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Abstract

Automatic multi-organ segmentation of the dual energy computed tomography
(DECT) data is beneficial for biomedical research and clinical applications. Numer-
ous recent researches in medical image processing show the feasibility to use 3-D
fully convolutional networks (FCN) for voxel-wise dense predictions of medical
images. In the scope of this work, three 3D-FCN-based algorithmic approaches
for the automatic multi-organ segmentation in DECT are developed. Both of the
theoretical benefit and the practical performance of these novel deep-learning-based
approaches are assessed. The approaches were evaluated using 26 torso DECT
data acquired with a clinical dual-source CT system. Six thoracic and abdominal
organs (left and right lungs, liver, spleen, and left and right kidneys) were evaluated
using a cross-validation strategy. In all the tests, we achieved the best average Dice
coefficients of 98% for the right lung, 97% for the left lung, 93% for the liver,
91% for the spleen, 94% for the right kidney, 92% for the left kidney, respectively.
Successful tests on special clinical cases reveal the high adaptability of our methods
in the practical application. The results show that our methods are feasible and
promising.

1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands.



(a) conventional reconstruc-
tion

(b) CS reconstruction (c) CS display (d) CS dual energy

Figure 1: Examplary application of multi-organ segmentation: context-sensitive (CS) DECT imaging.
(a): Coronal view of a conventional CT image for comparison purposes. (b): Context-sensitive
reconstruction with an organ-adapted spatial resolution and noise level. (c): The context-sensitive
image is shown in a organ-adapted gray level window (lung in lung window, soft tissue in body
window, bone in bone window, etc.) and with a sliding thin slab (STS) mean intensity projection in
the lung and STS maximum intensity projection in the lung simultaneously. (d): Color overlay of
multiple dual energy evaluation (liver iodine quantification, body iodine quantification, lung perfused
blood volume, ect.) that are applied in an organ-specific manner.

1 Introduction

In computed tomography (CT), the Hounsfield unit (HU) scale value depends on the inherent tissue
properties, the X-ray spectrum for scanning, and the administered contrast media [1]. Materials,
having different elemental compositions, can be represented by identical HU values in a SECT
image [2]. Therefore, single energy CT (SECT) has the characteristics of providing limited material-
specific information and beam hardening as well as tissue characterization [1]. These characteristics
influence the organ segmentation. DECT has been investigated to overcome the shortcomings
of SECT. In DECT, two energy-specific image data sets are acquired using two different X-ray
energy spectra simultaneously. The two energy-specific image datasets facilitate the differentiation
of tissue materials and therefore the multi-organ segmentation can be improved. The exploited
prior anatomical information gained through the multi-organ segmentation, can be used to improve
biomedical research and clinical applications, such as material decomposition [3] and context-
sensitive DECT imaging [4–6] (example see Fig. 1). The novel technique offers the possibility to
present evermore complex information to the radiologists simultaneously and provides the potential
to improve the clinical routine in CT diagnosis.

Automatic multi-organ segmentation on DECT images is a challenging task due to the inter-subject
variance of human organs, the soft anatomy deformation, as well as different HU values for the
same organ by different spectra. Numerous recent researches show the successful experience of deep
learning in single or multiple organ segmentation using volumetric SECT images [7, 8]. Our prior
study shows that deep learning techniques are also feasible for the DECT image segmentation [9]. In
this prior study, the image information of two energies is fused in the preprocessing based on a linear
weighted sum function. The experiments showed that the segmentation with optimal fusion weight
achieved better accuracy than using one single energy image. However, the manual weight selection
influences the segmentation accuracy and is organ-dependent. Thus, the spectral information needs to
be exploited more efficiently and automatically by e.g. the implementation of the image fusion into
the network.

In this work, we propose three 3D deep learning architectures for automatic multi-organ segmentation
on DECT images. The proposed methods are all based on an end-to-end 3D FCN [10]. The energy-
dependent anatomical information of two energies is fused in the network while neither mixture
weight nor organ-specific or energy-specific apriori knowledge is required. To solve the high class
imbalance problem of multi-organ segmentation, a loss function based on weighted Dice coefficient
is designed. The cross-validation results show that these proposed methods are promising to solve
multi-organ segmentation problems for DECT and outperform the prior work.
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2 Materials and methods

2.1 Network architectures for DECT organ prediction

In clinical diagnose using DECT, a mixed image display is employed as described by Krauss et
al. [11]. The calculation of the mixed image is a linear weighted addition of the two images acquired
by the two spectra:

Imix = α · Ilow + (1− α) · Ihigh (1)

where α is the weight of the dual energy composition. Imix denotes the mixed image. Ilow and Ihigh
are the images at low and high tube voltage, respectively.

Our prior study [9] shows that segmentation accuracy is dependent on the α and the optimal α value
is organ-dependent. The α value must be selected manually in the prior study and the mixture is a
preprocessing step outside the FCN. Instead of considering the mixture of two energy channels as
preprocessing, we could embed this step into the network. Using this embedding, we could avoid the
manual selection of α and exploit the optimal mixture of the spectral information more efficiently
and automatically.

One possible approach is based on the linear combination shown in Eq. 1 directly, and is named as
linear combination based network (LC-net). The LC-net uses the alpha blending to merge images
of two energy levels. This can be implemented as merge layer with a single trainable parameter.
To facilitate the implementation in the FCN, we derive the Eq. 1 to Eq. 2. Fig. 2a illustrates the
architecture of this approach. Using the dual energy data as two inputs of the FCN, the input images
are merged with mathematical layers and the mixed image is sent into the FCN. At the final stage
of the expansive path, the extracted features from the original inputs are also concatenated into the
upsampled image in order to add more details.

Imix = Ihigh + α · (Ilow − Ihigh) (2)

However, the LC-net may be too general for the image fusion according to the principle of CT image
composition. Using additive noise model, a CT image I can be expressed as I = Iinf +P (E)+N (0)
[12] where Iinf denotes the noise-free image, P (∗) denotes the Poisson noise, E denotes the energy
spectrum, and N denotes the white Gaussian noise. Theoretically, the Poisson noise of CT depends
on the energy of the photon and the number of the photon (i.e. detector entrance dose and spectrum).
Assuming the detector has the same white noise, i.e. the identical normal distribution. The mixture
of DECT image Eq. 1 can be expressed as Eq. 3. As we could see, the simple linear weighted
mixture merges not only the image signal but also the noise. A solution for image fusion with noise
elimination is expected consequently.

Imix = α · Iinflow + (1− α) · Iinfhigh + α · P (Elow) + (1− α) · P (Ehigh) +N (0) (3)

Another intuitive way of merging information in the FCN is to consider the two images of different
energies as different channels of an input image. This solution is named as multi-channel based
network (MC-net), and is shown in Fig. 2b. The two-channel FCN uses only one image input and
employs the dual energy data as two channels of the FCN input. This network architecture processes
two energy spectra using different kernels in the first convolutional layer and subsequently added the
filtered images. This merge in a single channel (before activation) can be established as Eq. 4, where
∗ denotes the convolution, Wa and Wb denotes different kernel. The mixture of the information
happens in the low-level feature maps and consequently, the noise still remains in the mixture.

Imix =Wa ∗ Iinflow +Wb ∗ Iinfhigh +Wa ∗P (Elow)+Wb ∗P (Ehigh)+Wa ∗N (0)+Wb ∗N (0) (4)

The further possibility is to branch the FCN in the feature extraction path. This solution is named as
Multi-image based network (MI-net) and is illustrated in Fig. 2c. The dual energy data is employed
as two inputs of the FCN. The two input images are handled separately by the two branches of the
FCN to extract the high-level features. The merge of information is implemented using the features
at the highest level only. In the concatenation of each depth, the features of the two outputs of the
contracting path are employed. In this solution, the energy noise of each image can be handled
separately. It neither mixes the noise in the low level nor propagates the mixture of the noise in the
network, therefore the trained network should be more robust against the noise.
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(a) Linear combination based network (LC-net)

(b) Multi-channel based network (MC-net)

(c) Multi-image based network (MI-net)

Figure 2: Network architectures of DECT multi-organ segmentation. Differences are highlighted
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2.2 Loss function

The three models are all trained with softmax as activation and weighted multi-class Dice as loss. For
each class c, given the estimated probability pc(x) and the ground truth probability gc(x) at voxel x,
the loss function is defined as:

L = −wc(x) ·
2
∑

x pc(x)gc(x)∑
x p

2
c(x) +

∑
x g

2
c (x)

(5)

Because the voxel amounts of the kidneys are much less than the ones of the other organ, this
multi-organ segmentation is high class imbalance, the multi-class Dice in the loss function should
be therefore balanced. A median frequency balancing is used in the class weights wc(x) of the Dice
loss to overcome the class imbalance problem. Furthermore, to correct the boundary errors in the
segmentation, a boundary compensation introduced in [13] is also implemented in the class weights.
The class weights wc(x) are thus composed of two terms: the median frequency balancing and the
boundary compensation, and given as:

wc(x) =
median(f)

fc
+ λ · I(| 5Gc(x) |> 0) (6)

where scalar fc denotes the frequency of class c in the training data, i.e. the class probability. The
vector f is the vector of all frequencies. I is the indicator function. Gc is the ground truth of class c.
The operator5 denotes the 2-D gradient operator. The median frequency balancing term is used to
highlight classes with low probability for the compensation of the class imbalance. The boundary
compensation term increases the weights on the anatomical boundaries for contour correction. λ
balances the two terms.

2.3 Model learning

These proposed networks were evaluated with 26 clinical torso DECT images scanned by the
department of radiology, university hospital Erlangen, using a Siemens SOMATOM Force CT
system. The images were taken from male and female adult patients with different clinically oriented
indication justified by the radiologist. All of the images were acquired using the same scan protocol:
X-ray tube voltage settings of 70 kV (560 mAs) and Sn 150 kV, ultravist 370 as the contrast agent,
and kernel Q32 for the image reconstruction. The volumes contain 992-1248 slices with slice
size 512x512 pixels, and voxel spacing from [0.6895-0.957, 0.6895-0.957,0.6] mm are used. Six
abdominal and thoracic organs were tested, including liver, spleen, right and left kidneys, and right
and left lungs. Ground truths were generated manually by experts. To improve the accuracy of the
ground truths they were reviewed and refined by different experts.

The segmentation accuracy was evaluated with 9-fold cross-validation. For the selection of training,
validation and test datasets, we showed that the bias of random data selection decreases the seg-
mentation accuracy [14]. Therefore, we integrated the manifold learning-based technique proposed
in [14] to split the data into training, validation, and test datasets, in order to keep the distributions
of the datasets similar. The images were projected into 2-D space using locally linear embedding
(LLE) [15] and clustered into three classes using k-means. Training data, validation data, and test
data were selected randomly within the three classes with the ratio about 7:1:1. That means for one
evaluation scenario, 20 images were used for training, 3 images for validation and 3 for test.

The original images were downsampled by the factor of two. Afterward, the images were split into
patches with size [32, 32, 32] and overlap 16. To increase the data quantity, the patches are augmented
with translation, rotation, scaling and elastic deformation [16]. Finally, we generated 27465 patches
for training and 3715 patches for validation.

We used Adam as the optimizer. The learning rate is initially set to 0.00001 and reduced by factor
0.1 after every 10 epochs till convergence. NVIDIA TITAN Xp with 12 GB memory was used for
learning, which constrained the batch size of 6 for training and 3 for validation.
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Table 1: Dice score comparison of different approaches.
Right Lung Left Lung Right Kidney Left Kidney Liver Spleen

LC-net 0.97 ± 0.01 0.97 ± 0.01 0.93 ± 0.02 0.91 ± 0.05 0.92 ± 0.02 0.88 ± 0.06
MC-net 0.97 ± 0.01 0.97 ± 0.01 0.93 ± 0.02 0.84 ± 0.15 0.91 ± 0.02 0.87 ± 0.07
MI-net 0.98 ± 0.01 0.97 ± 0.01 0.93 ± 0.03 0.91 ± 0.05 0.92 ± 0.02 0.91 ± 0.04
Best with
manual α

in [9]

0.96 ± 0.02 0.96 ± 0.01 0.91 ± 0.03 0.89 ± 0.05 0.93 ± 0.01 0.92 ± 0.03

Worst with
manual α

in [9]

0.90 ± 0.11 0.89 ± 0.10 0.75 ± 0.08 0.76 ± 0.23 0.87 ± 0.10 0.82 ± 0.11

Table 2: Hausdorff distance (in voxel) comparison of different approaches.
Right Lung Left Lung Right Kidney Left Kidney Liver Spleen

LC-net 4.68 ± 1.71 4.54 ± 1.78 2.27 ± 1.75 3.59 ± 1.47 8.94 ± 5.17 4.76 ± 1.86
MC-net 4.90 ± 1.93 4.27 ± 0.97 3.04 ± 1.92 6.90 ± 7.14 10.25 ± 3.49 4.86 ± 2.24
MI-net 3.88 ± 1.20 4.43 ± 2.58 1.97 ± 1.08 2.78 ± 1.16 8.87 ± 3.69 4.46 ± 2.71
Best with
manual α

in [9]

4.20 ± 1.32 4.36 ± 1.41 3.18 ± 3.93 4.53 ± 3.33 8.93 ± 3.88 7.09 ± 2.31

Worst with
manual α

in [9]

6.90 ± 2.11 7.89 ± 3.10 6.39 ± 8.69 5.19 ± 2.43 9.32 ± 9.88 9.77 ± 2.89

3 Experiments and results

3.1 Comparison of architectures

Accuracy estimation The similarity between the segmentation result and the ground truth was mea-
sured using the Dice metric and the Hausdorff distance. We first compared the different architectures
with λ = 1. Table 1 summarizes the average Dice scores on test data. The MI-net shows the best
performance. Compared to the results with the optimal preprocessed fusion weight in our prior
work [9], we achieved an average increase of 2% for right lung, 1% for left lung, and 2% for both
kidneys. However, the Dice scores for liver and spleen are 1% lower. Table 2 lists the average of the
Hausdorff distance for further comparison. The MI-net has lowest average Hausdorff distance and
lowest standard deviation for most target organs, the improvement is significant. The comparison of
the Hausdorff distance reveals that the MI-net overperforms our prior work.

Performance comparison Table 3 lists performance metrics of the networks with the same data
selection and identical training configuration (see Sec. 2.3). Although the amount of the trainable
parameters of the MI-net is almost 3 times higher as for the other two networks. Nonetheless, there
is a tiny difference of the GPU occupancy rate and the epoch amount by the early stop. The time
consumption is positively correlated with the amount of the trainable parameters but not linear
proportional. Fig. 3 shows that the convergence efficiency of the three networks, by training and
validation, related to epochs are all similar. Compared to the differences among the networks, the
differences among organs are more significant.

3.2 Analyse of the balance weight λ

As shown in Eq. 6, we used the weight λ to balance the compensation of the class imbalance and the
correction of the anatomical boundaries. The effect of the λ was also researched. We retrained MI-net
with different λ. Table 4 lists the average Dice scores. The change of the Dice scores of both lungs is
negatively proportional to the change of λ. However, the Dice scores of both kidneys increase when
the λ raises. The Dice scores of liver and spleen change up and down. The results show that the effect
of λ varies for organs. Small λ provides higher results for lungs, while large λ fits better for kidneys.
The comparison also shows that, by changing the λ, the segmentation of the small organs change
much less than the large organs. Small organs are more stable than large organs for λ modification.
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Table 3: Performance comparison of the three networks with the same training and validation data.
Trainable parameters GPU Early stop Total training time

LC-net 16,343,800 11.505GB 136 epochs 12h 22min
MC-net 16,330,759 11.427GB 130 epochs 11h 23min
MI-net 46,925,815 11.429GB 140 epochs 13h 27min
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(a) Training convergence
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(b) Validation convergence

Figure 3: Convergence comparison. Solid line denotes MI-net, dotted line denotes LC-net, and
dash-dotted line denotes MC-net.

3.3 Robustness on special cases

To examine the robustness of these networks, we tested some special unseen clinical cases. The
change of the acquisition protocol, such as different tube voltage and reconstruction kernel, can
influence the images. Images with different scan protocol were tested. Also, images with obvious
visual indication and images with missing organ or incomplete organ were experimented. Fig. 4a
shows the successful prediction for an image acquired by 100kV and Sn 150kV and reconstructed
with Qr40. Fig. 4b illustrates the accurate result of an image with obvious lung pathology. Fig. 4c
presents the robustness of the proposed method applied to an image without the spleen. Fig. 4d shows
that the proposed method also works great for truncated scan.

(a) Scan with different proto-
col

(b) Scan with lung pathology(c) Scan with missing spleen(d) Scan with longitudinal
truncation

Figure 4: Test examples of special unseen clinical cases with MI-net.

4 Discussion and conclusion

Our prior work in [9] shows that image fusion is an important part of the multi-organ segmentation on
DECT images using deep learning. We proposed and compared three possible network architectures
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Table 4: Result comparison of different λ using MI-net.
λ Right Lung Left Lung Right Kidney Left Kidney Liver Spleen
0 0.97 ± 0.01 0.97 ± 0.01 0.90 ± 0.08 0.90 ± 0.04 0.90 ± 0.03 0.87 ± 0.05
1 0.98 ± 0.01 0.97 ± 0.01 0.93 ± 0.03 0.91 ± 0.05 0.92 ± 0.02 0.91 ± 0.04
2 0.95 ± 0.01 0.96 ± 0.02 0.93 ± 0.03 0.91 ± 0.05 0.91 ± 0.01 0.88 ± 0.05
5 0.61 ± 0.10 0.53 ± 0.06 0.94 ± 0.01 0.92 ± 0.03 0.93 ± 0.02 0.91 ± 0.04

in this work, named LC-net, MC-net, and MI-net, respectively. LC-net uses alpha blending to merge
the image information of two energies, however, the noise is also mixed with the alpha blending.
Alpha blending is not able to handle the noise individually. MC-net merges images when images are
filtered in the first subsequent convolution layer, i.e. the net uses a low-level mixture. Therefore, the
mixture still contains noise and the noise is also propagated into the network. MI-net combines the
important image information using high-level features. Therefore, the noise impact can be reduced
at utmost, which increases the segmentation accuracy and robustness. The evaluation with Dice
score and Hausdorff distance on unseen test data varified the theoretical analysis. The MI-net had
the best performance on the Dice scores, also the improvement of the Hausdorff distance by using
MI-net was significant. The compasion of training performance shows that the MI-net still provides
efficient performance compared to the LC-net and the MC-net, although the trainable parameters are
mutiplied. The comparison to our prior work shows that the three proposed networks are feasible and
promising. Especially, the MI-net overperforms the prior approach. Moreover, the new methods are
much easier to be fine-tuned than the prior approach.

The analyse of the balance weight λ shows that the balance weight has more influence on large organs
than small organs. The reason could be that the balance weight is added to the term of boundary
correction. Compared to the large organs, the anatomical boundary of the small organs against organ
size accounts for a greater proportion. Hence, for the small organs, the increase of the class weight
due to the growth of the boundary weight is more significant than the large organs. With increasing
λ, the loss function leans towards the smaller organs. This leads to high accuracy for small organs
and low accuracy for the large organs. This analyse indicates that the loss function can be further
improved in future. Dynamic weight may be introduced to explore the property of λ.

Furthermore, the success in various special unseen clinical cases shows that the proposed approaches
are robust to special clinical cases, which reveals that the proposed methods have high adaptability in
practical application.
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