
Under review as a conference paper at ICLR 2023

SUFFICIENT SUBGRAPH EMBEDDING MEMORY FOR
CONTINUAL GRAPH REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory replay, which constructs a buffer to store representative samples and re-
train the model over the buffer to maintain its performance over existing tasks, has
shown great success for continual learning with Euclidean data. Directly applying
it to graph data, however, can lead to the memory explosion problem due to the
necessity to consider explicit topological connections of representative nodes. To
this end, we present Parameter Decoupled Graph Neural Networks (PDGNNs) with
Sufficient Subgraph Embedding Memory (SSEM) to fully utilize the explicit topo-
logical information for memory replay and reduce the memory space complexity
from O(ndL) to O(n), where n is the memory buffer size, d is the average node
degree, and L is the range of neighborhood aggregation. Specifically, PDGNNs
decouple trainable parameters from the computation subgraphs via Sufficient Sub-
graph Embeddings (SSEs), which compress subgraphs into vectors (i.e., SSEs) to
reduce the memory consumption. Besides, we discover a pseudo-training effect in
memory based continual graph learning, which does not exist in continual learning
on Euclidean data without topological connection (e.g., individual images). Based
on the discovery, we develop a novel coverage maximization sampling strategy
to enhance the performance when the memory budget is tight. Thorough empir-
ical studies demonstrate that PDGNNs with SSEM outperform state-of-the-art
techniques for both class-incremental and task-incremental settings.

1 INTRODUCTION
Continual graph representation learning (Liu et al., 2021; Zhou & Cao, 2021; Zhang et al., 2021),
which aims to accommodate new types of emerging nodes in a graph and their associated edges
without interfering with the model performance over existing nodes, is an emerging area that attracts
increasingly more attention recently. It exhibits enormous value in various practical applications,
especially in the case where graphs are relatively large and retraining a new model over the entire
graph is computationally infeasible. For instance, in a social network, a community detection
model has to keep adapting its parameters based on nodes from newly emerged communities; in a
citation network, a document classifier needs to continuously update its parameters to distinguish the
documents of newly emerged research fields.
Memory replay (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019; Shin et al.,
2017), which stores representative samples in a buffer for retraining the model to maintain its
performance over existing tasks, exhibits great success in preventing catastrophic forgetting for
various continual learning tasks, e.g., computer vision and reinforcement learning (Kirkpatrick et al.,
2017; Li & Hoiem, 2017; Aljundi et al., 2018; Rusu et al., 2016). Directly applying memory replay
to graph data with message passing based graph neural networks (GNNs) (Gilmer et al., 2017; Kipf
& Welling, 2016; Veličković et al., 2017), however, could give rise to the memory explosion problem.
Specifically, due to the message passing over the topological connections in graphs, retraining an
L-layer GNN (Figure 1 a) with n buffered nodes would require storing O(ndL) nodes (Chiang et al.,
2019; Chen et al., 2017) (the number of edges is not counted yet) in the buffer, where d is the average
node degree. Take the Reddit dataset (Hamilton et al., 2017) for an example, its average node degree
is 492, the buffer size will easily be intractable even with a 2 layer GNN. To overcome this issue,
Experience Replay based GNN (ER-GNN) (Zhou & Cao, 2021) stores representative nodes in the
buffer but completely ignores the topological information (Figure 1 b). Feature graph network (FGN)
(Wang et al., 2020a) implicitly encodes node proximity with the inner products between the features
of the target node and its neighbors. However, the explicit topological connections are completely
ignored and message passing is no longer feasible on the graph.

1

Under review as a conference paper at ICLR 2023

Figure 1: (a) Directly storing computation subgraphs for replay in a multi-layer MPNN. (b) The
strategy to store single nodes proposed in ER-GNN (Zhou & Cao, 2021). (c) Our PDGNNs with
SSEM. The incoming computation subgraphs are first embedded as SSEs and then fed into the
trainable function. The SSEs are sampled and stored with the probability computed based on their
coverage ratio, i.e., the ratio of nodes covered by their computation subgraphs (Section 3.6).

To this end, we propose Parameter Decoupled Graph Neural Networks (PDGNNs) with Sufficient
Subgraph Embedding Memory (SSEM) for continual graph learning. Since the key challenge lies in
the unbounded sizes of the computation subgraphs, we introduce the concept of Sufficient Subgraph
Embedding (SSE) with a fixed size but contains all necessary information of a computation subgraph
for model optimization. Such SSEs can be surrogates of computation subgraphs in memory replay.
Next, we found that it is infeasible to derive SSEs from MPNNs since their trainable parameters
and individual nodes/edges are entangled. To this end, we formulate the PDGNNs framework to
decouple them and enable memory replay only based on buffered SSEs (without the computation
subgraphs). Since the size of an SSE is fixed, the memory space complexity of a buffer with size n
can be dramatically reduced from O(ndL) to O(n). Moreover, different from traditional continual
learning on data without topology (e.g., images), we discover that replaying an SSE incurs a pseudo-
training effect on the neighbor nodes, which strengthens the prediction of the other nodes in the same
computation subgraph. This effect is unique in continual graph learning and takes place due to the
neighborhood aggregation in GNNs. We further analyze that in homophilous graphs (prevalent in
real-world data), the pseudo-training effect makes the SSEs corresponding to larger computation
subgraphs (quantitatively measured by coverage ratio) more beneficial to continual learning. Inspired
by this, we develop a novel coverage maximization sampling, which enlarges the coverage ratio of
the selected SSEs and empirically enhances the performance without consuming additional memory.
In experiments, we adopt both the class-incremental (class-IL) continual learning scenario (Rebuffi
et al., 2017) (rarely studied for node classification under the continual learning setting) and the
task-incremental (task-IL) scenario (Liu et al., 2021; Zhou & Cao, 2021). Thorough empirical studies
demonstrate that PDGNNs with SSEM outperform state-of-the-art continual graph representation
learning techniques for both class-IL and task-IL settings. Our contributions are summarized below:

• We formulate the framework of PDGNNs-SSEM, which successfully enable memory replay
with topological information for continual graph representation learning, and reduce the
memory space complexity from O(ndL) to O(n).

• PDGNNs-SSEM obtain superior performance especially in the challenging class-IL scenario.
• We theoretically reveal a unique phenomenon in continual graph learning (i.e. the pseudo-

training effect) when applying memory replay, and accordingly develop the coverage
maximization sampling strategy to leverage this effect for improving the performance.

2 RELATED WORKS

Our proposed PDGNNs-SSEM is closely related to continual learning, continual graph learning, and
decoupled graph neural networks.
2.1 CONTINUAL LEARNING & CONTINUAL GRAPH LEARNING

To alleviate the catastrophic forgetting problem encountered by machine learning models, i.e.,
drastic performance decrease on previous tasks after learning new tasks, existing approaches can be
categorized into three types. Regularization based methods apply different constraints to prevent
drastic modification of model parameters that are important for previous tasks (Farajtabar et al., 2020;
Kirkpatrick et al., 2017; Li & Hoiem, 2017; Aljundi et al., 2018; Hayes & Kanan, 2020). Parametric
isolation methods adaptively allocate new parameters for the new tasks to protect the parameters for

2

Under review as a conference paper at ICLR 2023

the previous tasks (Wortsman et al., 2020; Wu et al., 2019b; Yoon et al., 2020; 2017; Rusu et al.,
2016). Memory replay based methods alleviate forgetting by storing and replaying representative data
examples from previous tasks when learning new tasks (Caccia et al., 2020; Chrysakis & Moens, 2020;
Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019; Shin et al., 2017). Recently,
continual learning on graphs attracts increasingly more attention due to its practical importance (Zhou
& Cao, 2021; Zhang et al., 2021; Liu et al., 2021; Wang et al., 2020b; Xu et al., 2020; Daruna et al.,
2021). Existing works include regularization methods like topology-aware weight preserving (TWP)
(Liu et al., 2021) to preserve crucial parameters and topologies, parametric isolation approaches
like HPNs (Zhang et al., 2021) that adaptively select different parameters for different tasks, and
memory replay methods like ER-GNN (Zhou & Cao, 2021) that stores representative nodes. Our
work is also based on memory replay and its key advantage lies in being capable of preserving
complete topological information with reduced space complexity, which shows significant superiority
in class-IL setting (Section 4.4). Note that we study the class-IL for node classification, which is
essentially different from the class-IL for graph-level prediction (Carta et al., 2021). Memory replay
for graph-level tasks stores individual graphs and will not trigger the memory explosion problem
(same as traditional continual learning on Euclidean data). In this work, we focus on the class-IL for
node classification and aim to resolve the memory explosion problem.Finally, it is worth highlighting
the difference between continual graph learning and some relevant but different research areas. First,
dynamic graph learning (Galke et al., 2020; Wang et al., 2020c; Han et al., 2020; Yu et al., 2018;
Nguyen et al., 2018; Zhou et al., 2018; Ma et al., 2020; Feng et al., 2020) focuses on the temporal
node dynamics with all previous data being accessible. In contrast, continual graph learning aims
to alleviate forgetting, therefore the previous data is inaccessible. Second, few-shot graph learning
(Zhou et al., 2019; Guo et al., 2021; Yao et al., 2020; Tan et al., 2022) targets fast adaptation to new
tasks. In training, few-shot learning models can access all previous tasks simultaneously (unavailable
in continual learning). For evaluation, few-shot learning models need to be fine-tuned on the new test
classes, while the continual learning models are evaluated over existing tasks without fine-tuning.
2.2 DECOUPLED GRAPH NEURAL NETWORKS & RESERVOIR COMPUTING

Unlike the early works with interleaved neighborhood aggregation and node feature transforma-
tion (Kipf & Welling, 2016; Gilmer et al., 2017; Veličković et al., 2017; Xu et al., 2018; Chen
et al., 2018; Hamilton et al., 2017), recent works reveal that decoupling these two operations can
reduce complexity and increase scalability, while maintaining equivalent or even achieving superior
performance for GNNs (Zeng et al., 2021; Chen et al., 2020; 2019; Nt & Maehara, 2019; Frasca et al.,
2020). For instance, Simple Graph Convolution (SGC) (Wu et al., 2019a) removes the non-linear
activations from GCN and only keeps one neighborhood aggregation and one node transformation
layer. Approximate Personalized Propagation of Neural Predictions (APPNP) (Klicpera et al., 2018)
first performs node transformation and then conducts multiple neighborhood aggregations in one layer.
Following these works, Dong et al. (2021) prove that the decoupling strategy to predict then propagate
is equivalent to training on the unlabelled nodes with pseudo labels aggregated from the labeled
neighbors. To further explore decoupled GNNs, Chen et al. (2020) formulate the Graph-Augmented
Multi-Layer Perceptrons (GA-MLPs), and theoretically analyzed their expressive power. Instead
of decoupling the structures, Zeng et al. (2021) propose SHADOW-GNN to decouple the depth
and scope of GNNs by fixing the depth of the computation subgraph. Among these works, some
can be viewed as instantiations of PDGNNs (Wu et al., 2019a; Zhu & Koniusz, 2020; Gallicchio
& Micheli, 2020), while the others may not focus on decoupling the trainable parameters and the
space complexity is still O(ndL) when applying memory replay, e.g., APPNP (Klicpera et al., 2018),
Propagation then Training Adaptively (PTA) (Dong et al., 2021), etc.. Besides works on decoupling
GNNs, PDGNNs are also related to reservoir computing based GNNs (Gallicchio & Micheli, 2020;
2010), which embed the graphs via a fixed, non-linear system followed by a trainable linear readout
module. The reservoir computing modules can be adopted in PDGNNs as the SSE generation function
(Equation 4), and the corresponding experimental results are in Appendix C.5.

3 PARAMETER DECOUPLED GNNS WITH SUFFICIENT SUBGRAPH
EMBEDDING MEMORY

In this section, we first introduce the notations and then explain the technical challenge of applying
memory replay techniques to GNNs. Targeting the challenge, we introduce PDGNNs with Sufficient
Subgraph Embedding Memory (SSEM). Finally, inspired by theoretical findings of the pseduo-
training effect, we develop the coverage maximization sampling. It can empirically improve the
continual learning performance, especially when the memory budget is tight. All detailed proofs are
provided in the Appendix B.

3

Under review as a conference paper at ICLR 2023

3.1 PRELIMINARIES

In this paper, continual graph learning is formulated as learning node representations on a sequence of
subgraphs (tasks): S = {G1,G2, ...,GT }. Each subgraph Gτ contains several new emerging categories
of nodes in the overall graph and is associated with a node set Vτ and an edge set Eτ , which is
represented as the adjacency matrix Aτ ∈ R|Vτ |×|Vτ |. Each entry of Aτ denotes an edge between a
pair of nodes. The degree of a node d refers to the number of edges connected to it. In practice, Aτ is
often normalized as Âτ = D

− 1
2

τ AτD
− 1

2
τ , where Dτ ∈ R|Vτ |×|Vτ | is the degree matrix. Each node

v ∈ Vτ has a feature vector xv ∈ Rb. In classification tasks, each node v has a label yv ∈ {0, 1}C ,
where C is the total number of classes. When generating the representation for a target node v, GNNs
typically take a subgraph within Gτ as the input, which is denoted as the computation subgraph Gsub

τ,v .
For simplicity, Gsub

v may be used in the following, without the graph index. We define the L-hop
neighbors of a node v as NL(v) which contains all nodes within a distance of L from v.
3.2 MEMORY REPLAY MEETS GNNS

In traditional continual learning, a model f(·;θ) parameterized by θ is trained on a sequence of T
tasks. Each task τ (τ ∈ {1, ..., T}) corresponds to a dataset Dτ = {(xi,yi)

nτ
i=1}. To avoid forgetting,

memory replay based methods store representative data from the old tasks in a buffer B, which are
replayed when learning new tasks. A common approach to utilize B is through an auxiliary loss:

L =
∑

xi∈Dτ

l(f(xi;θ),yi)︸ ︷︷ ︸
Lτ : loss of the current task

+λ
∑
xj∈B

l(f(xj ;θ),yj)︸ ︷︷ ︸
Laux: auxiliary loss

, (1)

where l(·, ·) denotes the loss function, and λ ≥ 0 balances the contribution of the old data. The
buffer B may also be used in other ways to prevent forgetting instead of directly minimizing Laux

Lopez-Paz & Ranzato (2017); Rebuffi et al. (2017). In these applications, the space complexity of a
buffer containing n examples is O(n).
However, to capture the topological information, GNNs obtain the representation of a node v based
on a computation subgraph surrounding v. We exemplify it with the popular MPNN framework
(Gilmer et al., 2017), which updates the hidden node representations at the l + 1-th layer as:

ml+1
v =

∑
w∈N 1(v)

Ml(h
l
v,h

l
w,x

e
v,w;θ

M
l), hl+1

v = Ul(h
l
v,m

l+1
v ;θU

l), (2)

where hl
v, hl

w are hidden representations of nodes at layer l, xe
v,w is the edge feature, Ml(·, ·, ·;θM

l)

is the message function to integrate neighborhood information, and Ul(·, ·;θU
l) updates ml+1

v into
hl
v. When l = 0, h0

v denotes the input node features. In a L-layer MPNN, the representation of a
node v can be simplified as,

hL
v = MPNN(xv,Gsub

v ;Θ), (3)
where Gsub

v is the computation subgraph containing the L-hop neighbors (i.e., NL(v)),
MPNN(·, ·;Θ) is the composition of all Ml(·, ·, ·;θM

l) and Ul(·, ·;θU
l) at different layers. Since

NL(v) typically contains O(dL) nodes, replaying n sampled nodes would require storing O(ndL)
nodes (the edges of Gsub

v are not counted yet), where d is the average node degree. Take the Reddit
dataset (Hamilton et al., 2017) as a concrete example, its average degree is 492, even with a 2
layer MPNN, the buffer size will be easily intractable. Therefore, directly storing the computation
subgraphs for memory replay is infeasible for GNNs. Besides, the unsupervised learning models Ad-
hikari et al. (2018); Narayanan et al. (2016) also suffer from this problem. Because the trainable
parameters in the unsupervised learning part will also be updated after learning each task, the original
computation subgraphs are required for retraining the model.

3.3 PARAMETER DECOUPLED GNNS WITH SSEM
As we discussed earlier, the key difficulty of applying memory replay to graph data is to store the
computation subgraphs with potentially unbounded sizes. Therefore, we would naturally expect to
preserve the necessary information (e.g., the topological information) of a computation subgraph
with a vector of fixed length such that the memory consumption can be manageable. Formally, the
desired subgraph representation can be defined as Sufficient Subgraph Embedding (SSE).
Definition 1 (Sufficient subgraph embedding). Given a model parameterized with θ and an input
Gsub
v , an embedding vector ev is a sufficient subgraph embedding for Gsub

v if optimizing θ with Gsub
v

or ev are equivalent.

4

Under review as a conference paper at ICLR 2023

Given the definition, we aim to derive SSEs from the computation subgraphs. As we have shown in
Section 3.2, SSEs cannot be derived from the MPNNs due to their interleaved neighborhood aggrega-
tion and feature transformations, i.e., whenever the trainable parameters get updated, recalculating
the representation of v requires all nodes and edges of Gsub

v . To resolve this issue, we formulate the
Parameter Decoupled Graph Neural Networks (PDGNNs) framework, which decouples the trainable
parameters from the individual nodes/edges. PDGNNs may not be the only feasible framework to
derive SSEs, but is the first attempt in this direction and is empirically verified to be effective. Given
a computation subgraph Gsub

v , the prediction of node v with PDGNNs consists of two steps. First, the
topological information of Gsub

v is encoded into an embedding ev via the function ftopo(·) without
trainable parameters (instantiations of ftopo(·) are detailed in Section 3.4).

ev = ftopo(Gsub
v). (4)

Next, ev is further passed into a trainable function fout(·;θ) parametrized by θ (instantiations of
fout(·;θ) are detailed in Section 3.4) to get the output prediction ŷv ,

ŷv = fout(ev;θ). (5)
With the formulations above, ev derived in Eq. (4) clearly satisfies the requirements of SSE (Defini-
tion 1). Specifically, since the trainable parameters acts on ev instead of directly on any individual
node/edge, optimizing the model parameters θ with either ev or Gsub

v are equivalent.
Since SSEs are equivalent to the computation subgraphs for optimizing PDGNNs, the memory buffer
only needs to store SSEs to reduce the space complexity from O(ndL) to O(n). For convenience,
we refer to Gsub

v as the computation subgraph of both v and ev . We name the buffer to store the SSEs
as Sufficient Subgraph Embedding Memory (SSEM). Given a new task τ , the update of SSEM is:

SSEM = SSEM
⋃

sampler({ev | v ∈ Vτ}, n), (6)
where sampler(·, ·) denotes the adopted sampling strategy to populate the buffer,

⋃
denotes the set

union, and n is the budget size. As long as a memory buffer SSEM is maintained, our PDGNNs-
SSEM perform well with different sampling strategies including random sampling. But in Section
3.6, based on the theoretical insights in Section 3.5, we propose a special sampling strategy to better
populate SSEM, which is empirically verified to be beneficial when the memory budget is tight.
Equation (6) assumes a scenario where all data of the current task are presented concurrently. In
practice, if the data of a task are presented in multiple batches (e.g., nodes come in batches on large
graphs), the buffer update can be modified by adopting mechanisms to replace the existing data,
which is detailed in Appendix A. For task τ with graph Gτ , the loss with SSEM then becomes:

L =
∑
v∈Vτ

l(fout(ev;θ),yv)︸ ︷︷ ︸
Lτ : loss of the current task τ

+λ
∑

ew∈SSEM
l(fout(ew;θ),yw)︸ ︷︷ ︸

Laux: auxiliary loss

, (7)

where the ev on the current task is calculated according to Equation (8). Different from traditional
continual learning works which choose λ manually, on graph data, we re-scale the losses according
to the class sizes to counter the bias from the severe class imbalance, which cannot be handled on
graphs by directly balancing the datasets (details are provided in Appendix C.2).

3.4 INSTANTIATIONS OF PDGNNS

Although without trainable parameters, the function ftopo(·) for generating SSEs can be highly
expressive with various formulations including linear and non-linear ones, both of which are studied
in this work. We will mainly focus on the linear formulations, which are empirically comparable
to the non-linear choices (Appendix C.3) but is much more efficient and convenient for theoretical
analysis (Section 3.5 and 3.6). The linear instantiations of ftopo(·) can be generally formulated as,

ev = ftopo(Gsub
v) =

∑
w∈V

xw · π(v, w; Â), (8)

where π(·, ·; Â) denotes the adopted strategy for computation subgraph construction based on the
structure Â (the normalized adjacency matrix defined in Section 3.1).
Next, to instantiate π(·, ·; Â), we first formulate the SSE generation for all nodes in V as a matrix
multiplication: EV = ΠXV, where each entry Πv,w = π(v, w; Â). EV ∈ R|V|×b is the concate-
nation of all SSEs (ev ∈ Rb), and XV ∈ R|V|×b is the concatenation of all node feature vectors
xv ∈ Rb. The following three options are adopted as instantiations of Π in our experiments:

1. SGC Wu et al. (2019a): Π = ÂL

2. S2GC Zhu & Koniusz (2020): Π = 1
L

∑L
l=1

(
(1− α)Âl + αI

)
5

Under review as a conference paper at ICLR 2023

3. APPNP Klicpera et al. (2018): Π =
(
(1− α)Â+ αI

)L
Note that PDGNNs is a general framework, and some existing decoupled GNNs are instantiations
of PDGNNs, e.g., SGC Wu et al. (2019a) and S2GC Zhu & Koniusz (2020). However, the other
decoupled GNNs may not decouple the trainable parameters from individual nodes, and the space
complexity is still O(ndL) when applying memory replay, e.g., APPNP Klicpera et al. (2018), PTA
Dong et al. (2021), etc..
The linear formulation of ftopo(·) described above in Equation 8 could yield both promising experi-
mental results (Section C) and instructive theoretical results (Section 3.5 and 3.6). Equation 8 is also
highly efficient especially for large graphs due to the absence of iterative neighborhood aggregations.
Besides, ftopo(·) can also take non-linear forms with more complex mappings, e.g., the reservoir
computing modules Gallicchio & Micheli (2020). The corresponding experimental and theoretical
effects are introduced in Appendix (B.3 and C.5).
Since the function fout(·;θ) simply deals with individual vectors (SSEs), it is instantiated as MLP in
this work. The specific configurations of fout(·;θ) is described in the experimental part (Section 4.2).

3.5 PSEUDO-TRAINING EFFECTS OF SSES

Figure 2: Illustration of the coverage ratio. Sup-
posing the graph has N nodes in total, Rc({u}) =
13
N , Rc({v}) = 15

N , Rc({u}) = 14
N , and

Rc({u, v, w}) = 42
N

In traditional continual learning on Euclidean
data without topological connections, replaying
an example xi (e.g., an image) only reinforces
the prediction of xi itself. In this subsection,
we introduce the pseudo-training effect of SSEs,
which implies that training PDGNNs with ev
of node v also influences the predictions of the
other nodes in Gsub

v , based on which we develop
a novel sampling strategy to further boost the
continual learning performance on graphs.
Theorem 1 (Pseudo-training). Given a node v, its computation subgraph Gsub

v , the SSE ev , and label
yv (suppose v belongs to class k, i.e. yv,k = 1), then training PDGNNs with ev has the following
two properties:

1. It is equivalent to training PDGNNs with each node w in Gsub
v with Gsub

v being a pseudo
computation subgraph and yv being a pseudo label, where the contribution of xw (via Equation 8)
is re-scaled by π(v,w;Â)

π(w,w;Â)
. We term this property as the pseudo-training effect on neighboring nodes,

because it is equivalent to that the training is conducted on each neighboring node (in Gsub
v) through

the pseudo labels and the pseudo computation subgraphs.

2. When fout(·;θ) is linear, training PDGNNs on ev is also equivalent to training fout(·;θ) on pseudo-
labeled nodes (xw, yv) for each w in Gsub

v , where the contribution of w in the loss is adaptively

re-scaled with a weight fout(xw;θ)k·π(v,w;Â)∑
w∈Vsub

v
fout

(
xw·π(v,w;Â);θ

)
k

.

The pseudo-training effect essentially arises from the neighborhood aggregation operation. Due to the
prevalence of homophily (defined in Appendix B.2) in real-world graphs, neighborhood aggregation
(i.e., message passing) is widely adopted in mainstream GNNs to enhance the performance by
encouraging similar representations and predictions for neighbored nodes. Similarly, pseudo-training
effect implies that replaying the SSE of a buffered node is encouraging a similar prediction for
its neighbors (not buffered), which is also beneficial on homophilous graphs. In other words, the
homophilous neighbors of a buffered node v do not need to be stored, but the forgetting problem
on them can also be alleviated by replaying the SSE of v. Besides, when fout(·;θ) is linear, the
re-scaling weight in Theorem 1.2 can adjust the pseudo-training on neighboring nodes according
to their homophily to some extent. Specifically, larger fout(xw;θ)k denotes a higher confidence to
classify w into class k, and a higher π(v, w; Â) typically denotes a higher similarity between w and
v. Therefore, the pseudo-training is stronger on the homophilous neighbors (with same labels) and
weaker on the heterophilous neighbors (with different labels), according to the prediction confidence
of fout(·;θ). Note that although homophily brings this extra benefit, it is not a prerequisite for our
model to work. Despite the homophily, replaying ev still reinforces the prediction of node v itself,
just like memory replay in traditional continual learning on independent data (e.g., images). However,
real-world graphs often exhibit strong homophily, and pseudo-training effect is generally beneficial,
which is also empirically justified (Section 4.3).

6

Under review as a conference paper at ICLR 2023

Table 1: The detailed statistics of datasets and task splittings

Dataset CoraFull McCallum et al. (2000) OGB-Arxiv1 Reddit Hamilton et al. (2017) OGB-Products2

nodes 19,793 169,343 232,965 2,449,029

edges 130,622 1,166,243 114,615,892 61,859,140

classes 70 40 40 47

tasks 30 / 14 / 5 / 2 20 / 8 / 5 / 2 20 / 8 / 5 / 2 23 / 10 / 5 / 3

The above analysis suggests that SSEs with larger computation graphs covering more nodes may be
more effective. In the next subsection, we design the coverage maximization sampling strategy to
leverage the benefit of the pseudo-training effect.
3.6 COVERAGE MAXIMIZATION SAMPLING Algorithm 1 Coverage maximization sampling

Input: Gτ , Vτ , Âτ , π(·, ·; ·), sample size n.
Output: Selected nodes S

1: Initialize S = {}.
2: for each v ∈ Vτ do
3: Rc({v}) =

|{w|w∈Gsub
τ,v }|

|Vτ |
4: end for each
5: for each v ∈ Vτ do
6: pv = Rc({v})∑

w∈Vτ Rc({w})
7: end for each
8: while n > 0 do
9: Sample one node v from Vτ according to {pw |

w ∈ Vτ}.
10: S = S ∪ {v}
11: Vτ = Vτ\{v}▷ Sampling without replacement
12: n← n− 1
13: end while

Following the above subsection, to quantify the
number of nodes covered by the selected SSEs
versus the total number of nodes in the graph,
we define the coverage ratio of the SSEs. In
the following, since each SSE uniquely corre-
sponds to a node, we may use ‘node’ and ‘SSE’
interchangeably
Definition 2. Given a graph G, node set V, and
function π(·, ·; Â), the coverage ratio of a set of
nodes Vs is:

Rc(Vs) =
| ∪v∈Vs {w|w ∈ Gsub

v }|
|V|

, (9)

i.e., the ratio of nodes of the entire (training)
graph covered by the computation subgraphs of
the selected nodes (SSEs).

To maximize Rc(SSEM), a naive approach is to start from the SSE with the largest coverage
ratio and iteratively incorporate SSE that increases Rc(SSEM) the most. However, this requires
computing Rc(SSEM) for all possible SSEs in each iteration, which is time consuming especially
on large graphs. Besides, certain randomness is also desired for the diversity of SSEM. Therefore,
we propose to sample SSEs from a multinomial distribution based on the coverage ratio of each
individual SSE. Specifically, in task τ with node set Vτ , the probability of sampling node v ∈ Vτ is
pv = Rc({v})∑

w∈Vτ Rc({w}) . Then the procedure is to sample from Vτ according to {pv | v ∈ Vτ} without
replacement, as shown in Algorithm 1. In experiments, we compare different sampling strategies
to demonstrate the strong correlation between the coverage ratio and the performance, which also
verifies the benefits revealed in Section 3.5
4 EXPERIMENTS
In this section, we aim to answer the following questions: Q1: Whether PDGNNs-SSEM work well
with a reasonable buffer size? Q2: Does coverage maximization sampling ensure a higher coverage
ratio? Q3: Whether our theoretical results can be empirically justified? Q4: Does a higher coverage
ratio lead to better performance? Q5: Whether PDGNNs-SSEM can outperform the state-of-the-art
methods in both class-IL and task-IL scenarios? Due to the space limitations, only the most prominent
results are presented in the main content, and more details are available in Appendix. For simplicity,
PDGNNs-SSEM will be denoted as PDGNNs in this section.
4.1 DATASETS
We adopted four public datasets, CoraFull, OGB-Arxiv, Reddit, and OGB-Products, with up to
millions of nodes and 70 classes. Dataset statistics and task splittings (i.e., how we partition the node
classes into different tasks) are summarized in Table 5. In the paper, we show the results under the
splittings with the largest number of tasks. More details of the datasets, dataset splittings, and the
results with other task splittings are provided in the Appendix C.1,C.2,C.4.
4.2 EXPERIMENTAL SETUP AND MODEL EVALUATION
Continual learning setting and model evaluation. During training, a model is trained on a task
sequence with access only to the subgraphs of the current task. After that, the model is tested on all
learned tasks. In the class-IL scenario, a model has to classify a given node by picking a class from
all learned classes (which is more challenging), while the task-IL scenario only requires the model

1
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

2
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

7

https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

Under review as a conference paper at ICLR 2023

Table 2: Performance & coverage ratios of different sampling strategies and buffer sizes on OGB-Arxiv dataset
(↑ higher means better).

Ratio of dataset /% 0.02 0.1 1.0 5.0 40.0

AA %
Uniform samp. 12.0±1.1 24.1±1.7 42.2±0.3 50.4±0.4 53.3±0.4
Mean of feat. 12.6±0.1 25.3±0.3 42.8±0.3 50.4±0.7 53.3±0.2

Cov. Max. 14.9±0.8 26.8±1.8 43.7±0.5 50.5±0.4 53.4±0.1

Cov.
ratio/%

Uniform samp. 0.1±0.1 0.3±0.0 3.5±0.9 15.9±1.1 84.8±1.5
Mean of feat. 0.2±0.4 0.6±0.3 7.1±0.6 29.6±1.7 91.1±0.1

Cov. Max. 0.5±1.1 2.9±1.8 22.5±1.6 46.3±0.6 92.8±0.0

Table 3: Performance comparisons under class-IL on different datasets (↑ higher means better).

C.L.T. CoraFull OGB-Arxiv Reddit OGB-Products
AA/% ↑ AF/% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑

Fine-tune 3.5±0.2 -95.2±0.3 4.9±0.0 -89.7±0.4 5.9±0.9 -97.9±1.8 7.6±0.6 -88.7±0.5
EWC 2017 52.6±5.0 -38.5±7.3 8.5±0.6 -69.5±4.7 10.3±6.3 -33.2±14.6 23.8±2.2 -21.7±3.9
MAS 2018 6.5±1.0 -92.3±1.0 4.8±0.2 -72.2±2.6 9.2±7.6 -23.1±14.6 16.7±2.6 -57.0±24.8
GEM 2017 7.4±0.1 -91.0±0.1 4.9±0.0 -89.8±0.2 5.0±0.0 -99.4±0.0 4.5±0.8 -94.7±0.2
TWP 2021 62.6±1.7 -30.6±2.8 6.7±1.2 -50.6±6.9 8.0±2.9 -18.8±5.1 14.1±2.1 -11.4±1.3
LwF 2017 33.4±0.9 -59.6±1.2 9.9±6.7 -43.6±7.5 86.6±0.8 -9.2±0.9 48.2±0.8 -18.6±0.9

ER-GNN 2021 2.9±0.0 -94.6±0.1 12.3±3.1 -79.9±3.3 20.4±2.6 -82.7±2.9 56.7±0.3 -33.3±0.5

Joint 80.8±0.1 -3.1±0.2 56.8±0.0 -8.6±0.0 97.1±0.1 -0.7±0.1 71.5±0.1 -5.8±0.2

PDGNNs 81.9±0.1 -3.9±0.1 53.2±0.2 -14.7±0.2 96.6±0.0 -2.6±0.1 73.9±0.1 -10.9±0.2

to distinguish the classes within each task. For model evaluation, the most thorough metric is the
accuracy matrix Macc ∈ RT×T , where Macc

i,j denotes the accuracy on task j after learning task i. The

learning dynamics are shown with the curves of average accuracy (AA):
{∑i

j=1 Macc
i,j

i |i = 1, ..., T
}

and the average forgetting (AF):
{∑i−1

j=1 Macc
i,j −Macc

j,j

i−1 |i = 2, ..., T
}

when the number of learned tasks
varies. To use a single numeric value for evaluation, the AA and AF after learning all T tasks will be
used. We repeat all experiments 5 times on one Nvidia Titan Xp GPU. All results are reported with
average performance and standard deviations.
Baselines and model settings. Our baselines include the methods designed for continual graph
learning including Experience Replay based GNN (ERGNN) (Zhou & Cao, 2021) and Topology-
aware Weight Preserving (TWP) (Liu et al., 2021), and milestone works designed for Euclidean data
but also applicable to GNNs including Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017),
Learning without Forgetting (LwF) (Li & Hoiem, 2017), Gradient Episodic Memory (GEM) (Lopez-
Paz & Ranzato, 2017), and Memory Aware Synapses (MAS) (Aljundi et al., 2018)). These baselines
are implemented based on three popular backbone GNNs, i.e., Graph Convolutional Networks (GCNs)
(Kipf & Welling, 2016), Graph Attentional Networks (GATs) (Veličković et al., 2017), and Graph
Isomorphism Network (GIN) (Xu et al., 2018). Besides, joint training (without forgetting problem)
and fine-tune (without continual learning technique) are adopted as the upper and lower bound for
performance comparison. We instantiate fout(·;θ) as a multi-layer perceptron (MLP). To make a
fair comparison, all methods including fout(·;θ) of PDGNNs are set as 2-layer with 256 hidden
dimensions, and the neighborhood aggregation range of PDGNNs (L in Section 3.3) is also set as
2 for consistency. As detailed in Section 4.3, ftopo(·) is chosen as the SGC strategy (Section 3.4),
while the comparison among different choices is introduced in Appendix C.4.
4.3 STUDIES ON THE BUFFER SIZE & PERFORMANCE VS. COVERAGE RATIO (Q1,2,3,4)
In Table 2, based on PDGNNs, we compare the proposed coverage maximization sampling with
uniform sampling and mean of feature (MoF) in terms of coverage ratios and performance when the
buffer size (ratio of dataset) varies from 0.0002 to 0.4 on OGB-Arxiv. More complicated sampling
methods Hübler et al. (2008); Yang et al. (2016) can also be used. However, the sampling methods
adopted in this work can already obtain performance comparable to Joint, and are highly efficient.
The proposed coverage maximization sampling achieves a superior coverage ratio, especially when
buffer sizes are relatively small. We also notice that the average accuracy for coverage maximization
sampling is positively related to the coverage ratio in general, which verifies Theorem 1.
Table 2 also shows the positive correlation between the buffer size and the performance. Besides,
our SSEM appears to be highly efficient in terms of memory usage. No matter which sampling
strategy is used, the performance can reach ≈50 average accuracy (AA) with only 5% data buffered.
In Appendix C.5, we further evaluate how the performance changes when the buffer size varies with
different variants of PDGNNs (i.e., the SSE generation strategies adopted from SGC, S2GC, APPNP,

8

Under review as a conference paper at ICLR 2023

Figure 3: Dynamics of average accuracy in class-IL scenario. From left to right: 1. OGB-Arxiv, 2 classes per
task. 2. CoraFull, 2 classes per task. 3. Reddit, 2 classes per task. 4. OGB-Products, 2 classes per task.

Figure 4: From left to right: accuracy matrix of PDGNNs, ER-GNN, LwF, and Fine-tune on OGB-Arxiv dataset.
Table 4: Performance comparisons under task-IL on different datasets (↑ higher means better).

C.L.T. CoraFull OGB-Arxiv Reddit OGB-Products
AA/% ↑ AF/% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑

Fine-tune 56.0±2.4 -41.0±2.5 56.2±1.7 -36.2±1.7 79.5±13.0 -11.7±2.9 64.4±2.3 -31.1±2.6
EWC 2017 89.8±0.7 -5.1±0.3 71.5±0.4 -0.9±0.4 83.9±11.9 -2.0±1.0 87.0±0.9 -1.7±0.9
MAS 2018 92.2±0.6 -3.7±0.8 72.7±1.6 -18.5±1.6 61.1±4.3 -0.5±0.7 80.6±2.4 -13.7±2.4
GEM 2017 92.0±0.4 0.3±0.8 80.8±0.8 -5.3±0.9 98.9±0.0 -0.5±0.1 87.7±1.1 -7.0±1.2
TWP 2021 94.3±0.5 -1.6±0.3 80.9±1.0 -1.3±0.8 78.0±13.4 -0.2±0.3 81.8±2.2 -0.3±0.5
LwF 2017 93.8±0.1 -0.4±0.1 71.1±1.7 -1.5±0.5 98.6±0.1 -0.0±0.0 86.3±0.1 -0.5±0.1

ER-GNN 2021 62.4±1.5 -34.5±1.5 86.4±0.2 0.5±0.3 97.5±1.5 2.6±3.7 86.4±0.0 11.7±0.0

Joint 96.0±0.1 0.0±0.1 90.3±0.2 0.5±0.2 99.5±0.0 0.0±0.0 95.3±0.4 -0.3±0.3

PDGNNs 94.6±0.1 0.6±1.0 89.8±0.4 -0.0±0.5 98.9±0.0 -0.5±0.0 93.5±0.5 -2.1±0.1

and reservoir computing described in Section 3.3). The SGC strategy is more efficient than the other
variants with comparable performance, therefore is chosen in our following experiments.
4.4 RESULTS FOR CLASS-IL SCENARIO AND TASK-IL SCENARIO (Q5)
Class-IL Scenario. We compare PDGNNs with the baselines on 4 public datasets under the class-
IL scenario. As shown in Table 3, PDGNNs significantly outperform the baselines and is even
comparable to joint training (the performance upper bound) on 4 different datasets. The learning
dynamics are also shown in Figure 3. Among the baselines, those techniques relying on regularization
or Fine-tune exhibit severe forgetting problems. LwF performs slightly better than them since
knowledge distillation is employed. ER-GNN outperforms LwF since it leverages memory replay to
maintain performance over old tasks. For clarity, we omit the error bars on the CoraFull dataset. Full
results with error bars are available in Appendix C.4.
To further understand the dynamics of different methods under the class-IL scenario, we visualize
the accuracy matrices of PDGNNs, ER-GNN, LwF, and Fine-tune in Figure 4. Each row of the
matrix denotes the performance on all tasks after learning a new task, and each column denotes the
performance change of a specific task when learning all tasks sequentially. Compared to baselines
exhibiting severer forgetting when learning new tasks, PDGNNs can maintain relatively stable
performance on each task even though new tasks are continuously learned. Besides, we also
visualized the learnt node representations of after learning all tasks, which is shown in Appendix C.4.
Task-IL Scenario. In Table 4, we can observe that PDGNNs still outperform baselines on all 4
different datasets under the task-IL scenario even though it is less challenging than the class-IL
scenario as we discussed in Section 4.2. Due to space limitations, more detailed discussions about
the results and the learning dynamics with the task-IL scenario are provided in Appendix C.4.

5 CONCLUSION

In this work, we propose the PDGNNs with SSEM for continual graph representation learning. Based
on SSEs, we reduce the memory space complexity from O(ndL) to O(n), which enables PDGNNs
to fully utilize the explicit topological information sampled from previous tasks. We also discover
and theoretically analyze the pseudo-training effect of SSEs. This inspires us to develop coverage
maximization sampling which has been demonstrated to be highly efficient especially when the
memory budget is tight. Finally, thorough empirical studies on both class-IL and task-IL continual
learning scenarios demonstrate the effectiveness of PDGNNs-SSEM.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learning
for subgraphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 170–182.
Springer, 2018.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 139–154, 2018.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, pp. 11816–
11825, 2019.

Lucas Caccia, Eugene Belilovsky, Massimo Caccia, and Joelle Pineau. Online learned continual com-
pression with adaptive quantization modules. In International Conference on Machine Learning,
pp. 1240–1250. PMLR, 2020.

Antonio Carta, Andrea Cossu, Federico Errica, and Davide Bacciu. Catastrophic forgetting in
deep graph networks: an introductory benchmark for graph classification. arXiv preprint
arXiv:2103.11750, 2021.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Lei Chen, Zhengdao Chen, and Joan Bruna. On graph neural networks versus graph-augmented mlps.
arXiv preprint arXiv:2010.15116, 2020.

Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets necessary? a dissection on
graph classification. arXiv preprint arXiv:1905.04579, 2019.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257–266,
2019.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data.
In International Conference on Machine Learning, pp. 1952–1961. PMLR, 2020.

Angel Daruna, Mehul Gupta, Mohan Sridharan, and Sonia Chernova. Continual learning of knowledge
graph embeddings. IEEE Robotics and Automation Letters, 6(2):1128–1135, 2021.

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui. On
the equivalence of decoupled graph convolution network and label propagation. In Proceedings of
the Web Conference 2021, pp. 3651–3662, 2021.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762–3773.
PMLR, 2020.

Yutong Feng, Jianwen Jiang, and Yue Gao. Incremental learning on growing graphs. 2020.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Lukas Galke, Iacopo Vagliano, and Ansgar Scherp. Incremental training of graph neural networks on
temporal graphs under distribution shift. arXiv preprint arXiv:2006.14422, 2020.

Claudio Gallicchio and Alessio Micheli. Graph echo state networks. In The 2010 international joint
conference on neural networks (IJCNN), pp. 1–8. IEEE, 2010.

10

Under review as a conference paper at ICLR 2023

Claudio Gallicchio and Alessio Micheli. Fast and deep graph neural networks. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3898–3905, 2020.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375,
2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272. PMLR, 2017.

Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V Chawla.
Few-shot graph learning for molecular property prediction. In Proceedings of the Web Conference
2021, pp. 2559–2567, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Yi Han, Shanika Karunasekera, and Christopher Leckie. Graph neural networks with continual
learning for fake news detection from social media. arXiv preprint arXiv:2007.03316, 2020.

Tyler L Hayes and Christopher Kanan. Lifelong machine learning with deep streaming linear
discriminant analysis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition workshops, pp. 220–221, 2020.

Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani. Metropolis
algorithms for representative subgraph sampling. In 2008 Eighth IEEE International Conference
on Data Mining, pp. 283–292. IEEE, 2008.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114
(13):3521–3526, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2017.

Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming catastrophic forgetting in graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
8653–8661, 2021.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural networks. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 719–728, 2020.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2):127–163, 2000.

Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar
Saminathan. subgraph2vec: Learning distributed representations of rooted sub-graphs from large
graphs. arXiv preprint arXiv:1606.08928, 2016.

11

Under review as a conference paper at ICLR 2023

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul
Kim. Continuous-time dynamic network embeddings. In Companion Proceedings of the The Web
Conference 2018, pp. 969–976, 2018.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. Graph few-shot class-incremental learning. In
Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp.
987–996, 2022.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(11), 2008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Chen Wang, Yuheng Qiu, and Sebastian Scherer. Bridging graph network to lifelong learning with
feature interaction. 2020a.

Chen Wang, Yuheng Qiu, and Sebastian Scherer. Lifelong graph learning. arXiv preprint
arXiv:2009.00647, 2020b.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5265–5274, 2018.

Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. Streaming graph neural networks via continual
learning. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pp. 1515–1524, 2020c.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):
396–413, 2020d.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. arXiv preprint arXiv:2006.14769,
2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International Conference on Machine Learning, pp.
6861–6871. PMLR, 2019a.

Guile Wu, Shaogang Gong, and Pan Li. Striking a balance between stability and plasticity for class-
incremental learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1124–1133, 2021.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 374–382, 2019b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

12

Under review as a conference paper at ICLR 2023

Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark Coates. Graphsail:
Graph structure aware incremental learning for recommender systems. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp. 2861–2868, 2020.

Zhengwei Yang, Ada Wai-Chee Fu, and Ruifeng Liu. Diversified top-k subgraph querying in a
large graph. In Proceedings of the 2016 International Conference on Management of Data, pp.
1167–1182, 2016.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh Chawla,
and Zhenhui Li. Graph few-shot learning via knowledge transfer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 6656–6663, 2020.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust contin-
ual learning with additive parameter decomposition. In International Conference on Learning
Representation, 2020.

Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk: A
flexible deep embedding approach for anomaly detection in dynamic networks. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2672–2681, 2018.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. Advances in Neural Information Processing Systems, 34, 2021.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Hierarchical prototype networks for continual graph
representation learning. arXiv preprint arXiv:2111.15422, 2021.

Fan Zhou and Chengtai Cao. Overcoming catastrophic forgetting in graph neural networks with
experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 4714–4722, 2021.

Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-gnn: On
few-shot node classification in graph meta-learning. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 2357–2360, 2019.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding by
modeling triadic closure process. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International Conference on
Learning Representations, 2020.

13

Under review as a conference paper at ICLR 2023

A ADDITIONAL DETAILS ON PARAMETER DECOUPLED GNNS WITH SSEM

As mentioned in Section 3.3 of the paper, in real-world applications, the data may come in batches
instead of being presented simultaneously. Therefore, the updating of SSEM may need modification.
The key issue is to determine how to update SSEM such that the newly sampled SSEs can be
accommodated accordingly. We present two different approaches to handle this.

1. The most straightforward approach is to store the computation subgraph size ssubv of each
ev and recalculate the multinomial distribution. Given the incoming new node set Vτ , the
probability of sampling each node is recalculated as pv =

ssub
v∑

w∈Vτ
⋃

SSEMi
ssub
w

. Then n SSEs

are sampled to populate the SSEM.

2. For efficiency, we can also adopt the reservoir sampling based strategy to update existing
SSEs in SSEM without recalculating the multinomial distribution. Specifically, given a
new node set Vτ , we first sample min{n, |Vτ |} nodes (SSEs) S from Vτ with the coverage
maximization sampling. Next, we align all SSEs in SSEM and S in a sequence, i.e. the
first |SSEM| elements are from SSEM and the following elements are from S. Finally,
for each SSE ev in S, suppose its order in the sequence is ov ∈ {|SSEM|, |SSEM| +
1, ..., |SSEM| + |S|}, we generate a random integer r from uniform distribution on 1 to
|SSEM|+ ov}. If r falls in the range from 1 to |SSEM|, then the r-th SSEs in SSEM is
replaced by ev , otherwise ev is deleted. In this way, the nodes in SSEM can be randomly
updated with the newly sampled SSEs.

B THEORETICAL ANALYSIS

In this section, we give proofs and detailed analysis of the theoretical results in the paper.

B.1 PARAMETER DECOUPLED GNNS WITH SSEM

In Section 3.3, we mentioned that the embedding ev derived in PDGNNs is a sufficient subgraph
embedding of Gsub

v with respect to the optimization of θ. Although this is straightforward, we still
provide a proof for completeness.

Proof. According to Definition 1, a sufficient condition for a vector ev to be a sufficient subgraph
embedding of Gsub

v is that ev provides same information as Gsub
v for optimizing the parameter θ of a

model fout(·;θ). Therefore, the proof can be done by showing ∇θL(ev,θ) = ∇θL(Gsub
v ,θ), where

L is the adopted loss function. This becomes straightforward under the PDGNNs framework since
Gsub
v is first embedded in ev and then participate in the computation with the trainable parameter

θ. Specifically, given an input computation subgraph Gsub
v with the label yv, the corresponding

prediction of PDGNNs is:

ŷv = fout

(∑
w∈Vsub

v

xw · π(v, w; Â);θ
)
, (10)

and the loss is:

Lv = l

(
fout

(∑
w∈Vsub

v

xw · π(v, w; Â);θ
)
,yv

)
, (11)

the gradient of loss Lv is:

∇θLv = ∇θl

(
fout

(∑
w∈Vsub

v

xw · π(v, w; Â);θ
)
,yv

)
. (12)

When the input Gsub
v is replaced with ev , the prediction becomes:

ŷv = fout(ev;θ), (13)

14

Under review as a conference paper at ICLR 2023

and the corresponding loss becomes:

L′
v = l

(
fout(ev;θ),yv

)
, (14)

the gradient of loss Lv becomes:

∇θL′
v = ∇θl

(
fout(ev;θ),yv

)
. (15)

Since in the PDGNNs, ev is calculated as:

ev =
∑

w∈Vsub
v

xw · π(v, w; Â), (16)

then we have:

∇θLv = ∇θL′
v, (17)

i.e., optimizing the trainable parameters with ev is equal to optimizing the trainable parameters with
Gsub
v .

B.2 PSEUDO-TRAINING EFFECTS OF SSES

Theorem 1 (Pseudo-training). Given a node v, its computation subgraph Gsub
v , the SSE ev , and label

yv (suppose v belongs to class k, i.e. yv,k = 1), then training PDGNNs with ev has the following
two properties:

1. It is equivalent to training PDGNNs with each node w in Gsub
v with Gsub

v being a pseudo
computation subgraph and yv being a pseudo label, where the contribution of xw (via Equation
4 in the paper) is re-scaled by π(v,w;Â)

π(w,w;Â)
. We term this property as the pseudo-training effect on

neighboring nodes.

2. When fout(·;θ) is linear, training PDGNNs on ev is also equivalent to training fout(·;θ) on pseudo-
labeled nodes (xw, yv) for each w in Gsub

v , where the contribution of w in the loss is adaptively

re-scaled with a weight fout(xw;θ)k·π(v,w;Â)∑
w∈Vsub

v
fout

(
xw·π(v,w;Â);θ

)
k

.

Proof of Theorem 1.1. Theorem 1.1 is rather intuitive and easy to understand, we still provide a
detailed proof for rigorousness.

Given a node v, the prediction is:

ŷv = fout(ev;θ) (18)

∵ ev =
∑

w∈Vsub
v

xw · π(v, w; Â), where Vsub
v denotes the node set of the computation subgraph

Gsub
v , and Â is the adjacency matrix of Gsub

v .

∴

ŷv = fout

(∑
w∈Vsub

v

xw · π(v, w; Â);θ
)

(19)

Given the target (ground truth label) of node v as yv, the objective function of training the model
with node v is formulated as:

Lv = l

(
fout

(∑
w∈Vsub

v

xw · π(v, w; Â);θ
)
,yv

)
, (20)

where l could be any loss function to measure the distance between the prediction and the target.

Since Vsub
v contains both the features of node v and its neighbors, Equation 20 can be further

expanded to separate the contribution of node v and its neighbors:

Lv = l

(
fout

(
xv · π(v, v; Â)︸ ︷︷ ︸

information from node v

+
∑

w∈Vsub
v \{v}

xw · π(v, w; Â)

︸ ︷︷ ︸
neighborhood information

;θ
)
,yv

)
, (21)

15

Under review as a conference paper at ICLR 2023

Given an arbitrary node q ∈ Vsub
v but q ̸= v ∈ Vsub

v (the adjacency matrix Â stays the same), we can
similarly obtain the loss of training the model with node q:

Lq = l

(
fout

(
xq · π(q, q; Â)︸ ︷︷ ︸

information from node q

+
∑

w∈Vsub
q \{q}

xw · π(q, w; Â)

︸ ︷︷ ︸
neighborhood information

;θ
)
,yq

)
. (22)

Since q ∈ Vsub
v \{v}, we rewrite Equation 21 as:

Lv = l

(
fout

(
xq · π(v, q; Â)︸ ︷︷ ︸

information from node q

+
∑

w∈Vsub
v \{q}

xw · π(v, w; Â)

︸ ︷︷ ︸
neighborhood information

;θ
)
, yv

)
, (23)

By comparing Equation 23 and 22, we could observe the similarity in the loss of node v and q, and
the difference lies in the contribution (weight π(·, ·; Â)) of each node and the neighboring nodes
(Vsub

q and Vsub
v). To clearly explain the analysis in the paper that stronger homophily leads to more

benefits from pseudo training effect, we give the formal definition of the graph homophily ratio.
Given a graph G, the homophily ratio is defined as the ratio of the number of edges connecting nodes
with a same label and the total number of edges, i.e.

h(G) = 1

|E|
∑

(j,k)∈E

1(yj = yk), (24)

where E is the edge set containing all edges, yj is the label of node j, and 1(·) is the indicator function
Ma et al. (2021). For any graph, the homophily ratio is between 0 and 1. For each computation
subgraph, when the homophily ratio is high, the neighboring nodes tend to share labels with the center
node, and the pseudo training would be beneficial for the performance. Many real-world graphs like
the social network and citation networks tend to have high homophily ratios, and pseudo training will
bring much benefit, which is shown in Section 4.3 of the paper.

Proof of Theorem 1.2. In this part, we choose the loss function l as cross entropy CE(·, ·), which is
the common choice for classification problems. In the following, we will first derive the gradient of
training the PDGNNs with (ev , yv). For cross entropy, we denote the one-hot vector form label as yv ,
of which the yv-th element is one and other entries are zero. Given the loss of a node v as shown in

16

Under review as a conference paper at ICLR 2023

the Equation 20, the gradient is derived as:

∇θLv = ∇θCE

(∑
w∈Vsub

v

fout

(
xw · π(v, w; Â);θ

)
,yv

)
(25)

= ∇θ

(
yv,k · log

∑
w∈Vsub

v

fout

(
xw · π(v, w; Â);θ

)
k

)
(26)

= yv,k ·
∇θ

(∑
w∈Vsub

v
fout
(
xw · π(v, w; Â);θ

)
k

)
∑

w∈Vsub
v

fout

(
xw · π(v, w; Â);θ

)
k

(27)

= yv,k ·

∑
w∈Vsub

v
∇θfout

(
xw · π(v, w; Â);θ

)
k∑

w∈Vsub
v

fout

(
xw · π(v, w; Â);θ

)
k

(28)

= yv,k ·
∑

w∈Vsub
v

∇θfout(xw;θ)k · π(v, w; Â)∑
w∈Vsub

v
fout

(
xw · π(v, w; Â);θ

)
k

(29)

=

∑
w∈Vsub

v
yv,k · ∇θfout(xw;θ)k

fout(xw;θ)k
· fout(xw;θ)k · π(v, w; Â)∑

w∈Vsub
v

fout

(
xw · π(v, w; Â);θ

)
k

(30)

=

∑
w∈Vsub

v
∇θCE

(
fout(xw;θ),yv,k

)
· fout(xw;θ) · π(v, w; Â)∑

w∈Vsub
v

fout

(
xw · π(v, w; Â);θ

) (31)

=
∑

w∈Vsub
v

fout(xw;θ) · π(v, w; Â)∑
w∈Vsub

v
fout

(
xw · π(v, w; Â);θ

) · ∇θCE
(
fout(xw;θ),yv

)
. (32)

The loss of training fout(xw;θ) with pairs of feature and pseudo-label (xw, yv) of all nodes of Gsub
v

is:

LGsub
v

=
∑

w∈Vsub
v

CE
(
fout(xw;θ),yv

)
(33)

(34)

Then, the corresponding gradient of LGsub
v

is :

∇θLGsub
v

=
∑

w∈Vsub
v

∇θCE
(
fout(xw;θ),yv

)
. (35)

By comparing Equation 32 and 35, we can see that training PDGNNs with a sufficient subgraph
embedding ev equals to training the function fout(·;θ) on all nodes of the computation subgraph Gsub

v

with a weight fout(xw;θ)·π(v,w;Â)∑
w∈Vsub

v
fout

(
xw·π(v,w;Â);θ

) on each node to rescale the contribution dynamically.

B.3 FURTHER DISCUSSION ON PSEUDO-TRAINING EFFECTS OF GENERALIZED SSE
GENERATION FUNCTION

In this subsection, we give further analysis on the pseudo training effect when the SSE generation
follows the following formulation:

ev = g({xw | w ∈ V}, Â). (36)

In this scenario, the pseudo training effect will depend on the specific form of g(·, ·). Despite this,
we can still analyze the strength of pseudo training effect with respect to the smoothness of the
function and the dataset properties. First of all, the pseudo training effect exists because the GNN
models generate the prediction based on a local neighborhood. Therefore, the nodes with overlapping

17

Under review as a conference paper at ICLR 2023

Table 5: The detailed statistics of datasets and task splittings

Dataset CoraFull McCallum et al. (2000) OGB-Arxiv3 Reddit (Hamilton et al., 2017) OGB-Products4

nodes 19,793 169,343 232,965 2,449,029

edges 130,622 1,166,243 114,615,892 61,859,140

classes 70 40 40 47

tasks 30 / 14 / 5 / 2 20 / 8 / 5 / 2 20 / 8 / 5 / 2 23 / 10 / 5 / 3

neighborhood (similar inputs to the model) share similar prediction results. If their labels are shared,
then training these nodes could mutually reinforce each other. Accordingly, given an arbitrary
function g(·, ·), we can gain an insight into the strength of pseudo training effect by analyzing the
similarity of the inputs when generating representations of different nodes. Without loss of generality,
we assume g(·, ·) be a continuous function (since g(·, ·) does not require training, it does not have
to be differentiable). Then, given two nodes v and w, we denote their corresponding inputs to the
model as two vectors Iv and Iw. Iv and Iw may contain different neighborhood information based
on the specific form of g(·, ·). Now, it is obvious that the closer Iv and Iw are, the closer g(Iv, Â)

and g(Iw, Â) are (due to the continuity of g(·, ·)). In other words, stronger homophily will lead to
stronger pseudo training effect as we analyzed in Theorem 1 in the paper. Besides, the frequency
components (in terms of the spectrum of the function, e.g., with Fourier analysis) of g(·, ·) also
matters. If g(·, ·) is mainly composed of low frequencies, i.e., the change of g(·, ·) is slow with
respect to the change of the input, then the pseudo training effect is stronger because more nodes are
getting similar representations. But if the function g(·, ·) contains strong high frequency components,
i.e. g(·, ·) changes significantly with the change of input, then the pseudo training effect is weaker
since only very similar inputs of the nodes get similar outputs.

In experiments, we also instantiated g(·, ·) with the reservoir computing module (Gallicchio &
Micheli, 2020), which yields comparable performance with other instantiations (Section C.5).

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional information on the datasets, experimental settings, and experi-
mental results.

C.1 DATASET DESCRIPTIONS

The statistics of the datasets are summarized in Table 5. Among these datasets, CoraFull and OGB-
Arxiv are two citation graphs, Reddit is a graph constructed from Reddit posts, and OGB-Products
is an Amazon product co-purchasing network. The usage of the datasets is granted for academic
purposes, and full details on the licenses can be obtained from the official websites. The datasets
contain no personally identifiable information or offensive content.

C.1.1 CITATION NETWORKS

CoraFull (McCallum et al., 2000) is a citation network labeled based on the paper topics. In total,
it contains 19,793 nodes and 126,842 edges. The original dataset has 65,311 edges. We directly
adopted the version in DGL with reverse edges added and duplicates removed. It contains 70 classes,
and each node has a 8,710 dimensional feature vector.

The OGB-Arxiv dataset is collected in the Open Graph Benchmark OGB. It is a directed citation
network between all Computer Science (CS) arXiv papers indexed by MAG (Wang et al., 2020d).
Totally it contains 169,343 nodes and 1,166,243 edges. The dataset contains 40 classes.

3
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

4
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

18

https://docs.dgl.ai/generated/dgl.data.CoraFullDataset.html
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

Under review as a conference paper at ICLR 2023

Table 6: The configuration of the MLP part of PDGNNs.

No. layer Input dimensions Output dimensions Activation

1 # data dimensions 256 ReLU
2 256 # classes SoftMax

C.1.2 SOCIAL NETWORK

Reddit Hamilton et al. (2017) is a graph dataset from Reddit posts made in the month of September,
2014. The node labels are the community, or “subreddit”, that the posts belong to. The authors
sampled 50 large communities and built a post-to-post graph, connecting posts if the same user
comments on both. In total this dataset contains 232,965 nodes with an average degree of 492,
114,615,892 edges, and a 602 dimensional feature vector for each node. We directly used the version
integrated in DGL library.

C.1.3 PRODUCT CO-PURCHASING NETWORK

OGB-Products is collected in the Open Graph Benchmark 5, representing an Amazon product co-
purchasing network 6. It contains 2,449,029 nodes and 61,859,140 edges. Nodes represent products
sold on Amazon, and edges indicate that the connected products are purchased together. In our
experiments, we select 46 classes and omit the last class containing only 1 example.

C.2 ADDITIONAL DETAILS ON EXPERIMENT SETUP AND MODEL EVALUATION

Continual learning setting. In this part, we give concrete examples to further explain the difference
between class-IL and task-IL scenarios. In class-IL scenario, a model has to classify the given data by
picking a class from all previously learnt classes, while the task-IL scenario only require the model to
distinguish the classes within each task. Concretely, suppose the model learns on a citation network
with a two-class task sequence {(physics, chemistry), (biology, math)}. In class-IL scenario, after
training, the model is required to classify a given document into one of the four classes. In task-IL
scenario, the model is only required to classify a given document into to (physics, chemistry) or
(biology, math), while cannot distinguish between physics and biology or between chemistry and
math.

For each dataset, the splitting of different tasks is conducted by dividing the classes into groups
in the default order. Different group sizes are shown in Table 1 of the paper. For each task, the
ratio for training, validation, and testing is 60%, 20%, 20%. The validation set was only used in
baseline model selection, since the hyperparameters of our method are simply set to be consistent
with baselines (Section 4.2 in the paper).

Baselines and model settings. In this part, we give more details on the model configurations. The
following setting applies to all datasets. All the backbone GNNs of baselines are configured as 2-layer
with 256 hidden dimensions, which exhibit better performance than other configurations. To ensure a
fair comparison, we also set the MLP part of PDGNNs as 2-layer with 256 hidden dimensions (the
SSE generation part does not contain trainable parameters) as shown in Table 6. The memory budget
(number of nodes per class selected to store) is set as 400 for PDGNNs-SSEM for all datasets. For
the memory based baselines, the budget was chosen with two criteria: 1. The buffer size should
be large than the size for PDGNNs-SSEM to ensure PDGNNs-SSEM does not succeed by storing
more examples. 2. The budget should be large enough for the baseline methods to gain a reasonable
performance. The specific budgets on different datasets are listed in Table 7, which demonstrates that
PDGNNs-SEEM is actually highly efficient in using the buffered data and outperforms the memory
based baselines with less memory usage. A brief introduction of the baseline continual learning
techniques are given below:

5https://ogb.stanford.edu/docs/nodeprop/ogbn-products
6http://manikvarma.org/downloads/XC/XMLRepository.html

19

https://docs.dgl.ai/generated/dgl.data.RedditDataset.html
https://ogb.stanford.edu/docs/nodeprop/##ogbn-products
http://manikvarma.org/downloads/XC/XMLRepository.html

Under review as a conference paper at ICLR 2023

Table 7: Memory budget of different methods on different datasets.

CoraFull OGB-Arxiv Reddit OGB-Products

PDGNNs-SSEM 400 400 400 400
Baselines 500 500 600 700

1. Fine-tune directly trains a given backbone GNN on the task sequence without any technique
to avoid forgetting, therefore can be viewed as a lower bound on the continual learning
performance.

2. Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) adds a quadratic penalty
to prevent the model weights, which are important to prevent model parameters related to
previous tasks from shifting too much.

3. Memory Aware Synapses (MAS) (Aljundi et al., 2018) measures the importance of the
parameters according to the sensitivity of the predictions on the parameters and slows down
the update of the important parameters.

4. Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) stores representative
data in episodic memory and adds a constraint to prevent the loss of the episodic memory
from increasing and only allow it to decrease.

5. Topology-aware Weight Preserving (TWP) (Liu et al., 2021) adds a penalty on the model
weights to preserve the topological information of previous graphs.

6. Learning without Forgetting (LwF) (Li & Hoiem, 2017) uses knowledge distillation to
constrain the shift of parameters for old tasks.

7. Experience Replay GNN (ER-GNN) (Zhou & Cao, 2021) integrates memory-replay to
GNNs by storing experience nodes from previous tasks.

8. Joint Training does not follow the continual learning setting and trains the model on all
tasks simultaneously. Therefore, Joint Training does not suffer from forgetting problems
and its performance can be viewed as the upper bound for continual learning.

A widely adopted performance upper bound on the continual learning models is joint training.
Different from being trained sequentially on a task sequence, a jointly trained model does follow the
continual learning setting but is simultaneously trained on all tasks. Therefore, jointly trained models
do not suffer from the forgetting problem and could be viewed as an upper bound on the continual
learning performance. Note that under the class-IL setting, the average accuracy of the jointly trained
model will still decrease as the number of classes increases. The reason is that the classification
difficulty increases when the number of classes vary from small to large.

Class imbalance in continual graph learning. According to Equation 37, the performance on
different tasks contributes equally to the average accuracy. However, unlike the traditional continual
learning with balanced datasets, the class imbalance problem is usually severe in graphs, of which the
effect will be entangled with the effect of forgetting. Directly balancing the data by choosing equal
number of nodes from each class may not be practical. For example, in the OGB-Products dataset, the
largest class has 668,950 nodes, while the smallest contains only 1 node. Therefore, sampling equal
amount of nodes from each class would result in either deleting many classes without enough nodes
or sampling a very small number of nodes from each class so that all classes can provide the same
amount of nodes. Moreover, deleting nodes in a graph would also change the original topological
structures of the remaining nodes, which is undesired.

To this end, we propose to re-scale the loss of nodes in each class according to the class sizes.
Denoting the set of the classes of our training data as C, the number of examples of each class in
C can be represented as {nc | c ∈ C}. Then, we calculate a scale for each class c to balance their
contribution in the loss function as syv

= nc∑
i∈C ni

, where yv,c = 1. Finally, our balanced loss is:

L =
∑
v∈Vτ

l(f(ev;θ),yv) · syv +
∑

ew∈SSEM
l(f(ew;θ),yw) · syw . (37)

Since the evaluation treats all classes equally and the loss on each class is balanced, λ is omitted in
our implementation, as it will influence the balance of each class.

20

Under review as a conference paper at ICLR 2023

Figure 5: Average accuracy (Red circles) and average forgetting (Black crosses) changes with buffer
size on OGB-Products dataset (the left two) and Reddit dataset (the right two).

Figure 6: Average accuracy (Red circles) and average forgetting (Black crosses) changes with buffer
size on CoraFull dataset.

Class-incremental classifier. In standard classification tasks, the number of the output heads of
a model equals the number of classes and is fixed at the beginning. But in class-IL setting, the
output heads will continually increase along with the new classes. To better accommodate new
classes, cosine distance is adopted by several works Wu et al. (2021); Wang et al. (2018); Gidaris &
Komodakis (2018) to slightly modify the standard softmax classifier. Empirically, PDGNNs with
SSEM outperform the standard softmax classifier which simply increases the output heads with the
number of classes. All baselines are tested with both strategies and the one that achieves better
performance over the validation set is employed for comparison. Specifically, only LwF exhibits
better performance with the cosine distance based classifier.

C.3 ADDITIONAL RESULTS OF STUDIES ON THE BUFFER SIZE

In this subsection, we show the performance of PDGNNs-SSEM with different buffer sizes on the
other 3 datasets in Figure 5 and 6. We observe similar patterns in these results, i.e., the performance
(both average accuracy and average forgetting) increases when the buffer size (in terms of the
ratio of data) increases. Specifically, on OGB-Products dataset, which is the largest dataset with
millions of nodes, the PDGNNs-SSEM can achieve reasonably well performance with a buffer size
of only 0.01 to the size of the dataset, which further demonstrates the effectiveness and efficiency of
PDGNNs-SSEM.

In Table 2 of the paper, we have the following findings: (1) our coverage maximization sampling does
guarantee a superior coverage ratio compared to the other sampling strategies, especially when the
buffer size is relatively small; (2) the performance does exhibit strong correlation with the coverage
ratio, especially when the buffer size is small. For different buffer sizes, a higher coverage ratio
can yield better performance. The performance gap between different sampling strategies is larger
with smaller buffer sizes, which is also the situation when the coverage ratio gap is larger. In this
case (buffer size smaller than 1.0%), the number of stored SSEs is relatively small compared to the
size of the dataset, therefore the effectiveness of pseudo training on more nodes is more prominent.
With larger buffer sizes, all sampling strategies can cover a large ratio of nodes and the performance
gaps close up. In real world applications, a smaller buffer size is typically adopted, therefore the
high memory efficiency of coverage maximization sampling would be preferred. The above analysis
verifies our Theorem 1 and indicates higher coverage ratio would be beneficial to the performance.

21

Under review as a conference paper at ICLR 2023

Figure 7: Visualization of node representations of different classes on Reddit dataset. The node
representations are taken after learning 1, 10, and 20 tasks. From the top to the bottom, we show the
results of Fine-tune, ER-GNN, and PDGNNs-SSEM. Each color corresponds to a class.

Figure 8: Dynamics of average accuracy on CoraFull dataset with task sequence of length of 35
(left), 14 (middle), and 5 (right) in class-IL scenario.

Figure 9: Dynamics of average accuracy on OGB-Arxiv dataset with task sequence of length of 8
(left), 4 (middle), and 2 (right) in class-IL scenario.

22

Under review as a conference paper at ICLR 2023

Table 8: Performance comparisons under class-IL on OGB-Arxiv dataset with different task splittings (↑ higher
means better).

C.L.T. 20 tasks 8 tasks 4 tasks 2 tasks
AA/% ↑ FM/%↑ AM/% ↑ FM /% ↑ AM/% ↑ FM /% ↑ AM/% ↑ FM /% ↑

Fine-tune 4.9±0.0 -89.7±0.4 10.5±0.1 -77.5±0.5 16.4±0.2 -63.9±0.6 26.4±0.3 -47.3±0.9
EWC 2017 8.5±1.0 -69.5±8.0 9.4±0.1 -73.7±1.1 15.7±0.3 -62.8±0.7 24.8±0.3 -47.5±0.6
MAS 2018 4.8±0.4 -72.2±4.1 10.3±0.2 -77.5±0.6 16.5±0.3 -64.0±0.5 26.3±0.6 -47.5±0.7
GEM 2017 4.9±0.0 -89.8±0.3 10.7±0.1 -81.5±0.3 18.2±0.2 -70.6±0.5 31.3±0.1 -58.5±0.2
TWP 2021 6.7±1.5 -50.6±13.2 8.3±0.4 -66.1±1.3 14.0±0.4 -57.6±1.5 22.0±0.4 -47.6±0.5
LwF 2017 9.9±12.1 -43.6±11.9 24.2±0.4 -31.9±1.0 19.6±1.1 -41.8±1.7 19.6±0.7 -51.1±0.1

ER-GNN 2021 12.3±3.9 -79.9±4.1 10.9±0.2 -77.5±0.5 19.8±1.2 -59.9±1.3 31.6±0.6 -34.8±1.3

Joint 56.8±0.0 -8.6±0.0 55.3±0.0 -10.1±0.0 53.9±0.0 -9.1±0.1 51.6±0.1 -8.2±0.2

PDGNNs* 26.8±1.8 -61.6±2.0 27.9±1.8 -58.2±2.7 30.9±1.1 -51.2±1.6 35.9±1.4 -46.4±3.2
PDGNNs 53.2±0.4 -14.7±0.4 51.6±0.4 -15.0±0.7 50.6±0.4 -12.8±0.5 49.7±0.3 -11.4±0.5

Figure 10: Dynamics of average accuracy on Reddit dataset with task sequence of length of 20 (left),
8 (middle) in class-IL scenario, and Reddit dataset with task sequence of length of 20 (right) in
task-IL scenario.

C.4 ADDITIONAL RESULTS OF COMPARISONS WITH THE STATE-OF-THE-ARTS

In this subsection, we provide additional results to compare PDGNNs-SSEM with the baselines. In
Table 8, we provide numerical results to compare different models and complement the curves of
average accuracy provided in the paper. We list both the final average accuracy and average forgetting
of all models on the OGB-Arxiv dataset with different task splittings in class-IL scenario. Besides,
we also show the results of PDGNNs-SSEM with an extremely small buffer size (i.e., 0.001 of the
size of the dataset), which is denoted with PDGNNs*. 0.001 of the size of OGB-Arxiv corresponds
to storing only 4 examples per class and a total of 160 for 40 different classes, which is orders
of magnitudes smaller than the buffer size of the memory based baselines with budgets of several
hundred per class. From Table 8, we can observe that both PDGNNs and PDGNNs* significantly
outperform the baselines. Even the PDGNNs* can outperform baselines by a large margin, which
demonstrates the high efficiency of SSEM. Considering that OGB-Arxiv contains 169,343 nodes, the
performance of PDGNNs* is indeed impressive.

Since the error bars of Figure 3 in the paper are partially omitted to highlight the performance
difference of different methods, we show the complete results with error bars and the results on other

Figure 11: Dynamics of average accuracy on OGB-Arxiv dataset with task sequence of length of
20 (left) in task-IL scenario, OGB-Products dataset with task sequence of length of 23 (middle) in
task-IL scenario, and CoraFull dataset with task sequence of length of 35 (right).

23

Under review as a conference paper at ICLR 2023

Figure 12: Average accuracy (left) and average forgetting (right) vs. buffer size on OGB-Arxiv.
PDGNN1 to PDGNN3 instantiated π(v, w; Â) as the forms introduced in Section 3.4 of the paper.
PDGNN4 adopts the reservoir computing module proposed in Gallicchio & Micheli (2020)

datasets with different task splittings (with class-IL scenario) in Figure 8, 9, and 10. Note that the
task sequence of length is equivalent to the number of tasks to learn (as shown in Table 5) for each
dataset.

Besides the class-IL scenario, we also provide additional results with complete error bars for the
task-IL scenario in Figure 10 and 11.

To show the performance difference between PDGNNs-SSEM and the baselines more concretely,
we visualize the node representations of different classes with t-SNE Van der Maaten & Hinton
(2008) while learning on the task sequence (with a length of 20, i.e., 20 tasks) of the Reddit dataset.
In Figure 7, besides PDGNNs-SSEM, we also show two other representative baselines including
ER-GNN, specially designed for continual graph learning, and Fine-tune, without continual learning
techniques. According to Figure 7, PDGNNs-SSEM can maintain the nodes from different classes be
well separated while continuously learning new tasks sequentially (each color corresponds to a class).
In contrast, for ER-GNN and Fine-tune, the boundaries of different classes are less clear.

C.5 ADDITIONAL STUDIES ON THE BUFFER SIZE

In Figure 12, based on the class-IL scenario, we study the performance of PDGNNs-SSEM on
the OBG-Arxiv dataset when the buffer size (i.e., the ratio of dataset) varies from 0.0002 to 0.6.
Figure 12 exhibits the similar performance of different SSE generation modules. Besides, when the
buffer size grows from 0.0002 to 0.01, both the average accuracy and average forgetting of PDGNNs
increase. When the buffer size reaches 0.1, the performance of PDGNNs is comparable to the setting
which stores the entire training set (when the ratio of dataset is 0.6). These results demonstrate the
efficiency of SSEM. Moreover, the results in Figure 12 also show that the performance difference
among different SSE generation strategies is not significant.

D BROADER IMPACT

In this paper, we proposed a general technique to enable GNNs which can fit into the PDGNNs
framework to continually learn on expanding networks. The method can be applied to any scenario
requiring generating node representations on networks. The results of this paper can have an
immediate and strong impact to address existing challenges for continual graph representation
learning, enabling to achieve state-of-the-art performance, and thus positively impacting applications
on social networks, recommender systems, dynamic systems, etc.

Potential negative social impact may arise depending on the application scenario. For example, the
privacy issue should be carefully considered when dealing with data containing user information.

24

	Introduction
	Related Works
	Continual Learning & Continual Graph Learning
	Decoupled Graph Neural Networks & Reservoir Computing

	Parameter Decoupled GNNs with Sufficient Subgraph Embedding Memory
	Preliminaries
	Memory Replay Meets GNNs
	Parameter Decoupled GNNs with SSEM
	Instantiations of PDGNNs
	Pseudo-training Effects of SSEs
	Coverage Maximization Sampling

	Experiments
	Datasets
	Experimental Setup and Model Evaluation
	Studies on the Buffer Size & Performance vs. Coverage Ratio (Q1,2,3,4)
	Results for Class-IL Scenario and Task-IL Scenario (Q5)

	Conclusion
	Additional Details on Parameter Decoupled GNNs with SSEM
	Theoretical Analysis
	Parameter Decoupled GNNs with SSEM
	Pseudo-training Effects of SSEs
	Further Discussion on Pseudo-training Effects of Generalized SSE Generation Function

	Additional Experimental Results
	Dataset Descriptions
	Citation Networks
	Social Network
	Product Co-purchasing Network

	Additional Details on Experiment Setup and Model Evaluation
	Additional Results of Studies on the buffer size
	Additional Results of Comparisons with the State-of-the-Arts
	Additional Studies on the Buffer Size

	Broader Impact

