancement function. To demonstrate the impact of suppres-
sion of rounded structures by original Frangi’s, Sato’s, Li’s and
Erdt’s enhancement functions their responses marked with '
are also shown. It is evident that the suppression of rounded
structures results in a rather poor response within the aneurysm
and at vessel bends and bifurcations. Despite the removal
of rounded-structure suppression component the responses
obtained by (@H7), and Zhou’s function (§) still demonstrate
several deficiencies: i) a varying and eroded response at bents
(row 1), ii) a poor response at the aneurysm, especially at the
neck (row 2), iii) response affected by non-uniform intensities
(row 3), iv) a poor response at the bifurcations (rows 4 and
5), and v) sensitivity to vessel size (row 5).

One of the main reasons for the observed deficiencies is
that the established enhancement functions are proportional to
the magnitude or squared magnitude of Ay or A3, or both. By
using € ~ 1 4 x to approximate the second factor in (@) we
get:

82 1 2 2 2
1 —exp 52 %ﬁ(A1+/\2+)\3)a &)

This shows that Frangi’s function (@) is also proportional to
the squared magnitude of Ay and A3. The main reason for de-
signing enhancement functions proportional to the magnitude
of eigenvalues was to suppress noise in image regions with
low and uniform intensities, where all the eigenvalues have
low and similar magnitudes.

Responses of enhancement functions that are directly pro-
portional to Ay or A3 magnitudes have three important draw-
backs. First, for an ideal elongated or rounded structure of
uniform intensity, the response of Ao or A3 is not uniform
within the structure (see Ay in Fig. [T). The response peaks
at the center of the structure and then progressively decreases
towards the periphery. Second, as varying image intensities
result in varying Ao and A3 magnitudes the functions’ re-
sponses are non-uniform. Third, the filter response depends
on the structure size because the enhancement is not uniform
across scales.

Another drawback is that the current indicator function (3]
leads to suppression of structures with non-circular cross-
sections (e.g. elliptic), because the ratio Ay/A3 corresponds
to the ratio of minor and major semi axes of a structure’s
cross-section. This ratio will be one for circular and less than
one for elliptic cross-sections.

IIT. NOVEL ENHANCEMENT FUNCTION

We hypothesize that an enhancement function: i) in the
form of a ratio of eigenvalues, ii) robust to low-magnitudes
of eigenvalues, and iii) accounting for structures with elliptic
cross-sections will yield a more uniform response across
different vascular structures than the existing functions. In the
following we introduce such an enhancement function for 3D
and 2D vascular images.

A. Enhancement in 3D

Enhancement of vascular structures is dependent on their
relative brightness compared to the surrounding background. A
general enhancement function can be developed by redefining
the Hessian eigenvalues with respect to the brightness of
the structures of interest (dark or bright compared to the
background). Each eigenvalue \;; i = 1,2, 3 is redefined as:

N —\; bright structures on dark background, (10)
T A; dark structures on bright background .

Peeters et al. [|31]] reviewed several measures of structural
isotropy and anisotropy of diffusion tensors, some of which
can also be applied to Hessian matrices. A measure based on
the ratio of eigenvalues, that is otherwise used for the detection
of nearly spherical diffusion tensors [32], is volume ratio:

3 3
M|+ A2l +1As| |
which was modified from the original version by adding
absolute values to account for differently signed eigenvalues.
The response of such V R is between 0 and 1.

We start building our enhancement function on (II)). To
indicate elongated structures, for which |A\;| < |Az|, the VR

VR = |\ A2 A5 (1)



is modified by substituting A\; — (A2 — A1), which results in
a function that enhances elongated structures like vessels:

3 3
12X2 — A1+ [As] |

This function would suppress rounded structures, because
their characteristic eigenvalue relation is A\; &= A2 =~ A3 and
the multiplicative factor (Ao — A1) in (12) would be zero or
close to zero for rounded structures. Since vascular structures
may be elongated or rounded, an enhancement function is
required that would enhance both. Such a function is obtained
by eliminating A\; from the multiplicative factor in and,
to ensure normalized function response, from the denominator
in the last factor. Furthermore, the resulting function depends
only on Ao and A3, which is consistent with the indicator
function for vascular structures.

The response of such an enhancement function, however,
is ill-defined at low magnitudes of A2 and A3 and thus too
susceptible to noise in image regions of uniform intensity.
To ensure robustness of the enhancement function to low-
magnitudes of Ay and A3, we propose to regularize the value
of A3 at each scale s as:

V= [(A2 — A1) A2 Ag] (12)

A3 if A3 > 7 maxx \3(x, ),
Ap(8) = ¢ Tmaxy A3(x,s) if 0 < A3 < 7maxx A3(x, ),
0 otherwise ,
(13)

where 7 is a cutoff threshold between zero and one. To
normalize the response of proposed enhancement function
across the scales, A\, is computed for each scale s separately.
For structures of very low contrast, which otherwise have low
magnitude of Ay and A3, choosing a high value of 7 results in
a high difference between the magnitudes of A2 and ), and
thus supresses the response.

With the above eigenvalue regularization, the enhancement
function can be written independently of the relative brightness
of the structures of interest as:

V=X, { (14)

3 3
2Xo + )\p ] ’
which is valid only when the condition A2 > 0 A A, > 0 can
be satisfied. In the opposite case the response is set to }V = 0.

To enhance vascular structures with elliptic cross-sections
the function in (14) should, instead of A ~ \,, indicate
the relation Ay < A,. By indicating the eigenvalue relation
A2 > A /2 we account for structures with elliptic cross-
sections with ratio of Ay/A, from 0.5 to 1. This can be
achieved by substituting A\, — (A, — A2) in and fixing
the response to 1 for Ay > A\,/2 > 0. Finally, the proposed
enhancement function is computed as:

0 if Ay <OV, <0,
1 if Ay > A,/2>0),

3
A (A, — A2) {/\2%%} otherwise ,

Vp = (15)

where ), is computed by @I) The proposed enhancement
function Vp can be computed for both bright structures on
dark background and dark structures on white background if

the eigenvalues are redefined by (I0). The multiscale filter
response based on this enhancement function is between
0 and 1 and is, ideally, O for non-vascular and 1 for vascular
structures.

As hypothesized, the proposed enhancement function yields
the highest and most uniform response on typical vascular
structures that are synthesized in Fig. [I}

B. Enhancement in 2D

The proposed function Vp in (I3)) can also be adopted to 2D
images (D = 2). Besides the two computed eigenvalues A\; and
A2 (|A2| > |A1]), which need to be redefined according to (10},
we introduce an auxiliary A3, which is set to Ao. This definition
of A3 on the 2D images implies the assumption that in 3D
the vessels and other vascular structures have a circular cross-
section. Using A3 = Ag in yields a regularized eigenvalue
Ap» which is employed in together with A, to compute
the response of the proposed enhancement function Vp on a
2D image.

IV. EXPERIMENTS AND RESULTS

The enhancement of vascular structures by the multiscale
filter (Z) based on several established and the proposed
enhancement functions was quantitatively and qualitatively
evaluated on clinical images of lung, cerebral and fundus
vasculatures. The functions were applied to enhance normal
vascular structures such as small- and large-diameter ves-
sels and bifurcations, as well as vascular pathologies like
aneurysms. The clinical image datasets and experiments are
described in the following subsections.

A. Thoracic CT Images

A database of 20 thoracic computed tomography (CT)
images with binary lung masks was obtained from the VES-
SEL12 grand challeng [25], which is a public platform
for evaluating the performance of methods for segmentation
of vascular structures of the lungs in thoracic CT images.
The CTs were acquired on a variety of clinical scanners and
with different protocols. Approximately half of the CTs were
acquired with contrast agent injected into the blood flow.
Besides, about half of the CT images contained abnormalities
such as emphysema, nodules or pulmonary embolisms. The
size of CT images was 512 x 512 x 355-543 and most were
isotropic with up to a 1 mm spacing between axial slices.

For evaluating a segmentation of vascular structures, the
CT images contained landmarks manually annotated by expert
radiologists. The 20 CT images contained 7352 landmarks,
of which 2238 and 5114 were annotated on vascular and
non-vascular structures, respectively. The landmarks were not
disseminated with the CT images, thus the obtained segmenta-
tions had to be submitted through the grand challenge website
for evaluation. The segmentation of vascular structures can be
either binary or probabilistic (i.e. voxel-wise likelihood).

Based on annotated landmarks the performance of a vessel
segmentation is evaluated on each CT image by computing

'VESSELI2 website: http://vessel12.grand-challenge.org/
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Fig. 2. Enhancement of the lung region in a thoracic CT from the VESSEL12
image database [25]: (a) axial slice of a CT image and (b) response of
the proposed filter. The enhanced lung vasculature (c) visualized in 3D by
maximum intensity projection. (see video 1 in Supplemental material)

area under the receiver operating characteristic (ROC) curve
(AUCQ) [33]], sensitivity (SE) and specificity (SP). For a proba-
bilistic segmentation, the SE and SP are reported at an optimal
threshold, which is determined by a point on the ROC curve
closest to the optimal classifier (i.e. upper left corner of ROC
graph). The range of metrics AUC, SE and SP is between 0
and 1, where values closer to 1 indicate a better segmentation.
Methods are ranked according to overall highest AUC.

The response of the proposed filter for 7 = 1 was computed
within the lung mask provided with the database and simply
scaled to [0, 255] to obtain a probabilistic segmentation, which
was submitted for evaluation. The response was computed over
scales between sy, = 0.9 and sp,x = 3 mm with step size
of 0.7 mm, which were chosen similar to the scales used in
Hessian-based enhancement filters previously evaluated in the
VESSELI12 challenge [25].

Evaluation results for the top six teams according to the
AUC ranking [25] are shown in Table m The team that
ranked first based their method on learning stacked multiscale
features, which were used to train the L2-regularized logistic
regression classifier for vessel extraction [34]. The remaining
five teams employed the multiscale Hessian-based filter (2).
The filter in combination with the proposed enhancement func-
tion (7 = 1) achieved a tied AUC of 0.984 with the segmenta-
tions submitted by teams LKEBChina and FME_LungVessels.
Team LKEBChina modified a vessel medialness function [|12]
into a vessel enhancement function, while the other teams used
the Frangi’s vesselness function [13] extended with region
growing based on fuzzy connectivity (FME LungVessels) or
variational region growing (CREALUNG), or used optimiza-

TABLE I
THE TOP SIX SEGMENTATIONS REPORTED ON VESSEL12
CHALLENGE [[25]] WEBSITET. RANKING IS BASED ON THE AUC.

Rank  Team Name AUC SE SP
1 UofA _vision 0.986 0.949  0.941
2 LIT (Proposed, 7 = 1) 0.984 0.962 0.961
2 LKEBChina 0.984 0.953  0.956
2 FME_LungVessels 0.984 0.954  0.937
5 Bahcesehir University 0.980 0.954  0.947
6 CREALUNG 0.972 0.953 0.935

T Last accessed on: December 31, 2015

Fig. 3.
of a 3D-DSA with landmark positions annotated as vascular (green points)
or non-vascular (red points). (see video 2 in Supplemental material)

(a) Lateral and (b) anterior-posterior maximum intensity projection

tion of the scale range based on training datasets (Bahcesehir
University). The mentioned extensions, which were applied
to the enhanced images, aimed to increase the otherwise
low SP of segmentations obtained by enhancement filters.
Nevertheless, the segmentations based simply on responses
obtained with the proposed enhancement function resulted in
highest overall SE and SP, even in comparison to the best
method according to AUC.

Fig. 2] shows a slice of a CT image from the VESSEL12
database and the multiscale response of proposed enhancement
function. The response has similar intensity on large and
small vessels and is uniform within the vessels, which can
be exploited for visualization of the whole lung vasculature
by fast 3D volume rendering (Fig. [2k). Such a visualization
facilitates navigation through the vasculature and identification
of possible vascular pathologies [[11].

B. Cerebral 3D-DSA Images

Twenty patients undergoing endovascular treatment of cere-
bral aneurysms were imaged by the Siemens Axiom Artis
dBA angiography system. For each patient, a 3D-DSA of size
512 x 512 x 391 voxels and 0.46 mm isotropic spacing was
acquired. In each 3D-DSA a volume of interest (VOI) of size
200 x 200 x 200 voxels was manually selected such that it
contained the cerebral vasculature.

Evaluation of the multiscale filter with seven enhance-
ment functions: the proposed (I3, Frangi’s @), Sato’s (5),
A2, Li’s (6), Erdt’s (7)) and Zhou’s (8) was based on annotated
landmarks, similarly as in the VESSEL12 challenge. For each



TABLE II
MEAN VALUES OF EVALUATION METRICS FOR THE ENHANCEMENT
RESPONSES COMPUTED OVER 20 CEREBRAL 3D-DSA IMAGES.

Filter AUC SE SP MedNR
Frangit 0.944 0.875 0.904 0.34
Frangi 0.934 0.871 0.890 0.37
Sato' 0.941 0.884 0.870 0.24
Sato 0.941 0.890 0.863 0.25
Lif 0.910 0.832 0.845 0.12
Li 0.906 0.817 0.865 0.14
Erdt' 0.931 0.864 0.880 0.20
Erdt 0.940 0.886 0.890 0.20
A2 0.940 0.886 0.890 0.20
Zhou 0.934 0.895 0.855 0.24
Proposed (7 = 0.5)  0.953 0.895 0.909 0.96
Proposed (7 = 1) 0.954 0.896 0.909 0.55

T Original functions, which suppress rounded structures.

3D-DSA image an expert radiologist placed and annotated 250
landmarks on vascular and 250 in the vicinity of vascular
structures like bifurcations, aneurysms, highly bent vessels,
etc., and in between neighboring vessels, where the responses
of enhancement functions were expected to differ most. Fig. [3]
shows a set of landmarks superimposed onto a maximum
intensity projection (MIP) of a 3D-DSA.

Evaluation of the obtained filter responses was based on
metrics AUC, SE and SP, computed in the same way as for the
responses on thoracic CT images. To measure the uniformity
of the responses on vascular structures, we introduced a fourth
metric, computed as the median of normalized responses
(MedNR) across the landmark positions on vascular structures.
The range of metric MedNR is between O and 1, where the
values closer to 1 indicate a more uniform filter response on
vascular structures.

The proposed function was tested by varying 7 from O to 1.
Parameters x and « of Frangi’s (@) and ¢ of Zhou’s (§) were
tuned so as to maximize the mean value of evaluation metrics
computed over all 20 3D-DSAs. The obtained optimal values
were k = 0.05 - maxy I(x), @ = 0.5 and ¢ = 0.7. For each
of the tested functions, the multiscale filter response (2) was
computed over scales from sy, = 0.5 t0 Spax = 2.5 mm
with a step of 0.5 mm. The obtained responses were scaled
between 0 and 1 to obtain a probabilistic segmentation.

Table @ reports the mean AUC, SE, SP, and MedNR values
obtained across 20 cerebral 3D-DSA images for the multiscale
filter responses based on the proposed (7 = {0.5,1}) and six
other enhancement functions. Moreover, for Frangi’s, Sato’s,
Li’s, and Erdt’s modified filters we report also the metrics for
their original variants (), which suppress rounded structures.
While there was only a small difference in AUC, SE, and
SP metrics between the original and modified versions of
the four filters, the original filters had lower MedNR val-
ues. This indicates a lower response uniformity across the
vascular structures, mainly because in the original functions
the response is suppressed at bifurcations and aneurysms.
The proposed function achieved the highest AUC, SE, and
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Fig. 4. Mean values of AUC, SE, SP and MedNR metrics, computed for the
responses of multiscale filter with the proposed enhancement function, over
20 cerebral 3D-DSA images shown with respect to parameter 7 (13).

SP (best segmentation performance) and the highest MedNR
(most uniform response on vascular structures). In general,
lowering 7 of the proposed function from 1 to 0.5 only slighly
decreased the means of AUC and SE, SP did not change, while
the mean of MedNR increased substantially.

For the multiscale filter based on the proposed enhance-
ment function, Fig. 4| shows the influence of regularization
parameter 7 varied from 0 to 1 on the mean of AUC, SE, SP,
and MedNR, computed across 20 cerebral 3D-DSA images.
When 7 is 0, the magnitude of A3 is not regularized through
(I3) and the response of (I35) is very sensitive to image noise.
This causes a higher number of false positive responses, which
effectively lower both SP and AUC. At the same time, the
response is nearly uniform on vascular structures as even
the structures with very low contrast are enhanced, thus, the
MedNR is close to 1. For 7 < 0.4 the MedNR is flat at 1 and
then progressively decreases when 7 increases beyond 0.4.
Increasing 7 up to 0.25 notably increases the AUC and SP,
and slightly the SE, which then all flatten out when 7 > 0.4.
Because the values of AUC, SE, and SP are flat beyond
7 > 0.4, we recommend that 7 is set somewhere in range from
0.5 to 1. One should set 7 to 1 for the purpose of segmentation
(highest AUC, SE and SP) and to 0.5 to maximize response
uniformity on vascular structures, which can be exploited for
fast 3D volume rendering (Fig. ).

Fig.[5shows the MIP of a cerebral 3D-DSA and correspond-
ing MIPs of multiscale filter responses for the seven tested
enhancement functions. The response of proposed function
is high and highly uniform across all vascular structures,
as indicated by high mean MedNR in Table thus the
MIP for the proposed function appears brighter as compared
to MIPs obtained with other enhancement functions. Within
aneurysms shown in Fig. [5] MIP based on the proposed
function had highly uniform intensity throughout the area of
the two aneurysm, while the MIPs of other functions had
highest intensity in the aneurysm’s center and lower towards
its boundary.

C. High-Resolution 2D Fundus Images

The 2D multiscale enhancement filters were evaluated on
the publicly available High-Resolution Fundus (HRF) image
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Fig. 5. Maximum intensity projections of a raw 3D-DSA and multiscale filter responses of several established and proposed enhancement functions. Arrows

in the Raw image point to two aneurysms.

TABLE III
MEAN VALUES OF EVALUATION METRICS FOR THE 2D ENHANCEMENT
FILTERS AND A SEGMENTATION METHOD BASED ON MATCHED
ENHANCEMENT FILTER [28] OVER 45 HRF COLOR IMAGES, WHERE SE
AND SP REPRESENT THE POINT IN ROC CURVE WITH THE HIGHEST ACC.

Method AUC ACC SE Sp MedNR
Frangi 0.941 0.949 0.608 0.982 0.50
A2 0.942 0.950 0.617 0.982 0.19
Zhou 0.943 0951 0.622 0.983 0.19
Proposed (7 = 0.5) 0.943 0.954 0.651 0.983 0.97
Proposed (7 =1) 0944 0954 0.646 0.983 0.62
Odstreilik [23] 0.968 0.949 0.774 0.967 -

databaseﬂ [23]], which consists of three datasets, one of healthy
subjects, one of patients with diabetic retinopathy and one of
patients with glaucoma. Altogether, the three datasets contain
45 color HRF images, each of size 3504 x 2336. All 45 images
were used for evaluating the 2D enhancement filters.

Enhancement of vascular structures was performed on the
green channel intensity of each of the 45 HRF images. Four
enhancement functions were tested: the proposed, Frangi’s, Ao
and Zhou’s. Note that the expressions for Sato’s (3), Li’s (6)
and Erdt’s (7) enhancement functions in 3D all reduce to A3 in
2D. The proposed enhancement function was tested by varying
7 from 0 to 1. Parameters x and o of Frangi’s (@) and ¢ of
Zhou’s (8) function were tuned so as to maximize the mean
value of evaluation metrics computed over all 45 HRF images.
The obtained optimal values were x = 0.05 - maxy I(x), o =
0.5 and ¢ = 1. For each tested enhancement function, the
multiscale filter response was computed over scales from
Smin = 4 10 Smax = 15 pixels with step 0.5.

The responses of enhancement filters on HRF images
were evaluated based on reference manual segmentations
of vascular structures provided by the authors of the HRF

2HRF image database website:
https://wwwS5.cs.fau.de/research/data/fundus-images/

TABLE IV
MEAN VALUES OF EVALUATION METRICS FOR THE 2D ENHANCEMENT
FILTERS OVER 45 HRF COLOR IMAGES, WHERE SE AND SP REPRESENT
THE POINT CLOSEST TO THE IDEAL POINT IN ROC CURVE.

Method AUC SE Sp MedNR
Frangi 0.941 0.896  0.898 0.50
A2 0942  0.897 0.900 0.19
Zhou 0943  0.896 0.902 0.19
Proposed (7 = 0.5) 0.943  0.895 0.906 0.98
Proposed (7 =1) 0.944 0.895 0.906 0.65

image database [23]. As in their comparative study [23],
we computed AUC, SE and SP for each response. Besides,
MedNR was computed on pixels belonging to the reference
segmentation. For a 2D probabilistic segmentation, the values
of SE and SP are reported for a threshold obtained at the
highest segmentation accuracy (ACC).

The mean of AUC, ACC, SE, SP and MedNR computed
for multiscale filter responses across 45 2D HRF images are
summarized in Table In the table, we also report the
best segmentation result on 45 HRF images reported in a
previous study [23]], wherein a matched enhancement filter
that employed oriented vessel patches and morphologic post-
processing achieved the highest AUC of 0.968.

Reporting the values of SE and SP obtained at the thresh-
old with the highest ACC is a standard procedure in the
community of fundus segmentation methods [23]], however,
it produces unbalanced results where a higher SP is favored
because vessels cover a considerably lower amount of the
image compared to the background. Consequently, additional
results are displayed in Table where SE and SP are com-
puted as the point on the ROC curve closest to the ideal point
(SE=1, SP=0), which produces a more balance evaluation, and
is consistent with the evaluations on thoracic CT and 3D-DSA
datasets. Note that the values of AUC and MedNR do not
change with the change of evaluation methodology.
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Fig. 6. Normalized grayscale image of 2D HRF color image [23] and the responses of multiscale filter with established and proposed enhancement functions.
Top row shows a large field of view, while bottom row shows enlarged image region in dashed square of the raw image. Arrows indicate bifurcations and

small vessels, in which established enhancement functions give a poor response.

Although a simple HRF segmentation based on multiscale
filter responses cannot compete with the best segmentation
result in terms of AUC, the obtained values of AUC>0.94 are
very high. The slightly lower AUC in comparison to [23] is
due to low contrast structures and artifacts in the background
that are otherwise not connected to the fundus vasculature, but
are anyway enhanced. Nevertheless, the obtained ACC and SP
are higher for the proposed function. The mean AUC, ACC,
SE, and SP of the multiscale filter based on the proposed en-
hancement function were comparable to other functions, while
MedNR was substantially higher even at 7 = 1. Decreasing 7
from 1 to 0.5 further increased the MedNR from 0.65 to 0.98.
The impact of higher MedNR can be observed visually in the
responses shown in Fig. [0l The main drawback of responses
obtained by using Frangi’s and, especially, A2 and Zhou’s
functions is that, compared to vessels with large diameters,
the vessels with small diameters are poorly enhanced and thus
poorly visible as illustrated by Fig. [6] Besides, even for the
large-diameter vessels the response varies considerably, which
is indicated by low MedNR values in Table Conversely,
the response based on the proposed function has uniform
intensity on small and large diameter vessels and thus allows
clear visualizations of large as well as small vessels. On the
other hand, the high uniformity of the proposed filter results
in the enhancement of some background image artifacts, the
prominence of which increases with decreasing value of 7.
Nevertheless, the use of additional simple morphological post-
processing methods can effectively eliminate these artifacts
while retaining the enhanced vasculature.

Important differences between the multiscale responses of
the proposed versus other enhancement functions can be ob-
served at bifurcations, some of which are marked with arrows
in Fig. [6] The other functions generally yielded low responses
at bifurcations. In several cases the response disconnected the
branching vessels from the main vessel. This can adversely
affect a subsequent segmentation algorithm that relies on
the enhancement of vascular structures [35], [36]. The filter
responses based on the proposed function well preserved
vessel connectivity at bifurcations.
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Fig. 7. Mean values of AUC, SE, SP and MedNR metrics, computed for the
responses of multiscale filter with the proposed enhancement function, over
45 HRF color images shown with respect to parameter 7 (T3).

Similarly as for the 3D-DSA images, the regularization
parameter 7 of the proposed enhancement function was varied
from O to 1 and, based on the responses on 45 HRF images,
the mean AUC, SE, SP and MedNR were computed. The cor-
responding plots are shown in Fig. [/} which closely resemble
the plots in Fig. 4| for the 3D-DSA images. On 2D fundus
images the parameter 7 had the same impact on evaluation
metrics as on 3D-DSA images.

D. Visual Evaluation on Clinical Images

To further demonstrate the performance and wide applica-
bility of the proposed enhancement function, we applied it to
3D TOF-MRA and contrast enhanced 2D X-ray angiograms
of cerebral vasculatures and to a 3D-DSA image containing
an aneurysm. The widely used Frangi’s enhancement function
was also applied and together with raw images used in a
comparative visual assessment.

In cerebral TOF-MRA the visual contrast of certain vascular
structures may be adversely influenced by a signal from
adjacent non-vascular structures, e.g. thin lateral vessels in
temporal lobes near the skull are poorly visualized due to the
MR signal from dura matter, fat, skin, etc. (Fig. @) Hence,
visual assessment of these vessels can be difficult. In such
situations, an enhancement function like the proposed can



Fig. 8. Maximum intensity projections of cerebral TOF-MRA and corre-
sponding responses of Frangi’s and the proposed (r = 1 and 7 = 0.5)
enhancement functions. Arrows indicate thin vessels with low visual contrast
in TOF-MRA.

be applied to selectively enhance the vessels and suppress
the non-vascular structures. Fig. [§] shows the TOF-MRA en-
hanced with the proposed and Frangi’s enhancement functions.
Compared to raw TOF-MRA, the enhanced images obviously
suppress the signal adjacent to the skull and thereby better
visualize the vessels close to the skull. The proposed function
was run with 7 = 1 and 7 = 0.5, whereas the latter enhanced
more non-vessel structures and artifacts in the background
with the benefit of a more uniform enhancement of vessels at
different anatomical sites. Compared to Frangi’s, the proposed
function better enhanced thin vessels (Fig. [§).

Contrast enhanced 2D X-ray angiography is widely used
for the detection and assessment of vascular pathologies,
and as live feedback for navigation during treatment. For
these purposes a good visual contrast of vascular structures
is important, but, unfortunately, it is often not obtained at
distant vessels because of dissolution and reduced flow of
the contrast agent. Fig. [0 shows a contrast enhanced X-
ray of cerebral vasculature, in which thin vessels are poorly
visible (indicated by the arrows). The Frangi’s function did
not enhance the poorly contrasted thin vessels. On the other
hand, the proposed function enhances most of the distant thin
vessels, some of which are barely seen in the raw X-ray image.
Tuning parameter 7 of the proposed function presents a trade-
off between undesired enhancement of non-vascular structures
and the uniformity of vascular structures’ enhancement.

Enhancement of vascular pathologies is important for their
detection and assessment. Fig. [I0] shows an example of
aneurysm enhancement by original and modified Frangi’s
and the proposed (r = 1 and 7 = 0.5) functions. The
modified Frangi’s function (@) does not contain the blob
suppression term and thus has a higher intensity and a more
uniform response within the aneurysm compared to the origi-
nal function. Nevertheless, compared to the proposed function,
the modified Frangi’s function shows considerable intensity
variations within the aneurysm, which are also visible in
the raw image. Conversely, the proposed function effectively
suppressed these variations and yielded high intensity and

Fig. 9. Cerebral 2D X-ray and corresponding response of Frangi’s and
proposed (7 = 1 and 7 = 0.75) enhancement function. Arrows indicate
poorly contrasted distant vessels.

Fig. 10. Aneurysm and its parent vessel extracted from cerebral 3D-DSA
and visualized in 3D, medial aneurysm cross-section of the raw 3D-DSA
and corresponding responses of modified Frangi’s, original Frangi’s and the
proposed (7 = 1 and 7 = 0.5) enhancement functions.

highly uniform response.

V. DISCUSSION AND CONCLUSION

Multiscale Hessian based filtering is often used to en-
hance angiographic images for the purpose of computer-aided
detection of vascular pathologies [7] and to improve 3D
visualization [11] or segmentation of vascular structures [9].
However, established enhancement functions applied in the
multiscale filter generally produce a rather poor and non-
uniform response for natural variations of vascular mor-
phology (different vessel diameters, spherical-elliptical cross-
sections), at bifurcations and aneurysms, etc. (Fig. [I). Such
a deficient response will likely have an adverse impact on
subsequent analysis of the enhanced images. For instance,
no or weak response at a bifurcation may disrupt vessel
lumen segmentation [9]]. In this paper we therefore make
three important contributions: i) review established 3D and
2D enhancement functions and elaborate their deficiencies, ii)
propose a novel enhancement function, which overcomes these
deficiencies and iii) quantitatively and qualitatively evaluate



and compare several established and the novel enhancement
function on clinical image datasets of the lung, cerebral and
fundus vasculatures.

The main reason for a rather poor and non-uniform en-
hancement obtained at certain structures by the established
functions is that their response is proportional to the magni-
tudes of Hessian eigenvalues (Ao in Fig. , which in turn
are proportional to intensities of the image to be enhanced.
Hence, structures with undesired intensity variations in the
original image will also manifest these undesired variations in
the enhanced image. This may be a problem in angiographic
images of larger vascular networks, in which substantial in-
tensity variations are often observed as a result of varying
vessel morphology, blood flow characteristics and/or contrast
agent distribution. Another deficiency is the suppression of
rounded structures, which adversely impacts the response at
bifurcations and vessel aneurysms (responses marked with '
in Fig. [I). Although we modified the original expressions
such that they also enhance rounded structures, the responses
were still rather poor at bifurcations and aneurysms. This
is linked to another important deficiency in the design of
established functions, which is their sensitivity to non-circular
cross-sections of the structures. For instance, at bifurcations
the vessel cross-section expands unilaterally from circular
(A2 & \3) to non-circular (|[Az| < |As|), thus the functions
that indicate relations Ay = Az A |Ag,3| > 0 yield a lower
response. Finally, most established functions were designed
to enhance 3D images. To be applicable to 2D images these
functions need to be modified, however, the expressions and
characteristics of the original functions may not be preserved.

The novel enhancement function proposed in (I5) was
designed to indicate the eigenvalue relations 0 < A3/A2 < 2,
thereby accounting for structures with elliptic cross-sections
with the ratio of minor and major semi axes from 1 : 1
to 1 : 2. Inspired by volume ratio [32] the function design
was advanced to enhance elongated and rounded structures.
The main benefit of the ratio of eigenvalue magnitudes is
that it effectively cancels the magnitude decays towards a
structure’s periphery. It also normalizes the response across
different scales and thus exhibits a similar response on struc-
tures of different sizes. In image regions of uniform intensity,
however, all eigenvalue magnitudes are low and the ratio is ill-
behaved. This problem has been addressed by regularizing the
eigenvalue with the highest A3 magnitude to a fraction 7 of the
overall highest A3 magnitude. Although the proposed function
was developed for enhancing 3D images, the same expression
can be used to enhance 2D images by introducing an auxiliary
eigenvalue A3 using (??). This is a unique feature of the
novel function when compared to the established functions.
The main benefit of this feature is that the novel function
behaves similarly in 3D and 2D.

Thresholding thoracic CTs enhanced with the proposed
function yielded a good segmentation of lung vasculature
according to high AUC, which was the second best. The
best performing method according to AUC (UofA_vision) was
based on feature learning and classification and was far more
complex. An important requirement of this method is to have
a large image dataset with accurate, reliable and representative

reference annotations for learning discriminative features and
training the classifier. For this purpose three training lung CT
datasets were used. Because the same expert rater(s) chose the
landmarks at specific locations in both the training and test
datasets, the classifier was probably sensitive to the specific
locations of landmarks, which might have biased the final
results. On the contrary, training datasets are not required
for segmentation based on the multiscale Hessian-based filter.
Furthermore, the filter based on the proposed function had the
highest SE and SP (0.962 and 0.961, respectively) among all
tested methods.

The landmark based evaluation strategy used in VESSEL12
grand challenge dataset has certain limitations. According
to the authors [25]], negative landmarks tend to be located
several pixels from the real vessel border, thus not penalizing
oversegmentation close to vessel borders, nor segmentations
in noisy areas where vessels are obviously not to be found.
Another strategy could be to create a high quality segmentation
of a complete 3D vasculature, which would allow for as
many positive and negative landmarks as desired, however,
on clinical images this is extremely difficult, subjective and
time consuming to perform. We compared the two evaluation
strategies (see Supplemental material) on synthetic datasets
and found that both yield identical ranking of the methods.
Since we wanted to keep the evaluation strategy consistent
across different datasets, the experiments on cerebral 3D-
DSAs used the landmark based evaluation strategy with 250
positive landmarks placed on vascular structures and 250 neg-
ative landmarks placed in the vicinity of the vessels (Fig. 3).

Results on the cerebral 3D-DSA dataset and the 2D fun-
dus images showed that Hessian filtering with the proposed
enhancement function achieved the highest AUC and MedNR
among all tested functions, thus showing good segmentation
performance and highly uniform enhancement of all vascular
structures. The impact of (non)uniform enhancement is clearly
seen on maximum intensity projections of the filter responses
in Fig. [5] The proposed function better enhanced the vascu-
lature, as indicated by the reduced intensity variations within
the large internal carotid artery, clearly visible aneurysm and
several of smaller vessels. The fundus images in Fig. [§]
enhanced by the established functions show several vessels
disconnected at bifurcations and crossings, which is not the
case for the response of the proposed function. Furthemore,
the proposed function enhanced the retinal vasculature more
uniformly, especially for 7 = 0.5, visualizing several smaller
vessels.

Sizes of vascular structures may vary substantially in angio-
graphic images of large vascular networks, therefore, choosing
a wide range of scales is crucial to enhance all the structures
in the network. This may increase the computational demand
of Hessian based filters, since for each scale a convolution
of the image with correspondingly scaled Gaussian has to
be performed to obtain the Hessian matrices. Then, for each
scale, the eigenvalue decompositions of 3 x 3 or 2 x 2 Hessian
matrices are computed with the analytical method [30] and the
enhancement functions evaluated. To speed up the multiscale
Hessian filter we performed all computations on an NVidia
450GTS GPU. On 3D-DSAs of size 200 x 200 x 200 the mean



computational times obtained over five scales were around 857
and 1048 ms for the established and the proposed enhancement
functions, respectively. Compared to the established functions,
which require one image pass, the proposed function requires
two image passes, the first for regularization in (13) and the
second for response in (I3)). Although the mean computational
time increased by 22%, the enhancement based on the pro-
posed function is still computed in roughly one second for a
moderately sized image. This should not represent a bottleneck
in image analysis framework for computer-aided detection [7]]
or vessel lumen segmentation [9], nor in 3D visualization [/11]]
where the enhancement is executed only once before the
visualization starts. Vascular structures usually represent less
than 5% of voxels in a 3D image, thus if faster execution
is required, a substantial speedup is possible by evaluating
the multiscale Hessian filter (Z) only in voxels, for which
A1,2,3 < 0 (dark on bright) or A; 23 > 0 (bright on dark).
Recently, Yang and Cheng [37]] proposed a simple method to
identify such voxels based on the elements of Hessian matrix,
which in general reduced the computational times by 55% for
3D and 7.5% for 2D images.

In conclusion, we proposed a novel enhancement function
for the popular multiscale Hessian based filter. Quantitative
and visual evaluations on five clinical datasets showed that,
compared to established functions, the proposed enhancement
function yields good segmentation performance according to
high AUC, SE and SP, and has a higher and more uniform
response across all vascular structures. Because the observed
enhancement is close to the one expected of an ideal en-
hancement function, the use of the proposed function on
angiographic images has a large potential to simplify and
significantly improve subsequent image analysis methods and
visualizations.
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