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Summary
This paper looks at two popular objective specification mechanisms for sequential decision-

making problems: goals and rewards. We investigate how easy it is for non-AI experts to
use these different specification mechanisms effectively. Specifically, through this paper, we
investigate how effectively these mechanisms could be used to (a) correctly direct an AI system
or robot to generate some desired behavior and (b) predict the behavior encoded in a given
objective specification. We perform a user study to assess these questions. In addition, we
present a formalization of the problems of objective specification and behavior prediction, and
we characterize underspecification and overspecification. While participants have a strong
preference for using goals as an objective specification mechanism, we find a surprising result:
even naïve users are equally capable of specifying and interpreting reward functions.

Contribution(s)
1. The paper compares and contrasts how well naïve users can effectively make use of goal and

reward specification mechanisms. In particular, we assess whether they (a) can use these
mechanisms to generate specifications that can result in some intended target behavior and
(b) whether they can predict behavior that could result from the given specification.
Context: We are unaware of any works that perform such perform such human-centric
comparisons. The closest works we know of focus purely on how successful engineers are
in hand-crafting reward functions (cf. (Knox et al., 2023; Booth et al., 2023)).

2. We provide a formal definition of the specification and prediction task to support compar-
isons between reward functions and goals. We also provide a formal characterization of the
conditions under which an objective can be said to be overspecified or underspecified.
Context: While there are existing works that have tried to model objective misspecifi-
cation (e.g., Mechergui & Sreedharan (2024)), underspecification (e.g., Shah et al. (2022)),
and misspecification (e.g., Amodei et al. (2016)), these definitions have not been formalized
to cover and compare multiple specification modalities.

3. Our results present evidence that the naïve users’ ability to correctly specify and interpret
reward functions is comparable to their ability to provide goal specifications. However, we
see a clear difference in their preferences between the two metrics: they overwhelmingly
prefer the goal mechanism.
Context: We are unaware of any prior works that point to parity in user ability to leverage
the two objective specification mechanisms. This result may imply that developing novel
interfaces for reward functions could help users of RL techniques to utilize reward functions
more effectively—for example, reward machines are one such promising mechanism (Icarte
et al., 2022).
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Abstract

This paper looks at two popular objective specification mechanisms for sequential1
decision-making problems: goals and rewards. We investigate how easy it is for peo-2
ple without AI expertise to use these different specification mechanisms effectively.3
Specifically, through this paper, we investigate how effectively these mechanisms could4
be used to (a) correctly direct an AI system or robot to generate some desired behav-5
ior and (b) predict the behavior encoded in a given objective specification. We first6
present a formalization of the problems of objective specification and behavior predic-7
tion, and we characterize underspecification and overspecification. We then perform a8
user study to assess how well participants are able to use rewards and goals as speci-9
fication mechanisms, and their propensity for overspecification and underspecification10
with these mechanisms. While participants have a strong preference for using goals as11
an objective specification mechanism, we find a surprising result: even naïve users are12
equally capable of specifying and interpreting reward functions as of using goals.13

1 Introduction14

We examine the two common specification mechanisms for sequential decision-making: goals and15
rewards. We assess how well non-AI experts can work with these different specification mecha-16
nisms. Goals and rewards have different expected upsides. Goals allow people to provide a partial17
specification of their desired end states. This mechanism is commonly used in classical planning18
(Cox, 2016) and has also received a lot of attention from recent work in using Large Language Mod-19
els (LLMs) (Brown et al., 2020) for robot planning (cf. (Brohan et al., 2023)). Rewards, on the20
other hand, are the underlying objective specification mechanisms used by reinforcement learning21
(RL) methods (Sutton & Barto, 2018) and Markov Decision-making Processes (MDPs) Rewards are22
a means for encoding goals: the reward hypothesis asserts that “all of what we mean by goals and23
purposes can be well thought of as maximization of the expected value of the cumulative sum of a24
received scalar signal [reward]” (Sutton & Barto, 2018). The reward format allows one to associate25
scalar signal with reaching some state or performing some action in a given state.26

The research community has developed a rigorous understanding of these specification mechanisms’27
expressiveness and representational limitations (cf. (Abel et al., 2021)). Despite this understanding,28
the ease with which users can express their underlying objectives in these forms has not, to our29
knowledge, been explicitly studied. While the development of LLMs has received attention as po-30
tentially intuitive interfaces to AI systems, they do not entirely address the question of how to best31
construct specifications for AI systems either. After all, LLMs would need to translate the user32
utterances into the underlying objective specification (whether goals, rewards, or some other speci-33
fication form), and it is unclear if these utterances would contain sufficient information needed for34
the translation.35

In this paper, we conduct a user study to examine the ease of use, strengths, and weaknesses of36
the two specification mechanisms when used by non-AI experts. In the user study, we expose par-37
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ticipants to these objective specification mechanisms in intuitive tasks using simple interfaces and38
measure (a) how well the users are able to use the specific mechanism correctly and (b) how well they39
can understand an objective specified using each mechanism. While there have been some efforts40
at measuring the difficulty in specifying rewards (Booth et al., 2023), to the best of our knowledge,41
our work represents the first effort to perform such a comparative analysis of the two specification42
mechanisms among non-AI experts. To ensure our user studies are performed from a firm formal43
grounding, we also provide a concrete characterization of the tasks related to objective specification44
and behavior prediction given an objective. Additionally, we provide a characterization for when a45
given objective could be said to be over or under-specified.46

The two primary takeaways from our study results are as follows. First, naïve users are not as bad at47
specifying reward functions as is generally assumed, and in fact their ability to do so is comparable48
to their ability to correctly specify goals. This is a surprising result, as goals are a seemingly more49
intuitive mechanism and are more commonly represented in everyday communications. Second,50
despite their ability to use rewards as specifications, users generally perceive goal specification to be51
more intuitive and easier to specify. We believe that the results from this study could help us design52
objective specification interfaces that are more intuitive and easy to use for everyday users.53

The paper is structured as follows: Section 2 discusses the related works. Section 3 provides a brief54
discussion of goals and rewards as an objective specification mechanism and potential trade-offs.55
Section 4 describes the formal definition of specification and prediction. We describe the specific56
hypotheses we focus on in Section 5. Section 6 discusses the methods, including the study design.57
Section 7 presents the results and discussions. Finally, the conclusion is described in Section 8.58

2 Related Work59

The notion that goals are a natural way people think about their objectives has a long history. One60
could see similar ideas being discussed Aristotle’s notions of phronēsis (Taylor, 2019) to means-end61
analysis (Simon, 2019). Apart from evidence that people may leverage some notions of goals in their62
own reasoning, there have been fewer studies performed in determining if goals are, in fact, the best63
mechanisms for people to actually specify their objectives. Some works within this space include64
proposals to compare how effectively people can specify their objectives in procedural terms, i.e., in65
terms of actions or sequence of actions, as opposed to the end goal (Tran, 2024).66

In the reward space, reinforcement learning often assumes the existence of a divined reward func-67
tion that encodes the task. In practice, though, correctly specifying reward functions is nontrivial:68
the challenge of doing so correctly has catalyzed the take-off of the AI safety research commu-69
nity (Amodei et al., 2016; Russell, 2022). Further, reward functions are typically designed by engi-70
neers through trial-and-error design processes (Knox et al., 2023), which are subject to oversights71
and inaccuracies, even when crafted by reinforcement learning experts (Booth et al., 2023).72

Because of the challenges of using either goals or rewards as specifications, efforts in human-73
computer interaction, broadly construed, have sought to use intuitive signals in place of these explicit74
specification modalities. These alternatives span feedback (Knox & Stone, 2009; MacGlashan et al.,75
2017), corrections (Losey & O’Malley, 2018; Bajcsy et al., 2018), advice (Thomaz & Breazeal,76
2008; Amershi et al., 2014), demonstrations (Ravichandar et al., 2020), dynamical system modula-77
tion matrices Figueroa et al. (2020), and, most famously, preferences (Christiano et al., 2017; Ziegler78
et al., 2019; Biyik & Sadigh, 2018). While these intuitive mechanisms unlock naïve users’ ability to79
program machines, their interpretation is subject to failures and misinterpretation since the human80
providing the specification has less control over how the system interprets their specification. For81
example, a line of research has questioned the inductive bias used in reinforcement learning from82
human preference (Knox et al., 2022).83
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3 Background84

We will start by providing a brief sketch of the two specification mechanisms under consideration,85
goals and rewards. Since we primarily focus on sequential decision-making settings, for each prob-86
lem, we will separate out the the task domain from the objective specification. In each case, the task87
domain will provide the details on the dynamics of the task and the starting state of the environment.88

To start with, goals as an objective specification mechanism is most commonly used in deterministic89
factored planning settings, also referred to as “classical planning" settings (Geffner & Bonet, 2013).90
In general, a classical planning problem can be represented by a tuple of the form Pc = ⟨Dc,Gc⟩,91
where Dc is the task domain and Gc is the goal specification. The task domain is further defined as92
Dc = ⟨F c, Ac, Ic⟩, where F c is a set of proposition variables or facts used to define the state space,93
Ac is the set of actions and Ic is the initial state. Each action a ∈ Ac, is further defined by a tuple of94
the form a = ⟨pre(a), add (a), del (a)⟩. Here pre(a) ⊆ is the preconditions that need to be satisfied95
for the action a to be executable, add (a) and del (a) are add and delete effects, respectively. The96
result of executing an action a in state s, is captured by the transition function Γc, and is given as:97

Γc(s, a) =

{
(s \ del (a)) ∪ add (a) If pre(a) ⊆ s

Undefined Otherwise

We will also overload the notation and use Γc to denote the execution of action sequences. A solution98
to a classical planning problem takes the form of an action sequence whose execution in the initial99
state results in a state that satisfies the goal specification. Such an action sequence is referred to as a100
plan. More formally, an action sequence π = ⟨a1, ..., ak⟩ is a plan if Γc(Ic, π) ⊇ Gc. In the simplest101
formalism, an optimal plan corresponds to the shortest possible plan1.102

Reward functions are defined in the context of a Markov Decision Process or MDP (Puterman,103
1990). Here, an MDP will be defined using a tuple of the form Pm = ⟨Dm,Rm⟩. As with the104
previous planning formalism, Dm stands for the domain, but our objective is now given by a reward105
function Rm. In this case, the domain is given by a tuple of the form ⟨Fm, Am, Im, Tm, γ⟩, now as106
before Fm stands for the state variable and Im the initial state. Here, Am only lists the action labels,107
and the dynamics of the action are determined completely by the transition probability function108
Tm. Finally, γ ∈ [0, 1) represents the discount factor that determines how the agent maximizes109
cumulative discounted future rewards or returns. Here, we will also have a slightly different state110
space. Specifically, we will define it as Sm = 2F ∪{⊥}. Here, we add the new state ⊥ as a stand-in111
for the end state. Now, the transition function will be given as112

Tm : Sm ×Am × Sm → {0, 1}

Here, the mapping is only to probabilities 0 and 1 since we focus on problems with deterministic113
transition probabilities. To support the transition into end states, we will also introduce an exit action114
E ∈ Am, that will deterministically transition into the end state ⊥.115

We will define the reward function as Rm : F × A → R, i.e., a mapping from a state variable and116
action pair to a number.The reward associated with a state, action pair is given as117

Rm(s, a) =

{∑
f∈S Rm(f, a) if s ̸= ⊥

0 otherwise

A solution to an MDP problem takes the form of a policy π : Sm → A, i.e., a function that maps118
states to actions. A policy is said to be optimal if it maximizes the total expected discounted reward119
received under the given policy.120

At this point, it is worth noting that for every classical planning task domain Dc, we can build a121
corresponding task domain Dc

m = ⟨F c
m, Ac

m, Ic, T c
m, γ⟩, where F c

m = F c ∪ {⊥}, Ac
m one action122

1However, there are more expressive formalisms that allow one to associate non-unit costs with actions
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label for each action in Ac plus a label for E , Ic is the initial state (and same as before), the transition123
T c
m returns one only if it is a valid transition per Γc. For the application of actions in states where124

the preconditions aren’t met, we will assign a probability of ‘1’ to transition to ⊥, and ⊥ is treated125
as an absorber state.126

We will use the notion of trace as a shared notion of behavior that can be used in both settings. A127
trace τ for a policy or plan consists of a sequence of state action pairs that results from the execution128
of a policy or plan in the initial state. We will also use notation P = ⟨D,O⟩ as a generalized scheme129
of model representation that can stand in for both classical planning problems and MDP. Depending130
on the context, O could either be a reward or a goal.131

4 Specification and Prediction132

With the basic notations in place, we can precisely define the exact questions under examination.133
In particular, we are interested in the user’s ability to specify an objective that can lead to some134
desired behavior or be able to predict behavior that could result from optimizing for a given objective135
function. These two problems correspond to the primary ways users specify objectives. We start with136
the specification problem, where a user must identify an objective resulting in a target behavior.137

Definition 1 For a given domain model D and a target trace τ , the specification problem corre-138
sponds to finding an objective O, such that τ is a trace for an optimal solution for the problem139
P = ⟨D,O⟩.140

If the optimal solution for a given objective specification (i.e., a goal or reward) leads to a trace τ ,141
then we will refer to that objective specification as being a correctly specified objective for τ , else it142
is referred to as a misspecified objective.143

Moving from the more general to specific settings, we start seeing differences in properties. For144
example, one can show that even when a goal specification cannot be found for a given trace, it145
might be possible to find a reward function in a corresponding MDP.146

Proposition 1 For a classical planning domain Dc, let τ = ⟨I, a0, ..., sk⟩, be a trace such that147
for every consecutive state-action-state tuple si, ai, si+1 we have Γc(si, ai) = si+1, and the trace148
contains no repeating states, then even if there exists no goal for which τ is a trace for an optimal149
plan, there still exists a reward function for m(Dc) for which τ is a trace for an optimal policy.150

The above proposition can be proven by showing that there exist traces that satisfy the property151
for which no goal exists and by showing the existence of a reward for which the trace is part of152
an optimal policy. For the first, consider a trace that includes an avoidable subsequence. In other153
words, let si and sj be part of τ such that their positions in sequences are separated by more than154
two positions, i.e., there are at least two actions between si and sj . Now let’s assume there exists155
an action a, such that Γc(si, a) = sj . Then, by definition, this trace can’t be part of an optimal156
plan since you can get a shorter trace that results in the same state by removing the original actions157
between si and sj . As for the second part, consider a reward function that assigns zero to every158
state. Under this reward function, all policy has the same value and are optimal. Given the fact that159
all transition in the trace corresponds to valid ones in the original domain model, there exists at least160
one policy for which this is a valid trace.161

This clearly shows how the reward function provides a clear advantage in terms of expressivity.162
However, this advantage goes even further: the knowledge about the goal will allow us to recon-163
struct a reward function for the corresponding model directly. Specifically, one can create a reward164
function that assigns a positive reward to all the goal fluents for the exit action, or more formally,165
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Proposition 2 For a trace τ and a classical planning domain Dc, let Gc be a correctly specified166
goal, then Rc

m must be a correctly specified reward for m(Dc), when167

Rc
m(f, a) =

{
r+ if f ∈ Gc and a = E
0 otherwise

The validity of the above proposition is straightforward. The agent only receives a positive reward168
for performing exit action from states that satisfy the goal specification. The presence of a discount169
factor means that this would need to be achieved in as few steps as possible.170

Now, it is also worth noting that not all correctly specified objectives are equal. In particular, we171
can identify two categories. In one case, the user may not have provided enough details; we will172
call such cases examples of underspecification. In the latter case, the user would have provided173
more details than needed or examples of overspecification. It is worth noting that the implications174
of the two are widely different. While overspecification might reduce the set of optimal policies175
and prevent the AI system from coming up with creative solutions, underspecification could result176
in unexpected behavior or specification gaming. We can define the two categories as follows:177

Definition 2 For a domain model D and a target trace τ , a given specification O is said to be178
underspecified if there are other traces τ ′ ̸= τ that could result from other optimal solutions for179
P = ⟨D,O⟩.180

In the above definition, underspecification is purely defined by the fact there are other traces and181
solutions possible (given the deterministic settings we consider, there is a one-to-one mapping be-182
tween solutions and traces). On the other hand, defining overspecification requires us to use a notion183
of specification size, i.e., |O|, where for goals, the size is given by the number of fluent in the speci-184
fication and for rewards, the number of fluent action pairs with non-zero values. Now, we can define185
overspecification to be cases where specifications of smaller size exist that are not underspecified.186

Definition 3 For a domain model D and a target trace τ , a given specification O is said to be187
overspecified if (a) O is not underspecified and (b) there exists another correct specification O′,188
such that O′ is not an under specification and |O′| < |O|.189

This brings us an end to the section discussing the first task, namely objective specification. The sec-190
ond task corresponds to the user’s ability to make inferences based on the given objective. Here, we191
consider the simple case of whether a user can tell if a trace is possible under a given specification.192

Definition 4 For a given problem P = ⟨D,O⟩ and a trace τ , the prediction problem corresponds193
to identifying whether τ is a trace for an optimal solution for the problem P .194

5 Hypotheses195

Our study is primarily designed to measure how the choice of specification mechanism can affect196
the user’s ability to specify objectives and predict agent behavior. The primary hypotheses we plan197
to test here are as follows:198

• H1-a: Participants are more likely to provide accurate goals than accurate reward specifications.199

• H1-b: Participants are more likely to correctly interpret goals than reward specifications.200

The next question we consider concerns the participants’ workload—in particular, the cognitive201
load, imposed and the time taken by the two mechanisms.202

• H2-a: Reward specifications will result in a higher workload than goal specifications and will203
require longer time to finish.204

• H2-b: Trying to interpret reward functions will result in a higher workload than goal specifications205
and will require a longer time to finish.206
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Now, we also wanted to use this as an opportunity to understand ways in which the user specification207
may differ from the minimal specification, which brings us to the hypothesis:208

• H3: Participants are more likely to underspecify objectives than overspecify them.209

We will test the above hypothesis for both reward and goal specification cases.210

To assess the H2, we measure the participants’ workload for each objective specification mechanism211
and task in the survey. NASA Task Load Index (TLX) is used to measure the perceived workload.212
NASA TLX has six dimensions: mental demand, physical demand, temporal demand, performance,213
effort, and frustration level (Hart, 1986). Each dimension is measured using a Likert rating scale.214

6 Methods215

6.1 Study Design216

To compare the two mechanisms, we designed three intuitive but diverse domains in which two217
primary tasks related to each mechanism can be tested: (1) the user’s ability to provide an objective218
specification that will result in a given behavior and (2) their ability to predict the behavior from a219
given specification. We chose domains that non-AI experts could understand without considerable220
training but corresponded to potential real-world robotics applications. Specifically, the domains221
included (1) a robot navigation task, (2) a tabletop pick-and-place task, and (3) a task with a self-222
driving vehicle. We chose deterministic versions of the tasks to avoid potential confounders that223
may arise from the stochasticity of the environment dynamics. The environment setting for each224
domain can be seen in Figure 1.225

Figure 1: A visualization of each domain used in the study. Top left: a robot navigation task. Top
right: a pick-and-place task. Bottom: a self-driving vehicle task.
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The navigation task involves robots navigating through a workspace. In this case, a robot needs to226
pick up and drop off a suitcase in different locations within a small workspace. The pick and place227
domain contains a set of blocks that can be stacked on top of one another. The objective is usually228
to achieve a specific configuration of the blocks. For the self-driving vehicle domain, we have a229
self-driving car powered by a battery that needs to pick up and drop off a passenger in different230
locations. It also needs to charge the battery to make sure that the battery is enough to perform its231
task. In each environment setting, the current state is defined by a set of binary variables, henceforth232
referred to as facts. There is also a set of actions that can be taken by the robot, including an exit233
action that will allow the robot to end the task. Each domain had about 6-7 facts and 4-5 actions. We234
choose to keep the facts and action counts similar so as to balance the workload between domains.235

We use these domains to create surveys that test the participants’ ability to specify an objective236
that will result in some provided behavior or their ability to predict what behavior will result from237
a given objective. The survey built around these scenarios uses a mixed study design, combining238
both between-subjects and within-subjects study designs. The participants are shown either the239
specification task or prediction task (making this study design between subjects), chosen from three240
different problem domains as mentioned above. Given the problem domain, the participants are241
tested on how well they are able to complete the specified task across the two objective specification242
mechanisms (within subjects). We will use a counterbalancing technique to vary the order in which243
participants will be shown the different specification mechanisms. This is to ensure that no single244
order influences the results of the study.245

For each objective specification mechanism, there are two sections in the survey: demo and test. The246
demo section is basically a learning phase, where participants are familiarized and introduced to the247
concepts of goal and reward specifications. In the demo section, participants will be shown a video248
that demonstrates a simple behavior along with the corresponding goal or reward (see the example249
illustration in Figure 2). For goals, the video will show the “facts to be achieved (goal state)” and250
how the “facts that are true (current state)” change during the duration of robot behavior until it251
reaches the goal state. On the other hand, for rewards, the video shows the rewards matrix and252
how individual rewards from the matrix will be added to the total when the agent performs specific253
actions. For example, based on the illustration in Figure 2, the agent will get 50 points if it takes an254
“exit the task” action while the fact that “the robot is holding the suitcase” is true.255

Figure 2: Illustrations for the sample specifications that could be shown to the participants.
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For the first task, i.e., ease of objective specification, the test section will show a sample behavior to256
the user. Then, participants are asked to come up with goals and/or rewards for that scenario. Figure257
3 presents screenshots of the interface provided to the user to specify the objective. We refer to goals258
as facts and rewards as scores to simplify the description to non-AI expert participants. From the259
participants’ answers, we can determine whether their specifications are correct or incorrect. For260
the incorrect one, the potential sources of errors can be analyzed, including overspecification and261
underspecification.262

Figure 3: Sample interfaces used by the participants to specify goals and rewards. The one shown
above corresponds to the navigation task.

On the other hand, to test how easily non-AI experts can understand goals and rewards, instead of263
showing the demonstration, we show the correct goal (list of facts to be achieved) or the rewards264
specification (in the form of scores). Then, we ask the participants to predict or interpret the behavior265
of the agent based on that. Specifically, we provide three video options and ask them to choose one266
that most aligns with the given goals or rewards.267

Additionally, at the end of the survey, we ask the participants to directly compare the two specifica-268
tion mechanisms in terms of their easiness, intuitiveness, likeability, and challenge. We also ask for269
qualitative feedback on why they think that particular objective specification mechanism is easier or270
harder than the other. Finally, we collect demographic information such as age, gender, highest level271
of education, and familiarity with computer science and AI subjects.272

6.2 Participants and Procedure273

Before the main study, we ran a small pilot think-aloud study with three participants to refine the274
study design. For the primary user study, we recruited a total of 30 participants from Prolific: 15275
participants (8 males and 7 females) for the specification task and 15 participants (7 males and 8276
females) for the prediction task. They were paid $18.5 USD per hour, and they identified their277
native language as English. The majority of them reported having never taken an AI course.278

This study was IRB-approved. Participants were provided with informed consent before they started279
the survey. Multiple attention check questions were included throughout the study. Each participant280
was shown all of the three domains in random order. The order in which the specification mechanism281
was shown was also randomized to ensure the results were counterbalanced.282

7 Results and Discussions283

7.1 Impressions from the Think-Aloud Study284

We used the think-aloud study (Baxter et al., 2015) as a means of both testing our interface, partic-285
ularly for specification tasks and collecting some initial anecdotal information on the mechanisms.286
The reactions we observed were aligned with what we hypothesized (H1-a and H2-a), where the287
participants showed more positive reactions to the goal specification interface as opposed to the re-288
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ward. Some reactions to goal specifications included: “This one is fun, like playing,” and “The task289
was super easy.” On the other hand, for the reward specification, users reported a lack of confidence290
about their ability to correctly provide such specifications: “I don’t understand, I’m very bad at this,”291
and “I don’t know why this is confusing me.” Their qualitative feedback at the end of the survey292
also reflected their strong preference for using the goal specification mechanism.293

7.2 Specification Task294

We started by analyzing the initial results from the specification task. In regards to hypothesis H1-295
a, we calculated the number of times the participants were able to provide correct specifications296
(presented in Table 1). We were surprised to find that the participants were actually able to identify297
correct reward functions more frequently than correct goal specifications. Further, analyses of the298
results showed that the most frequent mistakes made by participants in goal specification involved299
the inclusion of intermediate facts in the goal specification. These intermediate facts, while made300
true by the agent’s action, are also made false by further actions in the plan. For example, the subjects301
might indicate that “the robot is holding the suitcase”—but, in the observation of the environment,302
the robot places the suitcase down at the end of the video. As such, including these intermediate303
facts in the final goal specification leads to an unachievable objective specification. The goals being304
provided by the users reflected a more procedural description of the agent behavior than a final305
goal state description. On the other hand, such intermediate state scores can be more naturally306
incorporated into the reward function. To analyze the factors that could explain these results, we307
created two follow-up variants of the specification and reran our study.308

In the first follow-up, we updated all our videos to highlight how intermediate fact values change.309
In each of our demonstration videos, we added animations that showed which facts became false.310
We reran the experiment on five participants (thus collecting 15 specifications per mechanism). The311
results from the study are presented in Table 2. While we see that the additional information does312
improve the overall percentage of correct goal specification, the resulting percentage is similar to313
that of the rewards—indicating that this additional information balances participants’ ability to craft314
goals or rewards.315

In the second follow-up, we considered a variation of the navigation task where the participants316
simply provided scores for each state variable achievement. This variant was motivated by the pos-317
sibility that the inclusion of actions in the specification mechanism might be helping the participant318
by allowing them to think procedurally about the task. Here, we set a specific absorbing state, and319
the reward for each state was set to the sum of rewards associated with each state factor. We ran320
this variant on 15 participants, and the percentage of correct goal and reward specifications were,321
in fact, the same (Table 3). This shows that the presence of actions assisted participants in crafting322
rewards, and that crafting rewards over states instead of state-action-state tuples is a harder task in323
these domains.324

Taken together, this collection of results points to the possibility that the hypothesis that goals are325
easier than rewards to specify need not be true. This is particularly surprising, given this hypothesis326
is quite frequently taken to be self-evident in the literature (cf. (Mechergui & Sreedharan, 2024)).327

However, when we move on to the hypothesis related to workload and time taken (H2-a), we see328
a clear distinction between the two specification mechanisms, with subjects overwhelmingly pre-329
ferring the goal mechanism. Running paired t-tests shows that there is a statistically significant330
difference between the cognitive load of goal specification (M = 9.444, SD = 5.057) and reward331
specification (M = 12.689, SD = 5.008). There is also a statistically significant difference between332
the time taken to complete the goal specification (M = 82.014, SD = 36.225) and reward specification333
(M = 148.521, SD = 87.015). In addition, we also see similar responses with respect to the quali-334
tative responses, with most participants finding goals easier to specify (86.67%) and more intuitive335
(73.33%). The supplementary file provides the breakdown of individual dimensions of the workload336
and more details on the qualitative feedback. These results support our hypothesis H2-a.337
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Finally, moving to H3, our results again do not support our hypothesis. In fact, we say more instances338
of the users overspecifying their objectives than underspecification (see Table 1, 2, and 3). Such339
patterns were also replicated in the incorrect specifications. Looking at incorrect goal specification,340
we saw a larger set of participants (75%) added incorrect facts as opposed to leaving out some facts341
(0.027%).

Table 1: Results from the main specification user study

Category Sub-category Percentage of total response
Goals Rewards

Correct
Correct minimal specification 4.45 2.22
Correct but overspecified 13.33 35.56
Correct but underspecified - 8.89

Incorrect Incorrect because gave subset 82.22 53.33
Total 100 100

Table 2: Results from the first variant of the specification study

Category Sub-category Percentage of total response
Goals Rewards

Correct
Correct minimal specification - -
Correct but overspecified 73.33 66.67
Correct but underspecified - -

Incorrect Incorrect specification 26.67 33.33
Total 100 100

Table 3: Results from the second variant of the specification study

Category Sub-category Percentage of total response
Goals Rewards

Correct
Correct and minimal specification - -
Correct and overspecification 66.67 66.67
Correct and underspecification - -

Incorrect Incorrect specification 33.33 33.33
Total 100 100

342

7.3 Prediction Task343

As discussed, the goal of the prediction task was to test whether a user can predict the behavior344
that could result from a given specification. We see that as a proxy for the ease with which users345
can correctly interpret specifications expressed using each mechanism. For the prediction task,346
we also see a similar pattern. The participant accuracy in predicting behavior based on the given347
goals function and reward function is comparably high, with 93.33% predicting the goals function348
correctly and 91.11% predicting the rewards function correctly. Here, the difference is not high349
enough to establish any statistically significant difference between the two groups. As for the results350
related to the cognitive workload, our t-test was not able to establish any significant difference351
between the prediction from the goal function (M = 6.267, SD = 6.308) and from the reward function352
(M = 7.044, SD = 6.502) with P-value equal to .251. There was also no significant difference353
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between the time taken to complete the prediction from goal function (M = 82.840, SD = 75.285)354
and from reward function (M = 90.873, SD = 59.339); t(44) = -0.878, P = .385. This seems to355
suggest that both of our hypotheses H1-b and H2-b may not hold.356

However, when we move on to the participant preference between the two mechanisms, most par-357
ticipants find goal function easier to predict (86.67%) and more intuitive (80%). In addition to this,358
most participants reported that the reward function is more challenging to predict (80%). These359
preferences are consistent in both specification and prediction tasks.360

7.4 Results Summary361

From our experiments, we find that our hypotheses H1-a and H1-b are surprisingly not supported:362
we did not find evidence that people are able to more correctly specify or interpret goals over reward363
functions. Despite this, we find that there was a significant difference in the cognitive effort and364
time needed to specify objectives: goals were a clear winner on these axes (H2-a). We were also365
surprised to find that people are not more likely to underspecify goals than to overspecify (H3).366
Overall, though, the subjective feedback reflects that participants strongly preferred using goals367
over reward functions.368

7.5 Limitations of Study Scenarios369

Please note that all studies were carried out in purely deterministic settings, where the agents can370
not get stuck in loops. While this is stereotypical of many tasks where goals are used, this doesn’t371
necessarily represent all the ways rewards could be utilized, which is a more general specification372
mechanism. Similarly, we considered simple enough scenarios where the participants could easily373
enumerate all possible facts and incorporate them into the specification.374

8 Conclusion375

In this paper, we performed a comparison to assess how easy it would be for naïve users to provide376
and understand reward specifications and goal specifications. Our results point to the fact that,377
in fact, people’s ability to provide and understand rewards is fairly comparable to that of goals.378
However, there is a clear difference in the user preferences and the cognitive load imposed by the379
two methods (at least for the specification task). One interesting question to ask in this context would380
be whether this difference can be explained by the interface we used for our study. As such, one381
would want to investigate if it’s possible to develop interfaces that allow users to intuitively provide382
reward functions. Such interfaces would have pretty immediate advantages, given reward functions383
are more expressive than goals. Also, as the next steps, we would also like to investigate how384
goals and rewards compare against other objective specification mechanisms like policy sketches385
and reward machines.386
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Supplementary Materials463

The following content was not necessarily subject to peer review.464
465

9 Raw Nasa TLX Scores466

Figure 4: Box tables representing the NASA TLX score collected for both specification and predic-
tion tasks.

10 Subjective Feedback from Participants467

Here is the subjective feedback provided by the participants for each of the objective specification468
mechanisms. Here the participants were asked to select the objective mechanisms they felt most469
closely matched the description provided

Figure 5: The raw number of selections provided by the participants for each task.

470

14



Goals vs. Rewards: A Comparative Study

11 Screenshots from the Variants471

Here are some of the screenshots from the two variants of the specification tasks.

Figure 6: Screenshots from the new video for the first variant that highlights the false facts and how
they change over actions.

Figure 7: Screenshots from the second variant that shows the task and the new reward specification
mechanism.
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