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ABSTRACT

An objective of pro-activity in dialog systems is to enhance the usability of con-
versational agents by enabling them to initiate conversation on their own. While
dialog systems have become increasingly popular during the last couple of years,
current task oriented dialog systems are still mainly reactive and users tend to
initiate conversations. In this paper, we propose to introduce the paradigm of con-
textual bandits as framework for pro-active dialog systems. Contextual bandits
have been the model of choice for the problem of reward maximization with par-
tial feedback since they fit well to the task description. As a second contribution,
we introduce and explore the notion of memory into this paradigm. We propose
two differentiable memory models that act as parts of the parametric reward esti-
mation function. The first one, Convolutional Selective Memory Networks, uses
a selection of past interactions as part of the decision support. The second model,
called Contextual Attentive Memory Network, implements a differentiable atten-
tion mechanism over the past interactions of the agent. The goal is to generalize
the classic model of contextual bandits to settings where temporal information
needs to be incorporated and leveraged in a learnable manner. Finally, we illus-
trate the usability and performance of our model for building a pro-active mobile
assistant through an extensive set of experiments.

1 INTRODUCTION

Dialog agents are about to become the interface of choice for eyeless interactions. The recent
progress in the different building blocks of conversational agents have started to make such in-
terfaces usable by the general public in large variety of situations. Furthermore, a large set of APIs
has currently been introduced to design task-specific agents through graphical and textual develop-
ment interfaces. Such interfaces allow even a non-expert to design dialog interfaces which is another
reason for the current expansion of such a technology.

The majority of agents developed today assumes a reactive type of interaction (Williams and Young,
2007). Indeed, in a task-oriented setting, the conversation is designed to be initiated by the user. We
believe that the seamless nature of conversational interfaces in larger spectrum of contexts makes
them particularly suitable for proactive service development. More precisely, the agent will have
to infer, regarding a set of observed variables, the pertinence of a given suggestion or conversation
engagement on its own and learn from user feedback. A large set of examples can be envisioned.
For example, a driving assistant could use a voice interface to pro-actively warn about a potential
traffic jam ahead. Similarly, a personal assistant agent could suggest a venue regarding the current
location of its user and his interests.

A challenge for building such an agent is the absence of full feedback; the agent needs to infer the
quality of its pro-active decisions from the partial feedback given by the user. Contextual bandit
(Kakade et al., 2008; Chu et al., 2011) is a particularly appropriate framework to formalize and
develop effective solutions with possible theoretical guarantees in such a setting. While in a con-
ventional supervised learning paradigm, the learner has full access to a dataset where true labels
are provided, in many domains, including many web-based applications, the agent needs to learn
from partial feedback. Online advertising placement and personalized news (Li et al., 2010; Tang
et al., 2014) are important examples of such domains. The typical setting can be summarized in
the following way. First, the agent observes a current context. Then, using this context and other
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source of knowledge (past activities of the user, etc.), the system suggests an action. Finally, the
user chooses to react (or not) to the suggestion. Crucially, the system is only able to learn from the
user reaction to the suggested action. In the context of a pro-active dialog systems, the setting is
comparable. An agent will have to choose the timing and the content of the dialog acts based on (a)
the current perceived context (b) its knowledge about the user (c) the reward function to optimize.
More formally, the purpose of a contextual bandit is to infer a function that maps the observation and
available prior knowledge to the expected reward of a candidate action. Beyond the reward function
learning, the partiality of feedback also leads to an exploration-exploitation dilemma.

A limitation of classic framework of contextual bandit is the hypothesis that the current context is
sufficient support for decision (Lu et al., 2010; Zhou, 2015). As a second contribution, we propose
to incorporate memory to the reward estimation function. Two models are proposed; one with a
selective memory and another with a differentiable attention mechanism as proposed in Perez and
Liu (2016) computed over a, potentially long, history of contexts. As illustration, we show that such
models are particularly meaningful for personal assistance use-cases.

Roadmap: Section 2 summarizes the state of the art for incrementality and pro-activity in dialog
systems. Section 3 recalls the formalization of contextual bandit and some of its current challenges.
Section 4 details our proposed models of contextual bandits with differentiable memorization ca-
pabilities. Section 5 describes our exploration policies and their usage in the setting of pro-active
dialogs. Finally, Section 6 presents experiments conducted in the domain of personal assistance for
mobility and situated suggestions.

2 PRO-ACTIVE DIALOG ENGAGEMENT

In this section, we address pro-activity and its links to incrementality in dialog systems. After
defining the terms we give an overview of both tasks. In the last part, we address evaluation in such
a setting of partial feedback.

2.1 DEFINITIONS

The problem of pro-active conversation is often studied from two different angles. On a first hand,
the question of incrementality studies the usage of spontaneous dialog act emission as part of an
active comprehension mechanism (Jonsdottir et al., 2008). Indeed, while maintaining a distribution
over latent variables composing the state of the current dialog, the dialog system faces three basic
choices a) let the user continue to speak b) repeat a term said by the user for implicit confirmation
c) ask the user to repeat for disambiguation or explicit confirmation. These problems are currently
solved using rule-based systems as in the work of Baumann et al. (2011) or have been formalized
as a delayed reward control tasks that can be solved using reinforcement learning as in the work of
Khouzaimi et al. (2016).

On the other hand, pro-active interaction is defined as the faculty of a conversational agent to spon-
taneously address the user. Using a variety of observed and inferred variables from the current
perceived context or prior knowledge available, the conversational agent needs to choose either to
continue to observe silently or to initiate a conversation regarding a certain subject (like suggesting
a task to complete, display a reminder or propose a recommendation). In the context of an eyeless
interaction, such capability is crucial yet under-studied. To our knowledge, no work of that kind
has been carried out specificly in the context of dialog systems. In the next section, we address the
questions of partial feedback and exploitation-exploration which are central to this task.

2.2 CHALLENGES

The first challenge of pro-active conversation systems is to develop the capability to rely on partial
feedback. Assuming a large panel of available subjects to address and variety of possible recom-
mendations to make, supported by a potentially large panel of decision support variables, the system
needs to leverage on a partial feedback that will be provided by the user. Indeed, given a proposition
made by the agent, the user will only provide a feedback for the given proposition. In such a set-
ting, a proactive conversational agent needs to solve a so-called exploration/exploitation dilemma.
On one hand, the agent needs to leverage on the already gathered feedback to choose propositions
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that maximize the current expected reward. On the other hand, the agent needs to explore, i.e. to
choose under-investigated propositions to gather meaningful information about the user preferences
and profile.

Another difficulty is the necessity of the learnt decision model to incorporate potentially long term
information from the history of client interactions, activities and their potential relationship to avail-
able prior knowledge. In such situations, using a learnable model with fixed-length memory like a
Long Short Term Memory (Hochreiter and Schmidhuber, 1997) is challenging. To cope with this
difficulty, attention-based models (Bahdanau et al., 2014) have been suggested in the context of
Natural Language Understanding. Then, this proposition has been extended to more general cases
of Markovian control. In such settings, memory enhanced controllers has been developed in a full
reinforcement learning setting that features (delayed) rewards for chosen actions.

In the next section, we propose to formalize the problem of pro-activity in conversational system
with a memory-enhanced contextual bandit model. The purpose is to respond to the dual problem
of (1) long term dependencies and (2) partial feedback without the necessity of credit assignment
learning.

3 CONTEXTUAL BANDIT

Formally, a contextual bandit algorithm A proceeds in discrete trials t = 1,2,3, . . . ,T . In trial t:

1. The algorithm observes the current user ut and a set At of arms or actions together with
their feature vectors xt,a for a ∈ At . The vector xt,a summarizes information of both the
user ut and arm a, and will be referred to as the context.

2. Based on observed payoffs in previous trials, A chooses an arm at ∈ At , and receives payoff
rt,at whose expectation depends on the context xt,at .

3. The algorithm improves its arm-selection strategy with the new observation, (xt,at ,at ,rt,at ).
It is important to emphasize here that no feedback (i.e., no payoff rt,a) is observed for
unchosen arms a 6= at .

In the process above, the total T -trial payoff of A is defined as PA(T ) = ∑
T
t=1 rt,at . Similarly, we

define the T -trial payoff of an oracle that always chooses an arm with the best expected payoff
as PA∗(T ) = ∑

T
t=1 rt,a∗t , where a∗t is the arm with maximum expected payoff at trial t. The goal

is to design A so that the expected total payoff E[PA(T )] is maximized. Equivalently, we may
find an algorithm A whose expected regret with respect to the optimal arm-selection strategy A∗
is minimized. Here, the expected T -trial regret RA(T ) of algorithm A is defined formally by

RA(T ) = E [PA∗(T )−PA(T )] . (1)

An important simplification of the general contextual bandit problem is the classic K-armed bandit
in which (a) the arm set At remains unchanged and contains K arms for all t, and (b) the user ut (or
equivalently, the context (xt,1, . . . ,xt,K) ) is the same for all t. Since both the arm set and contexts
are constant at every trial, they make no difference to a bandit algorithm, and so we will also refer
to this type of bandit as a context-free bandit.

Two limitations can be mentioned to the classic framework of contextual bandit. On a first hand,
we might need to model potentially long history of interactions as part of the decision support. For
example, in the context of a personal assistant a conversation engagement can be triggered regarding
a very recent event like the time-matching of a calendar event or the current GPS location of the
user. However, longer patterns from series of events occurred through time can motive a suggestion.
In such situation, it is difficult to define a priori the necessary time windows of observations to
consider. On the other hand, we might explicitly incorporate previous success into an episodic
memory and used it as decision support to the reward estimation function. In the next section,
we address such problem by proposing learnable parametric reward function that incorporates a
differentiable memorization mechanism.
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Figure 1: Convolutional Selective Memory Network.

4 MEMORY ENHANCEMENT

Memory-enhanced neural networks have recently regained popularity in general reinforcement
learning (Hausknecht and Stone, 2015; Sorokin et al., 2015; Oh et al., 2016). More precisely, re-
current neural networks have been used to automatically accumulate observations through time and
learn to use a memory to support decision making in a differentiable manner. To our knowledge,
such a development is yet to be pursued in the specific domain of contextual bandits. In this section,
we propose two reward function models that incorporate such a memorization capability.

4.1 CONVOLUTIONAL SELECTIVE MEMORY NETWORK

Our first model is depicted in Figure 1. The Convolutional Selective Memory Network, CSMN,
merges three information sources. First, Xt and Ut correspond respectively to the features of the
context Xt and the user Ut observed both at time t. In addition, a record of the last K successful
engagements of the agent with the corresponding user are stored into a list of memory blocks Mut =
{m1, . . . ,mK}. Such memory blocks corresponds to (at most) K latest contexts Xs, (s < t) for which
the rewards rs for Ut have been greater than a threshold γ ∈ R.

A 1-dimensional convolutional layer followed by an average pooling layer is used to aggregate
meaningful higher level features from these past successful contexts. The model architecture is
inspired by Kim (2014). Let mi ∈ Rk, k be the k-dimensional vectors describing the individual
contexts. The memory is represented as

m1:n = m1⊕m2⊕ . . .⊕mn, (2)

where ⊕ is the concatenation operator. Let mi:i+ j refer to the concatenation of observations
mi,mi+1, . . . ,mi+ j . A convolution operation involves a bank of filters. Each filter θ ∈Rhk is applied
to a window of h observations to produce a new feature. For example, a feature ci is generated from
a window of stored observations mi:i+h−1 by

ci = f (θ T mi:i+h−1 +b), (3)

with b ∈ R is a bias term and f is a non-linear function such as the hyperbolic tangent. This filter is
applied to each possible window of observations stored into the memory {m1:h,m2:h+1, ...,mn−h+1:n}
to produce a feature map

c = [c1,c2, ...,cn−h+1], (4)

with c ∈ Rn−h+1. We then apply an average pooling operation over the feature map and take the
average value ĉ = 1

n−h+1 ∑
n−h+1
i=1 ci as the feature corresponding to this particular filter. The model

can be interpreted as a late fusion of old contexts with a current candidate context and user features.
The drawback of late fusion is that the memories are not specifically selected regarding the current
context. To this purpose, we propose an adaptation of a recently proposed attention-based model
presented in the next section.

4.2 CONTEXTUAL ATTENTIVE MEMORY NETWORK

Our second model is strongly inspired by the Gated End-to-End Memory Network architecture,
introduced by Perez and Liu (2016) as an extension to the work of Sukhbaatar et al. (2015a). It
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Figure 2: Contextual Attentive Memory Network with 3 hops.

consists of two main components: supporting memories and expected reward prediction. Supporting
memories are in turn comprised of a set of input and output memory representations with memory
cells. The input and output memory cells, denoted by mi and ci, are obtained by transforming the
input context x1, . . . ,xn (i.e a set of observations) using two embedding matrices A and C (both of
size d×|V | where d is the embedding size and |V | the observation size) such that mi = AΦ(xi) and
ci =CΦ(xi) where Φ(·) is a function that maps the input into a vector of dimension |V |.
Similarly, the current context x concatenated with the information regarding the user are encoded
using another embedding matrix B ∈ Rd×|V |, resulting in a context embedding u = BΦ(q). The
input memories {mi}, together with the embedding of the context u, are utilized to determine the
relevance of each of the history embedded into the memory blocks in the context, yielding in a vector
of attention weights

pi = softmax(u>mi), (5)

where softmax(ai) =
eai

∑i eai
. Subsequently, the response o from the output memory is constructed

by the weighted sum:

o = ∑
i

pici. (6)

For more difficult tasks requiring multiple supporting memories, the model can be extended to in-
clude more than one set of input/output memories by stacking K memory layers, often called hops,
so that the (k+1)th hop takes as input the output of the kth hop:

Tk(uk) = σ(W k
T uk +bk

T ) (7)

uk+1 = ok�Tk(uk)+uk� (1−Tk(uk)), (8)

where � denotes the Hadamard-product, σ(x) = (1+ e−x)−1, W k
T and bk are the hop-specific pa-

rameter matrix and the bias term for the kth hop, and Tk(x) is the transform gate for the kth hop.

Two types of weight tying schemes Sukhbaatar et al. (2015b) have been investigated for W k
T and bk

T :

1. Global: all the weight matrices W k
T and bias terms bk

T are shared across different hops, i.e.,
∀k, l ∈ {1, . . . ,K}W k

T =W l
T and bk

T = bl
T .

2. Hop-specific: each hop k has its specific weight matrix W k
T and bias term bk

T , and they are
optimized independently.

As the final step, the prediction of the expected reward r for the input context, is computed by

rt =
(

uK
>W

′
)
,

where W
′ ∈ Rd is part of the parameters for the model to learn. Such enhancement allows to deal

with the non-Markovian hypothesis in the context definition. In Section 6 the proposed model is
used to implement a goal-oriented proactive dialog agent.
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Algorithm 1 Thompson Sampling
Define D = {}
for t : 1, . . . ,Tmax do

receive context xt
Draw θ from posterior distribution P(θ |D)
Select arm at = argmaxa E(r|xt ,a,θt)
Receive reward rt
D = D∪ ({xt ,at ,rt})

end for

5 EXPLORATION POLICIES

A key challenge in bandit problems is the optimal balancing of exploration and exploitation. To
minimize the regret in Eq. 1, an algorithm A exploits its past experience to select the arm that
appears the best. On the other hand, this seemingly optimal arm may in fact be suboptimal, due
to incompleteness of A’s knowledge. In order to make informed decisions, A has to also explore
by sometimes choosing seemingly suboptimal arms in order to gather more information about them
(c.f., step 3 in the bandit process defined in the previous subsection). This exploration can increase
short-term regret since some suboptimal arms may be chosen, but on the other hand, obtaining
information about the arms’ average payoffs will later enhance A’s capability to reduce long term
regret. Clearly, neither a purely exploring nor a purely exploiting algorithm works best in general
but a good trade-off is needed.

In this work, we use Thompson sampling which is a popular Bayesian heuristic to achieve a success-
ful exploration/exploitation trade-off Chapelle and Li (2011); Agrawal and Goyal (2013). Let D be
the set of past observations (xt ,at ,rt), where xt is the context in which the arm at was pulled yielding
the reward rt . Thompson sampling assumes a likelihood function P(r|a,x,Θ) paramerized by Θ for
the reward. If we denote the true parameters by θ ∗, we would ideally choose an arm that maximizes
the expected reward argmaxa E[r|a,x,θ ∗], but since we dont know the true parameters we describe
our belief about it by a prior distribution P(Θ), and then based on the observed data D, update this
belief by the Bayes rule P(Θ|D) ∝ P(Θ)∏

T
t=1 P(rt |xt ,at ,Θ). Now if we just wanted to maximize

the immediate reward, we would choose an arm that maximizes E[r|a,x] =
∫

E(r|a,x,Θ)P(Θ|D)dΘ,
but in an exploration/exploitation setting, Thompson sampling advises to select an arm a according
to its probability of being optimal, i.e., with probability

∫
I[E(r|a,Θ) = argmax

a′
E[r|a′,Θ]]P(Θ|D)dΘ. (9)

In practice, we do not need to calculate the integral but it suffices to draw a random parameter θ from
posterior distribution P(Θ|D) and then select the arm with the highest expected reward E[r|a,x,θ ].
The general framework of Thompson sampling is described in Algorithm 1.

5.1 GOAL-ORIENTED PROACTIVE DIALOG POLICY

In a pro-active dialog system, an agent has to periodically choose whether and what to interact to
the user at time t. Its choices are picked among elibigible actions over the current context xt,at ∈ X
and a history of context variables x1, . . . ,xt−1 ∈ H. To do so, the agent needs to learn a function
fθ : (H,XA)→ R which estimates the expected reward associated to a candidate contextualized
action and memorized history.

Following the paradigm of contextual bandits, the agent will estimate the expected reward of an
action through the feedback of the user. The goal is to accumulate positive rewards for the chosen
conversational engagements. Feedback can be explicit like a positive or a negative response, implicit
or even no response at all. An example of an implicit positive feedback might be the observed change
in travel trajectory in the case of the suggestion of place during a travel. In the next section, we give
a detailed description of the experimental setting and evaluation of our models.

6



Under review as a conference paper at ICLR 2018

Table 1: Top representative bi-grams for a set of 15-topics extracted from reviews. Each topic
corresponds to a latent centre of interest of the user and observed description of the places.

dim sum , late night , 20 minutes , took long , large groups , wednesday night , sweet potato fries , potato fries , sweet potato , beer pong
happy hour , russ daughters , tables available , drinks happy hour , drinks happy , group people , lyft credit , open table , portions huge , lamb shank

live music , beers tap , gluten free , little italy , small cozy , cheap drinks , main course , drinks bar , cooked perfectly , group friends
saturday night , dining experience , prix fixe , selection drinks , stay away , small portions , beca friend , huge selection , portions small , sat bar

french toast , date night , hip hop , don come , outdoor seating , cozy little , second floor , date spot , ve tried , marinara sauce
east village , dining area , beer bar , old school , financial district , statue liberty , long wait , craft beer , goat cheese , hole wall

selection beers , small plates , cool spot , grab meal , drinks music , healthy lunch , fresh air , soup dumplings , lobster roll , breath fresh
fried chicken , hang friends , tuna melt , peanut butter , grab drink , cocktail bar , free wifi , week lunch , eggs benedict , cheese plate

sitting bar , cup coffee , bloody mary , took care , little slow , fish dishes , makes feel , cold brew , course tasting , wide variety
avocado toast , low key , chocolate cake , ve seen , happy hour , fried egg , large group , new people , meet new , ho ketchup

coffee shop , free lyft , bar bartender , pasta dish , fish chips , cool atmosphere , cute little , atmosphere music , bartender drinks , brooklyn bridge
happy hour , wine list , went lunch , friday night , hour specials , happy hour specials , people watching , bars city , bread pudding , people don

10 minutes , bar tenders , dining room , bar area , fun atmosphere , minutes later , atmosphere drinks , soup salad , birthday party , steak sandwich
ice cream , just right , make feel , feel welcome , little cafe , wonderful experience , did job , mac cheese , 15 20 , bar bit

beer selection , dive bar , wine bar , wine selection , free lyft , neighborhood bar , irish pub , irish irish , little expensive , walked away

6 EXPERIMENTS

In this section, we describe the simulation platform and the experiments we developed to study the
performance of the proposed models.

6.1 MOBILITY AGENT PLATFORM

The overall context of our simulations is situated recommandations. The purpose of the platform
is to simulate the spontaneous engagement of a personal assistant with its user regarding situated
recommandations near its geographic location. The platform simulates a city where a user follows a
series of trajectories composed of waypoints. Situated contextual observations are used to simulate
places of interest that will be suggested to user when they arrive at their vicinity. In summary, the
goal of the agent is to propose actions regarding the inferred latent variables of the user representing
its interests.

In order to enrich the simulation platform with realistic elements of information, we extracted from
Google Map Place API 6000 reviews from the city of New York corresponding to four types of
places: restaurant, bar, pub, cafe, for a total of 5000 places. A topic model based on Latent Dirich-
let Allocation (Blei et al., 2003) was computed from these reviews. The topic distributions were
used (1) as latent variable representing the user interests and (2) as latent variable representing the
places. In order to leverage on reviews to extract meaningfull topics to characterize different types
of places, we suppress to the reviews a lexicon of emotion related words and consider only 2-grams
as vectorization of the reviews. Table 1 gives a sample of the latent topics extracted.

The topic model is used to sample keywords that act as observations of places. Table 2 gives ex-
amples of places with their corresponding latent topics and observed keywords. A simulated user
is defined by a distribution over the latent topics which correspond to its centre of interest. For
the places, a distribution of latent topics is drawn from the topic model and a series of observable
keywords are sampled from the LDA topic model accordingly. In such a way, the personal assistant
has access to a set of topic related keywords of each place of the simulated city. Its goal is to infer
the latent centres of interest of the user by recommanding corresponding places as the user passes
nearby. The reward r associated to a user latent centre of interest vector u and the latent topic of a
given place x is computed by: r = uT x+ε with ε ∼N (0, σ2) and σ ∈R is the predefined variance
parameter of a Gaussian distributed noise.

Algorithm 2 describes the course of a simulation. The users performs a series of travels composed
with waypoints into the city. At each waypoint of the trajectory, the agent has to decide whether
to make a recommandation regarding a place nearby the current location of the user. If a recom-
mandation is decided, the corresponding r is computed and presented as instantaneous reward to the
personal assistant. Finally, the agent learns from its experience the expected reward of such context.
In practice, such reward could be formulated in a real environment as the explicit acceptance by
the user or refusal. The addition of the noise to the reward function helps to simulate the challenge
of interpretation of a user feedback in a realistic setting. In summary, the dialog act of the agent
consists of proposing a place near the current user position.
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Algorithm 2 Simulation Dynamics
H = {}
for e : 1, . . . ,TotalNumberO f E pochs do

sample user ue ∈U
sample trajectory p1, . . . , pT
for t : 1, . . . ,T do

extract the n places (a1, . . . ,an) closest to pt
Draw θ from Thompson sampling
Choose a∗ = argmaxai

fθ (ue,ai)
Observe reward rt
H = H

⋃
{(ut ,a∗,rt)}

end for
end for

Table 2: Four places with main latent topics and observed sampled keywords.
Topics Keywords

8 bloody mary canned tuna cheap beer chips typical nyc
come friends cool spot east village french toast gi-
gantic portion gluten free happy hour house wine
kind hospitality little expensive olive oil ordered burger out-
door seating sandwich steak salad second floor spot brunch
standard bar strawberry shake usual bar vegetarian options
veggie burger

16 attentive drinks awesome spot bar bit cafe mocha
coffee shop cool bar fish dishes french toast li-
brary hotel vacation long wait pretty expensive relaxed bar
scrambled eggs seating inside selection wine spot city
sunday night water refills went sunday

11 appetizer entree bars city beer selection beet relish
cozy spot dance floor downtown tavern fresh squeezed
fried egg jazz band large group red wine small beer
small space steak tartare took forever usually crowded
ve nyc vegan options went week wine bars

6 & 8 atmosphere pleasant authentic japanese bar big bath-
rooms clean cheese steak craft beer dim sum drinks decent
free wifi hang friends happy hour little gem lot fun
pint guinness poached egg salad pattern did seat bar
seating available soup dumplings sunday night

For the experiments, 500 places are sampled over a squared area composed with 300 waypoints.
User’s trajectories are computed on-the-fly over sampled departure and arrival locations using a
shortest path algorithm. The nearby candidate locations at each waypoint are determined using a
fixed radius around the user location. A total of 50 users have been sampled for each experiment.
Finally, each experiment consists in a total of 1000 trajectories which correspond to the number
of epochs. Each experiment is relaunched 5 times for variance estimation. Regarding the learning
algorithms, hyper-parameters have been determined by cross-validation. First, the CSMN model
uses 64 filters of width 3 in its convolution layer and 4 hidden layers in its fully connected part with
100 hidden units each. Then, the CAMN model uses 3 hops with an embedding size of 30. The
hop-specific weight tying schema has been adopted. The last part of the section presents a series of
experimental results of the proposed models against a state of the art contextual neural network and
an random policy.

6.2 RESULTS

Figure 3 plots the cumulative sum of rewards for the four considered methods. Regarding the base-
lines, Fully Connected Neural Network, FFCN, is a multi-layer perceptron which merges the context
variable xt and the user features u into the input layer of the model and computes the expected reward
of this corresponding context. Two main observations can be provided.

Selective memory mechanism improves performance over neural contextual bandit. Indeed,
having a fixed sized memory over the past successfully selected places is a useful addition as decision
support. The convolutional memorization mechanism seems effective to such purpose.

8



Under review as a conference paper at ICLR 2018

0 1000 2000 3000 4000 5000
steps

500

0

500

1000

1500

2000

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

s

CAMN
CSMN
FCNN
Random

Figure 3: Mean cumulative sum of rewards.

Attention-based models of the contextual memory bandit is beneficial. The capability to have
an unbounded memory with a differentiable attention mechanism improves the observed cumulative
rewards.

7 CONCLUSION AND FUTURE WORK

In this paper we present a novel model for designing pro-active dialog agents. The model is in
charge of deciding the timing and the nature of an interaction. We propose to formalize this problem
using the framework of contextual memory bandit which is an extension of the classic contextual
bandit formalism with the capability of handling variable length history through the usage of a
differentiable attention model. We experiment our models in the context of a simulated platform of
personal agent which is in charge of emitting spacio-temporally motivated recommendations. We
believe this framework constitutes a strong baseline for future research in the domain of pro-active
dialog agents as conversational interfaces become popular. Finally, we plan two research topics for
future work. On the first hand, we think the hypothesis of contextual bandit can be questioned.
Indeed by allowing exploration, the agent might end up changing the preferences of its user. In
fact, this stationary hypothesis over the latent variables describing the user, but also the places, are
limitation that we plan to address. On the other hand, we want to integrate external knowledge base
as part of the memory of our decision models.
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