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Abstract. Accurate and reproducible measurement of the Angle of Pro-
gression (AoP) from intrapartum ultrasound is critical for modern labor
management, yet manual annotation is hindered by significant intra- and
inter-observer variability and workflow inefficiencies. To address this, we
propose a fully automated, two-stage deep learning pipeline for precise
landmark localization. The first stage employs a multi-model ensemble of
U-Net architectures with diverse backbones (EfficientNet-B4 and -B7),
trained under a Mean Teacher semi-supervised framework to leverage
both labeled and unlabeled data. This stage generates a robust coarse
prediction by performing a per-keypoint weighted average of the fused
heatmaps. In the second stage, a dedicated Res-Net-18-based regression
model refines the position of each landmark by predicting a precise off-
set from its coarse location on a localized image patch. Our integrated
approach, trained on a combined dataset from the 2024 and 2025 IUGC
challenges, demonstrates highly competitive performance, achieving a
Mean Radial Error (MRE) of 12.7888 pixels and a mean Absolute Pa-
rameter Difference (APD) of 4.4581 degrees for the AoP on the test set.
This automated framework promises to enhance diagnostic consistency
and streamline clinical workflows, aligning with the WHO’s vision for
improved intrapartum care.

Keywords: Intrapartum Ultrasound - Angle of Progression (AoP) -
Two-Stage Model - Semi-Supervised Learning.

1 Introduction

Effective intrapartum care, crucial for maternal and fetal well-being, relies on
accurate labor monitoring. The World Health Organization (WHO) has recently
advanced this effort with its Labour Care Guide (LCG) [10], which promotes
standardized, evidence-based assessment. Within this framework, intrapartum
ultrasound is an indispensable tool for evaluating fetal head progression, a rec-
ommendation strongly supported by the International Society of Ultrasound in
Obstetrics and Gynecology (ISUOG) [4]. A cornerstone of modern ultrasound-
based labor assessment is the measurement of the Angle of Progression (AoP),
a key biometric calculated from three anatomical landmarks: two points on the
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pubic symphysis (PS1, PS2) and a point on the fetal head (FH1). The AoP
provides critical, quantitative insight into the fetal head’s descent through the
birth canal, directly informing clinical decisions regarding the mode of delivery
and the timing of interventions.

Despite its clinical utility, the manual annotation required to measure AoP
presents a significant bottleneck in busy clinical settings. This process is not only
time-consuming but also highly dependent on the operator’s experience, suffer-
ing from substantial intra- and inter-observer variability that compromises its
reliability and reproducibility [8]. This challenge underscores an urgent need for
an automated, standardized solution that can provide objective and consistent
AoP measurements.

To achieve such automation, deep learning (DL) has become the mainstream
approach for landmark localization in medical imaging. While initial DL methods
based on direct heatmap regression have shown promise [9/12], they often suffer
from sensitivity to image quality variations and struggle with large coordinate
ranges. In response, more sophisticated coarse-to-fine and cascaded regression
strategies were developed to decompose the localization task into more manage-
able steps, thereby improving precision [3]. However, a key limitation persists
across these advanced methods: they are typically supervised and thus fail to
leverage the vast amounts of unlabeled data common in the medical domain.
The framework proposed in this paper is designed specifically to address this
limitation. The key contributions are as follows.

1. We introduce a robust two-stage, coarse-to-fine pipeline that synergistically
combines the global context awareness of a first-stage model with the high-
precision local analysis of specialized second-stage models.

2. We are the first to apply a multi-model, semi-supervised ensemble for the
coarse localization stage. By integrating two U-Net models with diverse Effi-
cientNet backbones [15] and training them within a Mean Teacher framework
[16], our method effectively utilizes both labeled and thousands of unlabeled
images to enhance generalization and robustness.

3. We demonstrate the efficacy of our complete pipeline through extensive ex-
periments on a large-scale, combined dataset from the 2024 and 2025 IUGC
challenges, achieving state-of-the-art performance.

4. The proposed automated framework offers a practical and powerful solution
for standardizing AoP measurement, presenting a significant step towards
the technical implementation of the WHO’s LCG and the broader biomedical
objective of safer intrapartum care.

The remainder of this paper is organized as follows. Section 2 reviews related
work in landmark localization and semi-supervised learning. Section 3 details our
proposed two-stage methodology. Section 4 presents our experimental setup and
results, including comprehensive ablation studies. Finally, Section 5 concludes
the paper and discusses future work.
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2 Related Work

This section reviews the key areas of research that form the foundation of our
work: deep learning-based landmark localization, semi-supervised learning in
medical imaging, and advanced strategies for improving localization accuracy.

2.1 Deep Learning for Landmark Localization

Automated landmark localization is a fundamental task in medical image analy-
sis. Traditional machine learning methods have largely been superseded by deep
learning approaches, which have demonstrated superior performance. The dom-
inant paradigm for this task is heatmap regression [9]. In this approach, instead
of directly regressing the coordinates of a landmark, the network is trained to
predict a 2D Gaussian-like heatmap for each keypoint, where the peak of the
heatmap corresponds to the landmark’s location. This method provides richer
supervision and has been shown to be more robust to initialization and opti-
mization challenges than direct coordinate regression. Seminal works, such as
the Stacked Hourglass network [9] for human pose estimation, established the
efficacy of this approach. Subsequently, architectures like U-Net [12], originally
designed for segmentation, have been widely adapted for heatmap regression in
medical imaging due to their powerful encoder-decoder structure and effective
use of skip connections to preserve spatial details. While U-Net [12] remains a
strong baseline, recent architectures such as TransUNet [I] have started incor-
porating Transformers to better capture long-range dependencies. To bridge the
gap between heatmaps and coordinates, methods like Integral Pose Regression
[14] have also proposed differentiable operations for end-to-end training. Never-
theless, these methods are primarily supervised and their performance is tied to
the quantity of annotated data.

2.2 Semi-Supervised Learning in Medical Imaging

The acquisition of large, expertly annotated medical datasets is a significant
bottleneck. Semi-supervised learning (SSL) offers a compelling solution by en-
abling models to learn from a small set of labeled data alongside a much larger
set of unlabeled data. Consistency regularization has emerged as a leading SSL
strategy. The core idea is that a model’s prediction should remain stable (con-
sistent) under different perturbations of its input or its own parameters. The
Mean Teacher framework [I6] is a state-of-the-art consistency-based method
that has shown great success in medical imaging [I7]. It maintains two models:
a student model, which is trained via standard backpropagation, and a teacher
model, whose weights are an exponential moving average (EMA) of the student’s
weights. The student is then encouraged to produce predictions consistent with
those of the more stable teacher model on unlabeled data, typically by mini-
mizing the Mean Squared Error (MSE) between their outputs. This EMA-based
approach provides a more stable pseudo-labeling target than self-ensembling
methods. Building upon this, recent approaches like FixMatch [I3] have further
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simplified the SSL framework. Moreover, the inherent robustness of consistency-
based methods makes them well-suited for medical data, which often suffers from
noisy labels [18], a challenge implicitly addressed by our Mean Teacher approach.

2.3 Advanced Strategies for High-Precision Localization

To push the performance boundaries of landmark localization, several advanced
strategies have been proposed. One powerful paradigm is the coarse-to-fine, or
two-stage, approach. This strategy decomposes the difficult task of global local-
ization into two simpler steps: first, a coarse prediction to identify the general
region of interest, and second, a refined prediction within that localized region.
This cascaded approach, rooted in early works on pose regression [3], effectively
manages large coordinate ranges and allows a specialized refinement model to
focus on local details, leading to higher precision [I5]. Another widely adopted
technique for enhancing model robustness and accuracy is ensembling. By com-
bining predictions from multiple diverse models, the variance of the individual
models’ errors can be reduced. A common and effective ensemble strategy in-
volves training models with the same architecture but different backbones [2],
such as EfficientNet-B4 and -B7 [I5]. Fusing their predictions, for instance by
averaging their output heatmaps, often yields a more reliable result than any
single model could achieve alone. Our work integrates both of these advanced
strategies into a unified, semi-supervised framework.

3 Methodology

To achieve accurate and fully automated measurement of the Angle of Pro-
gression (AoP), we propose a novel two-stage, semi-supervised ensemble frame-
work, illustrated in Fig. [I} Our pipeline is divided into two main stages: Semi-
Supervised Ensemble Coarse Localization and Local Offset Refinement. In the
first stage, an ensemble of models processes the full ultrasound image to gener-
ate a Fused Heatmap, from which initial Coarse Coordinates (P) are extracted.
Subsequently, in the second stage, specialized refinement networks analyze local
image patches (C) centered at these coarse predictions to regress precise Co-
ordinate Offsets (4). These offsets are then added to the coarse coordinates to
produce the final Refined Coordinates (R). The following subsections detail each
component of this pipeline.

3.1 Semi-Supervised Ensemble Coarse Localization

Network Architecture. Our coarse localization models are built upon the U-
Net architecture [12], a fully convolutional network renowned for its efficacy in
biomedical image analysis. The U-Net consists of a contracting path (encoder)
to capture context and a symmetric expanding path (decoder) to enable pre-
cise localization. To further enhance the feature extraction capabilities of our
models, we employ powerful backbones from the EfficientNet family [15], which
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Fig. 1. Overview of our proposed two-stage framework for automated landmark local-
ization.

are pre-trained on the ImageNet dataset. To foster model diversity, a critical
component for effective ensembling, we trained two independent U-Net mod-
els utilizing EfficientNet-B4 and EfficientNet-B7 as their respective encoders.
Each model outputs a 3-channel heatmap of size 128 x 128, where each channel
corresponds to one of the three target landmarks (PS1, PS2, FH1).

Semi-Supervised Training with Mean Teacher. To effectively utilize
the large volume of available unlabeled data, each U-Net model was trained
within the Mean Teacher semi-supervised framework [16]. This framework con-
sists of two identical models: a student model and a teacher model. The student
model, with weights 0; at training step t, is updated using standard backprop-
agation. The teacher model, with weights 6, is not trained directly via back-
propagation; instead, its weights are updated as an Exponential Moving Average
(EMA) of the student’s weights:

0; = a@;_l + (1 - Oé)et,

where « is a smoothing coefficient, or EMA decay rate. This EMA update makes
the teacher model a more stable and reliable ensemble of the student’s own past
states.

The total loss function L for the student model is a combination of a super-
vised loss L, on labeled data and an unsupervised consistency loss Lyngup o1
unlabeled data:

L = Lgyp + w(t) - Lunsup-
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where w(t) is a time-dependent weighting factor that balances the two losses.
The supervised loss Lgy, is a Weighted MSE applied to the labeled batch,
designed to focus the model on the keypoint peaks. It is defined as:

N
1 i i i
Loy = 5 D HG) - (Hiy — H)™
i=1

where Hp,.q and Hy; are the predicted and ground-truth heatmaps, respectively,
and ~ is a focusing parameter (set to 2 in our experiments).

The consistency Lynsup enforces that the student model’s prediction on a
strongly-augmented unlabeled image, denoted as f(z, ;, 0;), should be consistent
with the more stable teacher model’s prediction on a weakly-augmented version
of the same image, f(z,;,0;). The loss is calculated as the MSE between the
two outputs, but only for pseudo-labels where the teacher’s confidence is high

(i.e., the maximum value of the teacher’s heatmap exceeds a threshold 7):
M
Lunsup = 77 2 M; - 1@, 5,00) = f(@a, 6115,
j=1

where M is a mask that is 1 if max(7 (f(2y,;,0;))) > 7 and 0 otherwise.

The consistency weight w(t) is gradually increased during training using a
sigmoid ramp-up function to allow the model to learn from labeled data first
before introducing the unsupervised signal.

Ensemble Strategy for Inference. During inference, we leverage the di-
versity of the two trained models to produce a single, highly robust prediction.
For a given input image I, we obtain the predicted heatmaps Hp4 from the
EfficientNet-B4 model and Hpg7 from the EfficientNet-B7 model. The final fused
heatmap, Hiused, is generated by a per-keypoint weighted average of these two
heatmaps:

Hpysed,k = WBak - Hpa +wpr k- Hpr k-

where k € {PS1,PS2, FH1} denotes the keypoint channel, and the weights
wpa,,r and wpr i are hyperparameters determined based on the individual per-
formance of each model on the validation set for that specific keypoint. This
strategy allows us to capitalize on the strengths of each model for each land-
mark, resulting in a superior coarse localization.

3.2 Local Offset Refinement

While the first stage provides a robust global localization, its output resolution
may not be sufficient for achieving the highest possible precision, which is critical
for accurate AoP calculation. To address this, we introduce a second refinement
stage that operates on high-resolution local patches, a strategy proven effective
in high-precision localization tasks [3[I5]. This coarse-to-fine approach allows a
specialized model to focus on fine-grained local details without being distracted
by the complexity of the entire image.
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Patch Extraction. For each of the three landmarks (PS1, PS2, and FH1),
we use its coarse coordinate (z.,y.), predicted by the ensemble model in Stage
1, as a center point. A high-resolution image patch is then cropped from the
original, full-resolution ultrasound image, centered at (z.,y.). To handle cases
where the coarse prediction is near the image border, we employ zero-padding
to ensure that all extracted patches have a consistent, predefined size. Based on
our experiments, a patch size of 128x128 pixels was found to provide a robust
balance between local detail and sufficient context for all three landmarks.

Refinement Network Architecture. Our refinement network is designed
to be lightweight yet powerful enough for the local regression task. We employ
a ResNet-18 architecture [5], pre-trained on ImageNet, as the feature extractor.
We removed the final average pooling and fully-connected classification layers
from the standard ResNet-18. In their place, we appended a custom Multi-Layer
Perceptron (MLP) regression head. This head consists of a global average pooling
layer, a fully-connected layer with 256 neurons and ReLU activation, a Dropout
layer with a rate of 0.5 for regularization, and a final fully-connected layer that
outputs a 2-dimensional vector representing the predicted offset.

Learning Objective and Loss Function. The objective of each refine-
ment network is to learn a mapping from an input image patch P to a precise
coordinate offset vector (Az, Ay). This offset represents the displacement from
the coarse prediction (z.,y.) to the ground-truth landmark position (z,t,y,t).
To make the learning target independent of the patch size, the ground-truth
offset is normalized by the patch dimension Spatch:

label — <xgt — %o Yt T y) .
Spatch Spatch

The network is trained to minimize the MSE between its predicted normalized
offset and the ground-truth label. This loss function effectively penalizes de-
viations in the predicted offset, driving the model to learn a highly accurate
local correction. We trained a separate, specialized refinement model for each
of the three landmarks, allowing each model to learn the specific local features
associated with its target.

4 Experiments and Results

To validate the efficacy of our proposed framework, we conducted a series of
comprehensive experiments. This section is structured as follows: First, we de-
scribe the datasets, evaluation metrics, and our implementation details. Second,
we present a thorough ablation study to dissect the individual contribution of
each component within our pipeline—namely, semi-supervised learning, model
ensembling, and the two-stage refinement. Finally, we report the performance of
our complete, optimized model on the official IUGC 2025 test set and compare
it against the provided baseline to demonstrate its state-of-the-art capabilities.
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4.1 Dataset and Evaluation Metrics

Datasets. The datasets used in our experiments were constructed from the
official data of the 2024 and 2025 IUGC challenges. The labeled dataset for our
study was formed by combining the labeled sets from both challenges, resulting in
a total of 2875 images with corresponding ground-truth coordinates for the three
landmarks (PS1, PS2, and FH1). From this combined labeled set, we performed
a fixed, stratified split, allocating 2500 images for training and reserving the
remaining 375 images as our validation set for hyperparameter tuning and model
selection. Additionally, we utilized 4787 unlabeled images from the 2025 TUGC
challenge for consistency regularization within our semi-supervised framework.

Evaluation Metrics. We use two primary metrics to assess model perfor-
mance. The Mean Radial Error (MRE), also known as the mean point distance,
calculates the average Euclidean distance in pixels between the predicted and
ground-truth coordinates, providing a direct measure of localization accuracy.
The APD measures the mean absolute error in degrees between the Angle of
Progression (AoP) calculated from the predicted landmarks and that from the
ground-truth landmarks. APD evaluates the clinical utility of the predictions by
quantifying the accuracy of the derived geometric parameter.

4.2 Implementation Details

All models were implemented within the PyTorch framework and trained on
NVIDIA A100 or RTX 4090 GPUs. All input images were preprocessed by resiz-
ing to 512x512, followed by Contrast Limited Adaptive Histogram Equalization
(CLAHE) [II] to enhance local image contrast.

For the first-stage semi-supervised training, we utilized the AdamW optimizer
[7], which decouples weight decay regularization from the adaptive learning rate
update, often leading to better generalization. The initial learning rate was set to
le-4. The teacher model’s EMA decay rate, «, was set to 0.999. The maximum
consistency weight, wnez, was set to 2.0 and was gradually increased over a
ramp-up period of 40 epochs. The batch size was 8 for both labeled and unlabeled
data.

For the second-stage refinement, we also employed the AdamW optimizer
with an initial learning rate of le-4. The batch size was set to 64, and the patch
size for all three landmarks was 128x128 pixels. For all training processes, we
utilized a Cosine Annealing learning rate schedule [6] with a 10-epoch warm-up
period to ensure smooth and stable convergence.

4.3 Quantitative Analysis

We now present the quantitative results of our experiments. First, we conduct
a detailed ablation study to dissect the contribution of each component in our
framework. Then, we compare the final performance of our full pipeline against
the official challenge baseline on the test set.
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Table 1. Ablation study of framework components on the IUGC 2025 validation set.

Method ‘ Performance Metrics
EfficientNet-B7 EfficientNet-B4 Refinement Stage‘MRE (pixels) | APD (degrees).
v 9.8987 3.7632
v 8.5412 2.6852
v v 8.2530 2.5839
v v v 7.9163 2.4559

Table 2. Final performance comparison with the official baseline on the IUGC 2025
test set.

Method MRE (pixels) | APD (degrees)]

Baseline 21.8273 8.3727
Ours 12.7888 4.4581

Ablation Studies. We performed a comprehensive ablation study on the
IUGC 2025 validation set to validate each component of our framework. The
results are summarized in Table [Il

Our analysis begins with the individual models. The U-Net with an EfficientNet-
B4 backbone, trained under our full semi-supervised (SSL) framework, achieved
a strong baseline performance with an MRE of 8.5412 pixels. In contrast, the
larger EfficientNet-B7 model, trained only on supervised data, performed worse,
as expected due to the smaller training set.

Intriguingly, ensembling these two diverse models yielded a result superior
to either standalone model. The ensemble lowered the MRE to 8.2530 and the
APD to 2.5839. This highlights a key benefit of ensembling heterogeneous mod-
els: the diversity in their training schemes (semi-supervised vs. supervised) and
architectures created complementary error patterns. The supervised B7 model,
though less accurate overall, acted as a regularizer, correcting specific failure
modes of the more powerful but potentially biased SSL-trained B4 model.

Finally, the addition of our Refinement Stage provided the most significant
performance gain, reducing the MRE to 7.9163 pixels and APD to 2.4559 degrees.
This confirms that our full two-stage ensemble pipeline is highly effective, with
each component providing a distinct and crucial contribution.

Comparison with Official Baseline. To provide a final, unbiased evalua-
tion of our complete framework, we submitted our best-performing model—the
full two-stage ensemble with refinement—to the official challenge evaluation
server for assessment on the test set. We compare our final results against the
official baseline provided by the IUGC 2025 challenge organizers. As shown in
Table 2] our method achieves a dramatic improvement over the baseline across
both key metrics. Our final model obtained an MRE of 12.7888 pixels and an
APD of 4.4581 degrees on the test set. Compared to the official baseline’s per-
formance of 21.83 pixels MRE and 8.37 degrees APD, our framework achieved a
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Fig. 2. Qualitative visualization of our model’s predictions on four randomly selected
samples from the training set.

remarkable 41.4% reduction in MRE and a 46.8% reduction in APD. This sub-
stantial improvement in a challenging, unseen dataset underscores the real-world
efficacy and strong generalization capability of our integrated semi-supervised,
ensemble, and two-stage refinement approach.

4.4 Qualitative Analysis

In addition to the quantitative metrics, we provide qualitative visualizations to
offer further insight into our model’s behavior. Fig. [2| displays the prediction re-
sults on four randomly selected samples from our combined training set. In most
cases (Samples 1, 3, and 4), our full pipeline demonstrates excellent performance,
accurately localizing all three landmarks with high precision.

Sample 2 illustrates a more challenging scenario. While the pubic symph-
ysis landmarks (PS1 and PS2) are still accurately identified, the prediction for
the Fetal Head (FH1) landmark shows a noticeable deviation from the ground
truth. The corresponding heatmap for FH1 appears more diffuse and less con-
fident compared to the other landmarks. This type of failure case typically oc-
curs in images with low contrast or ambiguous anatomical features for the fetal
head, highlighting a potential area for future improvement, such as incorporating
more advanced context-aware mechanisms. Overall, the visualizations confirm
the strong performance of our method on the majority of samples.

5 Conclusion

In this work, we proposed a novel two-stage, semi-supervised ensemble framework
to address the critical challenge of automated Angle of Progression (AoP) mea-
surement in intrapartum ultrasound. By synergistically combining a powerful
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semi-supervised, multi-model ensemble for coarse localization with specialized,
high-resolution refinement models, our pipeline robustly handles the complexi-
ties of clinical ultrasound data. Extensive ablation studies validated the signifi-
cant contribution of each component. Our final model achieves state-of-the-art
performance on the ITUGC 2025 test set, reaching an Average Point Distance
of 12.7888 pixels and an APD of 4.4581 degrees. This work presents a highly
effective and practical solution for standardizing intrapartum assessment, repre-
senting a tangible step towards enhancing the quality and efficiency of modern
labor care.
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